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Outline

 Synchronous, asynchronous, and causally ordered 
communication

 Vector time

 Detecting causal relationships in distributed computations

 Conclusion
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Part 1: Synchronous, asynchronous, and 
causally ordered communication

 A formal definition of different types of computations is 
needed w.r.t. causality

 Model
 Processes form a distributed system
 Internal-, send- and receive-events
 Computation consists of local computations and messages
 reliable communication
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Types of computations

 A-computations
 send and receive events are asynchronous

 FIFO-computations
 channels have FIFO-property

 Causally ordered (NEW)
 S-computations

 send and receive events are synchronous
 message transmissions appear to be instantaneous
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Types of computations (contd.)

 Generally, no computation type is superior to the others
 S-computations can be simulated with A-computations and 

vice versa
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Def: Causality relation

 (s,r) C
i
 x C

j
: s corresponds to r

 AS1: If a    
i
 b, then a    b

 AS2: (s,r) , then a    b

 AS3: If a    b and b    c, then a    c
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Def: A-computations

 Processes P
1
...P

n
 with a tuple C=(C

1
...C

n
) of local 

computations

 A set of corresponding send and receive events for which 
the causality relation holds
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Def: FIFO-computations

 Additionally, for all (s,r) and (s',r') 
s ~ s' r ~ r'  s    s'  r    r'
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Def: CO-Computations

 Additionally, for all (s,r) and (s',r') 
r ~ r'  s    s'  r    r'
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Characterizations of CO-computations

 Message ordered:

s    s'  (r'    r)

 Empty Interval:

for each pair (s,r)  the open interval

<s,r> = {x  C: s    x    r} is empty

FIFO-computation
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Characterizations of CO-computations (contd.)

 CO-computations: triangle inequality:
a computation is CO iff no message is bypassed by a chain 
of other messages

 CO-computations: Vertical message arrow criterion
A computation C is CO iff for every m in C there exists a 
space-time diagram for C such that m can be drawn as a 
vertical message arrow and no arrows go from right to left
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Def: RSC-computations

 RSC-computations: Realizable with Synchronous 
Communication

 A computation is called RSC if there exists a non-
separated linear extension of (C,   )
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Characterizations of RSC-computations

 Crowns: A crown is a sequence of pairs of corresponding 
send and receive events such that
s

1
    r

2
, s

2
    r

3
, ... , s

k-1
    r

k
, s

k
    r

1

 A computation is RSC iff it contains no crown
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Characterizations of RSC-computations (contd.)

 All message arrows in a diagram can be drawn vertical

 RSC-computations are equivalent to S-computations
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Informal view:
A-computations and S-computations

 S-computations are often regarded as a special case of A-
computations (A-computations with empty channels)

 Proofs of algorithms for A-computations hold with rules for 
S-computations

 (but algorithms could deadlock in synchronous case)
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Hierarchy of computations

 The paper shows a hierarchy of computations with different 
characteristics: synchronous, asynchronous, FIFO, 
causally ordered

S-computations  CO-computations  FIFO-computations 
A-computations
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Hierarchy

S-computation

RSC

No crown

Vertical message
arrows criterion

Empty
Interval

Message
Ordered

Vertical message
arrow criterion

FIFO
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Termination detection algorithm revisited

 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring
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Part 2: Vector time

 Calculation of global state in a system without real-time 
clocks

 Calculate potential causality between events.

 One can try to simulate a synchronous system on an 
asynchronous system

 ... simulate global time
 ... simulate global state

and build algorithms on top
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Virtual time

 Simulate global time by Lamport:
 Every process stores the „global time“
 Before a send event, a process increases its value of the 

global time and attaches the new value to the message
 If a process receives a message with a timestamp attached 

that is greater than its own value, it updates its local clock
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Lamport Time

 Insufficient in some cases, it loses information by mapping 
events to integers:

 Events happening at the same time can get different 
timestamps...
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Cuts

 Subset of events; Graphically, a zigzag line which cuts the 
diagram into two parts

 Cuts the diagram into past and future
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Consistent Cuts

