
Causality, consistency and logical time in
distributed computations

Presented by: Dominik Menzi

Papers by: Prof. Mattern

Mentor: Thomas Locher

2Seminar in Distributed SystemsWed, 26. Nov. 2008

Outline

 Synchronous, asynchronous, and causally ordered
communication

 Vector time

 Detecting causal relationships in distributed computations

 Conclusion

3Seminar in Distributed SystemsWed, 26. Nov. 2008

Part 1: Synchronous, asynchronous, and
causally ordered communication

 A formal definition of different types of computations is
needed w.r.t. causality

 Model
 Processes form a distributed system
 Internal-, send- and receive-events
 Computation consists of local computations and messages
 reliable communication

4Seminar in Distributed SystemsWed, 26. Nov. 2008

Types of computations

 A-computations
 send and receive events are asynchronous

 FIFO-computations
 channels have FIFO-property

 Causally ordered (NEW)
 S-computations

 send and receive events are synchronous
 message transmissions appear to be instantaneous

5Seminar in Distributed SystemsWed, 26. Nov. 2008

Types of computations (contd.)

 Generally, no computation type is superior to the others
 S-computations can be simulated with A-computations and

vice versa

6Seminar in Distributed SystemsWed, 26. Nov. 2008

Def: Causality relation

 (s,r) C
i
 x C

j
: s corresponds to r

 AS1: If a
i
 b, then a b

 AS2: (s,r) , then a b

 AS3: If a b and b c, then a c

7Seminar in Distributed SystemsWed, 26. Nov. 2008

Def: A-computations

 Processes P
1
...P

n
 with a tuple C=(C

1
...C

n
) of local

computations

 A set of corresponding send and receive events for which
the causality relation holds

8Seminar in Distributed SystemsWed, 26. Nov. 2008

Def: FIFO-computations

 Additionally, for all (s,r) and (s',r') 
s ~ s' r ~ r'  s s'  r r'

9Seminar in Distributed SystemsWed, 26. Nov. 2008

Def: CO-Computations

 Additionally, for all (s,r) and (s',r') 
r ~ r'  s s'  r r'

10Seminar in Distributed SystemsWed, 26. Nov. 2008

Characterizations of CO-computations

 Message ordered:

s s'  (r' r)

 Empty Interval:

for each pair (s,r)  the open interval

<s,r> = {x  C: s x r} is empty

FIFO-computation

11Seminar in Distributed SystemsWed, 26. Nov. 2008

Characterizations of CO-computations (contd.)

 CO-computations: triangle inequality:
a computation is CO iff no message is bypassed by a chain
of other messages

 CO-computations: Vertical message arrow criterion
A computation C is CO iff for every m in C there exists a
space-time diagram for C such that m can be drawn as a
vertical message arrow and no arrows go from right to left

12Seminar in Distributed SystemsWed, 26. Nov. 2008

Def: RSC-computations

 RSC-computations: Realizable with Synchronous
Communication

 A computation is called RSC if there exists a non-
separated linear extension of (C,)

13Seminar in Distributed SystemsWed, 26. Nov. 2008

Characterizations of RSC-computations

 Crowns: A crown is a sequence of pairs of corresponding
send and receive events such that
s

1
 r

2
, s

2
 r

3
, ... , s

k-1
 r

k
, s

k
 r

1

 A computation is RSC iff it contains no crown

14Seminar in Distributed SystemsWed, 26. Nov. 2008

Characterizations of RSC-computations (contd.)

 All message arrows in a diagram can be drawn vertical

 RSC-computations are equivalent to S-computations

15Seminar in Distributed SystemsWed, 26. Nov. 2008

Informal view:
A-computations and S-computations

 S-computations are often regarded as a special case of A-
computations (A-computations with empty channels)

 Proofs of algorithms for A-computations hold with rules for
S-computations

 (but algorithms could deadlock in synchronous case)

16Seminar in Distributed SystemsWed, 26. Nov. 2008

Hierarchy of computations

 The paper shows a hierarchy of computations with different
characteristics: synchronous, asynchronous, FIFO,
causally ordered

S-computations  CO-computations  FIFO-computations
A-computations

17Seminar in Distributed SystemsWed, 26. Nov. 2008

Hierarchy

S-computation

RSC

No crown

Vertical message
arrows criterion

Empty
Interval

Message
Ordered

Vertical message
arrow criterion

FIFO

18Seminar in Distributed SystemsWed, 26. Nov. 2008

Termination detection algorithm revisited

 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring

19Seminar in Distributed SystemsWed, 26. Nov. 2008

Termination detection algorithm revisited

 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring

20Seminar in Distributed SystemsWed, 26. Nov. 2008

Termination detection algorithm revisited

 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring

21Seminar in Distributed SystemsWed, 26. Nov. 2008

Termination detection algorithm revisited

 Processes P
0
...P

n-1
, passive or active

 Send a token along a virtual ring

22Seminar in Distributed SystemsWed, 26. Nov. 2008

Part 2: Vector time

 Calculation of global state in a system without real-time
clocks

 Calculate potential causality between events.

 One can try to simulate a synchronous system on an
asynchronous system

 ... simulate global time
 ... simulate global state

and build algorithms on top

23Seminar in Distributed SystemsWed, 26. Nov. 2008

Virtual time

 Simulate global time by Lamport:
 Every process stores the „global time“
 Before a send event, a process increases its value of the

global time and attaches the new value to the message
 If a process receives a message with a timestamp attached

that is greater than its own value, it updates its local clock

24Seminar in Distributed SystemsWed, 26. Nov. 2008

Lamport Time

 Insufficient in some cases, it loses information by mapping
events to integers:

 Events happening at the same time can get different
timestamps...

