
Declarative Routing

Seminar in Distributed Computing 08
with papers chosen by Prof. T. Roscoe
Presented by David Gerhard



Mittwoch, 29. Oktober 2008 2Seminar in Distributed Computing

Overview
 Motivation
 P2
 NDLog
 Conclusion
 Questions...?



Mittwoch, 29. Oktober 2008 3Seminar in Distributed Computing

Motivation
 Overlay networks are widely used today (p2p,...)
 Difficult to create and implement
 Not really extensible, not really reusable
 Declarative approach promises flexibility and compactness
 Declarative language enables static program checks for 

correctness and security
 Declarative networking is part of larger effort to revisit the 

current Internet Architecture



Mittwoch, 29. Oktober 2008 4Seminar in Distributed Computing

P2
 P2 is a system for the construction, maintenance and 

sharing of overlay networks, using:
 Declarative language
 Dataflow architecture
 Soft-state tables, streams of tuples
 Implemented in C++ using UDP

 Does resource discovery and network monitoring



Mittwoch, 29. Oktober 2008 5Seminar in Distributed Computing

Structure of a P2 Node



Mittwoch, 29. Oktober 2008 6Seminar in Distributed Computing

OverLog
 Based on Datalog(subset of Prolog) query language
 Specification of physical distribution (e.g. where tuples are 

generated, stored, sent)
 Direct translation into dataflow graphs



Mittwoch, 29. Oktober 2008 7Seminar in Distributed Computing

OverLog - Example
 [<ruleID> <head> :- <body>]

 P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).



Mittwoch, 29. Oktober 2008 8Seminar in Distributed Computing

OverLog – Ping Example

materialize(member, 120, infinity, keys(2)).

P0 pingEvent@X(X, Y, E, max<R>) :- periodic@X(X, E, 2),
member@X(X, Y, _, _, _), R := f_rand().

P1 ping@Y(Y, X, E, T) :- pingEvent@X(X, Y, E, _), T := f_now@X().

P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).

P3 latency@X(X, Y, T) :- pong@X(X, Y, E, T1), T := f_now@X() - T1.

mailto:f_now@X


Mittwoch, 29. Oktober 2008 9Seminar in Distributed Computing

Structure of a P2 Node



Mittwoch, 29. Oktober 2008 10Seminar in Distributed Computing

Dataflow



Mittwoch, 29. Oktober 2008 11Seminar in Distributed Computing

Dataflow
 Consists of nodes(elements)

 Selection, projection, join, group-by, aggregation
 Forms a directed dataflow graph
 Edges carries well structured tuples
 Arbitrary number of input/output ports per element
 Handles “network”

 Responsible for Sockets
 Packet scheduling
 Congestion control
 Reliable transmission
 Data serialization



Mittwoch, 29. Oktober 2008 12Seminar in Distributed Computing

Dataflow



Mittwoch, 29. Oktober 2008 13Seminar in Distributed Computing

Structure of a P2 Node



Mittwoch, 29. Oktober 2008 14Seminar in Distributed Computing

Planer
 Input: parsed OverLog
 Output: dataflow graph

 Adds network stack
 Uses “built in” elements (e.g. periodic, f_now), which are 

directly mapped to dataflow elements



Mittwoch, 29. Oktober 2008 15Seminar in Distributed Computing

Evaluation - Setting
 Using a P2 implementation of Chord DHT

 Configured to use low bandwidth
 Aiming at high consistency and low latency

 Tested on the Emulab testbed(100 machines)
 10 transit domains (100Mbps)
 100 stubs (10Mpbs)
 RTT transit-transit 50ms
 RTT stub-stub same domain 2ms



Mittwoch, 29. Oktober 2008 16Seminar in Distributed Computing

Evaluation – Results Static Test
 500-node static network, 96% lookups complete in <=6s
 About the same as the published numbers of MIT Chord



Mittwoch, 29. Oktober 2008 17Seminar in Distributed Computing

Evaluation – Results “Handling Churn”
 Churn = continuous process of node arrival&departure
 Low Churn(session time >=64min)

 P2 Chord does well
 97% consistent lookups
 Most of which under 4s

 High Churn(session time <= 16min)
 P2 Chord does not well
 42% consistent lookups
 84% with high latency

 MIT Chord
 99.9% consistent lookups, session time 47min
 High Churn mean lookup latency of less than 5s



Mittwoch, 29. Oktober 2008 18Seminar in Distributed Computing

Conclusion I
 Feasibility study
 Approach looks promising, but needs further work

 Further tests with other overlay networks
 Security

 Planner does not handle some constructs of OverLog
 Multi-node rule bodies
 Negation

 Combination of declarative language and dataflow graphs 
powerful, alternative: automaton

 Declarative language enables static program checks for 
correctness and security



Mittwoch, 29. Oktober 2008 19Seminar in Distributed Computing

Conclusion II
 OverLog is very concise (Chord in 47 rules)
 OverLog is “difficult”

 Not easy to read (Prolog is hard to read), but can be directly 
compiled and executed by P2 nodes

 Non-trivial learning curve
 No if-then-else
 No order of evaluation, everything is tested “in parallel”

 Could profit from multiprocessor environments

 OverLog Chord implementation not declarative enough
 Replace OverLog?