 A Cut is consistent if every message received was sent
 Inconsistent cuts yield „invalid“ space-time diagrams

 Can be seen as an instant in time
 One could use a cut to compute a global state
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Vector Time

 Every process has a local clock
 Before a receive- or send-event a process increases its 

local clock
 Every process saves the most recent values it knows from 

all processes in a vector V
i

 A process attaches its local vector to the message
 If a process receives a message it updates its local vector
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Properties of Vector Time

 The lattice of consistent cuts and the lattice of time vectors 
are isomorphic

 Vector time is able to model concurrency
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Minkowski's space-time

 Maybe a better model of time than the „standard“ model
 Event P can only affect event b if b lies in the future light 

cone of P

 Close analogy to vector time
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Snapshot algorithm

 P
i
 wants to request a global snapshot

 P
i
 fixes a time s = V

i
 + (0,...,0,1,0,...,0)

 P
i
 broadcasts s to all other processes and freezes until it 

knows that all other processes know s

 P
i
 „ticks“ again, takes a local snapshot and broadcasts a 

dummy message, so all processes advance their clocks to 
some value ≥ s

 If a process' local clock becomes ≥ s, it takes a local 
snapshot and sends it to P

i
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Snapshot algorithm (contd.)

 The algorithm can be made much simpler and more 
efficient
 External process
 No need for whole vectors to be sent
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Part 3: Detecting Causal Relationships in 
Distributed Computations

 In Search of The Holy Grail
 Debugging
 Consistent recovery
 Detecting deadlocks
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Causal History

 Assign complete history to each event
 Too expensive

 Can be reduced to vector time
 Lamport time does not characterize causality
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Efficient Vector time

 Attaching vector time to each message is unacceptable
 Vector timestamps can become large

 Typically, only a few processes communicate directly



35Seminar in Distributed SystemsWed, 26. Nov. 2008

Efficient Vector time (contd.)

 Store LS (last sent) and LU (last update)

 FIFO is required
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The size of vector time

 Unfortunately, causal order is in general of order N
 Application of vector time is substantially limited
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Realizations for Offline Analysis

 Depth-first search algorithm to get complete causal history
 Each event has at most 2 direct predecessors

 Store direct dependencies of each event

 Breadth-first search to get vector time
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Concurrency Regions

 Regions of events which share the same causal past and 
future

 Characterizing causality is reducible to characterizing 
concurrency
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Global predicates

 Important for debugging
 Not all observers of a computation establish the truth for a 

given predicate
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Observers

 Report every event to an external observer
 Use causal delivery protocol

 Preserves causality relation

 All observations are valid
 One observer may claim that a predicate has been 

established while another claims that the predicate wasn't 
satisfied during the computation
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Observers (contd.)
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Possibly and Definitely

 Possibly: There is an instant in an observation at which the 
predicate holds

 Definitely: In every complete observation there is an instant 
at which the predicate holds

 Stable predicates: A predicate which eventually in every 
observation
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Detecting definitely

 Based on vector time

 Compute the set A
i
 of intersection points of level i for each 

level; i  {0...l}, l=|E|
 All intersection points in A

k-1
 are accessible by a path on which the 

predicate is never satisfied on lower levels

 If A
l
 is empty, the predicate definitely holds

 Similar for Possibly

 Costly
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More efficient algorithms

 Decomposable predicates are easier to detect
 Establish parts of the global predicate
 Go into one direction until parts of the predicate are 

satisfied
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Computation replay

 Record non-deterministic events
 Replay with recorded decisions



46Seminar in Distributed SystemsWed, 26. Nov. 2008

Currently

 Evaluate predicate on the real-time order of the events
 Must use a powerful observer
 Intrusive: block at each invalidating event

 Might miss some predicates
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Behavioral patterns

 Classes of events, each event belongs to a class
 Combine classes to patterns: A happens between B and C

 What timestamps should be assigned to combined events?
 (A||B) C
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Conclusion

 Hierarchy of computation types
 Vector time is interesting

 limited application

 Detection requires much effort
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Questions?
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