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Overview
 Motivation
 P2
 NDLog
 Conclusion
 Questions...?
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Motivation
 Overlay networks are widely used today (p2p,...)
 Difficult to create and implement
 Not really extensible, not really reusable
 Declarative approach promises flexibility and compactness
 Declarative language enables static program checks for 

correctness and security
 Declarative networking is part of larger effort to revisit the 

current Internet Architecture
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P2
 P2 is a system for the construction, maintenance and 

sharing of overlay networks, using:
 Declarative language
 Dataflow architecture
 Soft-state tables, streams of tuples
 Implemented in C++ using UDP

 Does resource discovery and network monitoring
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Structure of a P2 Node
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OverLog
 Based on Datalog(subset of Prolog) query language
 Specification of physical distribution (e.g. where tuples are 

generated, stored, sent)
 Direct translation into dataflow graphs
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OverLog - Example
 [<ruleID> <head> :- <body>]

 P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).
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OverLog – Ping Example

materialize(member, 120, infinity, keys(2)).

P0 pingEvent@X(X, Y, E, max<R>) :- periodic@X(X, E, 2),
member@X(X, Y, _, _, _), R := f_rand().

P1 ping@Y(Y, X, E, T) :- pingEvent@X(X, Y, E, _), T := f_now@X().

P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).

P3 latency@X(X, Y, T) :- pong@X(X, Y, E, T1), T := f_now@X() - T1.

mailto:f_now@X
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Structure of a P2 Node
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Dataflow
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Dataflow
 Consists of nodes(elements)

 Selection, projection, join, group-by, aggregation
 Forms a directed dataflow graph
 Edges carries well structured tuples
 Arbitrary number of input/output ports per element
 Handles “network”

 Responsible for Sockets
 Packet scheduling
 Congestion control
 Reliable transmission
 Data serialization
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Dataflow
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Structure of a P2 Node
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Planer
 Input: parsed OverLog
 Output: dataflow graph

 Adds network stack
 Uses “built in” elements (e.g. periodic, f_now), which are 

directly mapped to dataflow elements
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Evaluation - Setting
 Using a P2 implementation of Chord DHT

 Configured to use low bandwidth
 Aiming at high consistency and low latency

 Tested on the Emulab testbed(100 machines)
 10 transit domains (100Mbps)
 100 stubs (10Mpbs)
 RTT transit-transit 50ms
 RTT stub-stub same domain 2ms
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Evaluation – Results Static Test
 500-node static network, 96% lookups complete in <=6s
 About the same as the published numbers of MIT Chord
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Evaluation – Results “Handling Churn”
 Churn = continuous process of node arrival&departure
 Low Churn(session time >=64min)

 P2 Chord does well
 97% consistent lookups
 Most of which under 4s

 High Churn(session time <= 16min)
 P2 Chord does not well
 42% consistent lookups
 84% with high latency

 MIT Chord
 99.9% consistent lookups, session time 47min
 High Churn mean lookup latency of less than 5s
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Conclusion I
 Feasibility study
 Approach looks promising, but needs further work

 Further tests with other overlay networks
 Security

 Planner does not handle some constructs of OverLog
 Multi-node rule bodies
 Negation

 Combination of declarative language and dataflow graphs 
powerful, alternative: automaton

 Declarative language enables static program checks for 
correctness and security
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Conclusion II
 OverLog is very concise (Chord in 47 rules)
 OverLog is “difficult”

 Not easy to read (Prolog is hard to read), but can be directly 
compiled and executed by P2 nodes

 Non-trivial learning curve
 No if-then-else
 No order of evaluation, everything is tested “in parallel”

 Could profit from multiprocessor environments

 OverLog Chord implementation not declarative enough
 Replace OverLog?
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NDLog - Introduction
 Extends P2
 New declarative language NDLog