Mittwoch, 29. Oktober 2008 20Seminar in Distributed Computing

NDLog - Introduction
 Extends P2
 New declarative language NDLog

 Explicit control over data placement and movement
 Buffered/pipelined semi-naïve evaluation
 Concurrent updates of the network while running
 Query optimization
 Assumes not fully connected network graph, but assumes 

bidirectional links



Mittwoch, 29. Oktober 2008 21Seminar in Distributed Computing

NDLog
 Introduces new datatype address

 Address variables/constants name start with “@”
 First field in all predicates is the location address of the 

tuple (bold for clarity)
 Link relation are stored, representing the connectivity 

information of the queried network
 Link literal is a link relation in the body of a rule

 #link(@src,@dst,...)



Mittwoch, 29. Oktober 2008 22Seminar in Distributed Computing

NDLog II
 Rules with the same location specifier in each predicate, 

including Head, are called local rules
 Link-restricted rule

 exactly one link literal
 all other literals are located either at the Src or Dst of the link literal

 Every rule in NDLog is either a local rule or a link-restricted 
rule



Mittwoch, 29. Oktober 2008 23Seminar in Distributed Computing

NDLog - Example
 [<ruleID> <head> :- <body>]

 OverLog
 P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).

 NDLog
 SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C), P = 

f_concatPath(link(@S,@D,C), nil).



Mittwoch, 29. Oktober 2008 24Seminar in Distributed Computing

NDLog - Example

SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C),
. P = f concatPath(link(@S,@D,C), nil).
SP2: path(@S,@D,@Z,P,C) :- #link (@S,@Z,C1), 

path(@Z,@D,@Z2,P2,C2), C = C1 + C2,
. P = f concatPath(link(@S,@Z,C1),P2).
SP3: spCost(@S,@D,min<C>) :- path(@S,@D,@Z,P,C).
SP4: shortestPath(@S,@D,P,C) :- spCost(@S,@D,C),
. path(@S,@D,@Z,P,C).
Query: shortestPath(@S,@D,P,C).



Mittwoch, 29. Oktober 2008 25Seminar in Distributed Computing

Example



Mittwoch, 29. Oktober 2008 26Seminar in Distributed Computing

Centralized Plan Generation
 Semi-naïve fixpoint evaluation

 Any new tuples generated for the 1st time are used as input for the 
next iteration

 Repeated till a fixpoint is achieved (no new tuples generated)

 Does not work efficiently in Distributed Systems
 Next iteration on a node can only start when all other nodes have 

finished the iteration step and all new tuples have been distributed 
(Barrier)



Mittwoch, 29. Oktober 2008 27Seminar in Distributed Computing

Distributed Plan Generation
 Iterations are local at every node
 Non-local rules are rewritten that the body is computable at 

one node
 Buffered semi-naïve

 Buffers all incoming tuples during a iteration
 Handled in a future iteration

 Pipelined semi-naïve
 At arrival every tuple is used to compute new tuples
 Join operator matches each tuple only with older tuples (timestamp)
 Enables optimization on a per tuple basis



Mittwoch, 29. Oktober 2008 28Seminar in Distributed Computing

Semantics in Dynamic Network
 State of the network is constantly changing
 Queries should reflect the most current state of the network

 Continuous Update Model
 Updates occur very frequently, faster than the fixpoint is reached
 Query results never fully reflect the state of the network

 Bursty Update Model
 Updates occur in bursts
 Between bursts no updates
 Allows the system to reach a fixpoint



Mittwoch, 29. Oktober 2008 29Seminar in Distributed Computing

Centralized Semantics
 Insertion

 Handled by pipelined semi-naïve evaluation
 Deletion

 Deletion of a base tuple leads to the deletion of any tuples derived 
from it

 Updates
 A deletion followed by an insertion

 Works as well in Distributed Systems, as long as
 There are only FIFO links or
 All tuples are maintained as soft-state



Mittwoch, 29. Oktober 2008 30Seminar in Distributed Computing

Query Optimizations
 Traditional Datalog optimizations

 Aggregate Selections
 Magic Sets and Predicate Reordering

 Multi-Query Optimizations
 Query-Result Caching
 Opportunistic Message Sharing



Mittwoch, 29. Oktober 2008 31Seminar in Distributed Computing

Experiments
 Using modified P2, running 4 different shortest-path 

queries
 Running on a similar emulab testbed

 Results
 Aggregate Selection reduces communication overhead, periodic 

even more (by up to 29%)
 Magic sets and predicate reordering reduce communication 

overhead when only a limited number of paths are queried
 Multi-query sharing techniques demonstrate potential to reduce 

overhead when multiple queries are running concurrent
 On a network with bursty updates, incremental query evaluation can 

recompute paths at a fraction of the original costs



Mittwoch, 29. Oktober 2008 32Seminar in Distributed Computing

Conclusion
 NDLog has a clearer semantic than OverLog
 Relaxations overcome problems in asynchronous 

distributed settings
 Link restriction allows many optimizations
 Still no negation
 Usability?



Mittwoch, 29. Oktober 2008 33Seminar in Distributed Computing

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