25Seminar in Distributed SystemsWed, 26. Nov. 2008

Cuts

 Subset of events; Graphically, a zigzag line which cuts the
diagram into two parts

 Cuts the diagram into past and future

26Seminar in Distributed SystemsWed, 26. Nov. 2008

Consistent Cuts

 A Cut is consistent if every message received was sent
 Inconsistent cuts yield „invalid“ space-time diagrams

 Can be seen as an instant in time
 One could use a cut to compute a global state

27Seminar in Distributed SystemsWed, 26. Nov. 2008

Vector Time

 Every process has a local clock
 Before a receive- or send-event a process increases its

local clock
 Every process saves the most recent values it knows from

all processes in a vector V
i

 A process attaches its local vector to the message
 If a process receives a message it updates its local vector

28Seminar in Distributed SystemsWed, 26. Nov. 2008

Properties of Vector Time

 The lattice of consistent cuts and the lattice of time vectors
are isomorphic

 Vector time is able to model concurrency

29Seminar in Distributed SystemsWed, 26. Nov. 2008

Minkowski's space-time

 Maybe a better model of time than the „standard“ model
 Event P can only affect event b if b lies in the future light

cone of P

 Close analogy to vector time

30Seminar in Distributed SystemsWed, 26. Nov. 2008

Snapshot algorithm

 P
i
 wants to request a global snapshot

 P
i
 fixes a time s = V

i
 + (0,...,0,1,0,...,0)

 P
i
 broadcasts s to all other processes and freezes until it

knows that all other processes know s

 P
i
 „ticks“ again, takes a local snapshot and broadcasts a

dummy message, so all processes advance their clocks to
some value ≥ s

 If a process' local clock becomes ≥ s, it takes a local
snapshot and sends it to P

i

31Seminar in Distributed SystemsWed, 26. Nov. 2008

Snapshot algorithm (contd.)

 The algorithm can be made much simpler and more
efficient
 External process
 No need for whole vectors to be sent

32Seminar in Distributed SystemsWed, 26. Nov. 2008

Part 3: Detecting Causal Relationships in
Distributed Computations

 In Search of The Holy Grail
 Debugging
 Consistent recovery
 Detecting deadlocks

33Seminar in Distributed SystemsWed, 26. Nov. 2008

Causal History

 Assign complete history to each event
 Too expensive

 Can be reduced to vector time
 Lamport time does not characterize causality

34Seminar in Distributed SystemsWed, 26. Nov. 2008

Efficient Vector time

 Attaching vector time to each message is unacceptable
 Vector timestamps can become large

 Typically, only a few processes communicate directly

35Seminar in Distributed SystemsWed, 26. Nov. 2008

Efficient Vector time (contd.)

 Store LS (last sent) and LU (last update)

 FIFO is required

36Seminar in Distributed SystemsWed, 26. Nov. 2008

The size of vector time

 Unfortunately, causal order is in general of order N
 Application of vector time is substantially limited

37Seminar in Distributed SystemsWed, 26. Nov. 2008

Realizations for Offline Analysis

 Depth-first search algorithm to get complete causal history
 Each event has at most 2 direct predecessors

 Store direct dependencies of each event

 Breadth-first search to get vector time

38Seminar in Distributed SystemsWed, 26. Nov. 2008

Concurrency Regions

 Regions of events which share the same causal past and
future

 Characterizing causality is reducible to characterizing
concurrency

39Seminar in Distributed SystemsWed, 26. Nov. 2008

Global predicates

 Important for debugging
 Not all observers of a computation establish the truth for a

given predicate

40Seminar in Distributed SystemsWed, 26. Nov. 2008

Observers

 Report every event to an external observer
 Use causal delivery protocol

 Preserves causality relation

 All observations are valid
 One observer may claim that a predicate has been

established while another claims that the predicate wasn't
satisfied during the computation

41Seminar in Distributed SystemsWed, 26. Nov. 2008

Observers (contd.)

42Seminar in Distributed SystemsWed, 26. Nov. 2008

Possibly and Definitely

 Possibly: There is an instant in an observation at which the
predicate holds

 Definitely: In every complete observation there is an instant
at which the predicate holds

 Stable predicates: A predicate which eventually in every
observation

43Seminar in Distributed SystemsWed, 26. Nov. 2008

Detecting definitely

 Based on vector time

 Compute the set A
i
 of intersection points of level i for each

level; i  {0...l}, l=|E|
 All intersection points in A

k-1
 are accessible by a path on which the

predicate is never satisfied on lower levels

 If A
l
 is empty, the predicate definitely holds

 Similar for Possibly

 Costly

44Seminar in Distributed SystemsWed, 26. Nov. 2008

More efficient algorithms

 Decomposable predicates are easier to detect
 Establish parts of the global predicate
 Go into one direction until parts of the predicate are

satisfied

45Seminar in Distributed SystemsWed, 26. Nov. 2008

Computation replay

 Record non-deterministic events
 Replay with recorded decisions

46Seminar in Distributed SystemsWed, 26. Nov. 2008

Currently

 Evaluate predicate on the real-time order of the events
 Must use a powerful observer
 Intrusive: block at each invalidating event

 Might miss some predicates

47Seminar in Distributed SystemsWed, 26. Nov. 2008

Behavioral patterns

 Classes of events, each event belongs to a class
 Combine classes to patterns: A happens between B and C

 What timestamps should be assigned to combined events?
 (A||B) C

48Seminar in Distributed SystemsWed, 26. Nov. 2008

Conclusion

 Hierarchy of computation types
 Vector time is interesting

 limited application

 Detection requires much effort

49Seminar in Distributed SystemsWed, 26. Nov. 2008

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