 Explicit control over data placement and movement
 Buffered/pipelined semi-naïve evaluation
 Concurrent updates of the network while running
 Query optimization
 Assumes not fully connected network graph, but assumes 

bidirectional links
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NDLog
 Introduces new datatype address

 Address variables/constants name start with “@”
 First field in all predicates is the location address of the 

tuple (bold for clarity)
 Link relation are stored, representing the connectivity 

information of the queried network
 Link literal is a link relation in the body of a rule

 #link(@src,@dst,...)
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NDLog II
 Rules with the same location specifier in each predicate, 

including Head, are called local rules
 Link-restricted rule

 exactly one link literal
 all other literals are located either at the Src or Dst of the link literal

 Every rule in NDLog is either a local rule or a link-restricted 
rule
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NDLog - Example
 [<ruleID> <head> :- <body>]

 OverLog
 P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).

 NDLog
 SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C), P = 

f_concatPath(link(@S,@D,C), nil).
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NDLog - Example

SP1: path(@S,@D,@D,P,C) :- #link (@S,@D,C),
. P = f concatPath(link(@S,@D,C), nil).
SP2: path(@S,@D,@Z,P,C) :- #link (@S,@Z,C1), 

path(@Z,@D,@Z2,P2,C2), C = C1 + C2,
. P = f concatPath(link(@S,@Z,C1),P2).
SP3: spCost(@S,@D,min<C>) :- path(@S,@D,@Z,P,C).
SP4: shortestPath(@S,@D,P,C) :- spCost(@S,@D,C),
. path(@S,@D,@Z,P,C).
Query: shortestPath(@S,@D,P,C).
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Example
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Centralized Plan Generation
 Semi-naïve fixpoint evaluation

 Any new tuples generated for the 1st time are used as input for the 
next iteration

 Repeated till a fixpoint is achieved (no new tuples generated)

 Does not work efficiently in Distributed Systems
 Next iteration on a node can only start when all other nodes have 

finished the iteration step and all new tuples have been distributed 
(Barrier)
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Distributed Plan Generation
 Iterations are local at every node
 Non-local rules are rewritten that the body is computable at 

one node
 Buffered semi-naïve

 Buffers all incoming tuples during a iteration
 Handled in a future iteration

 Pipelined semi-naïve
 At arrival every tuple is used to compute new tuples
 Join operator matches each tuple only with older tuples (timestamp)
 Enables optimization on a per tuple basis
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Semantics in Dynamic Network
 State of the network is constantly changing
 Queries should reflect the most current state of the network

 Continuous Update Model
 Updates occur very frequently, faster than the fixpoint is reached
 Query results never fully reflect the state of the network

 Bursty Update Model
 Updates occur in bursts
 Between bursts no updates
 Allows the system to reach a fixpoint
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Centralized Semantics
 Insertion

 Handled by pipelined semi-naïve evaluation
 Deletion

 Deletion of a base tuple leads to the deletion of any tuples derived 
from it

 Updates
 A deletion followed by an insertion

 Works as well in Distributed Systems, as long as
 There are only FIFO links or
 All tuples are maintained as soft-state
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Query Optimizations
 Traditional Datalog optimizations

 Aggregate Selections
 Magic Sets and Predicate Reordering

 Multi-Query Optimizations
 Query-Result Caching
 Opportunistic Message Sharing
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Experiments
 Using modified P2, running 4 different shortest-path 

queries
 Running on a similar emulab testbed

 Results
 Aggregate Selection reduces communication overhead, periodic 

even more (by up to 29%)
 Magic sets and predicate reordering reduce communication 

overhead when only a limited number of paths are queried
 Multi-query sharing techniques demonstrate potential to reduce 

overhead when multiple queries are running concurrent
 On a network with bursty updates, incremental query evaluation can 

recompute paths at a fraction of the original costs
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Conclusion
 NDLog has a clearer semantic than OverLog
 Relaxations overcome problems in asynchronous 

distributed settings
 Link restriction allows many optimizations
 Still no negation
 Usability?
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Questions?
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