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Abstract Performance analysis plays an increasingly
important role in the design of embedded real-time sys-
tems. Time-to-market pressure in this domain is high
while the available implementation technology is often
pushed to its limit to minimize cost. This requires anal-
ysis of performance as early as possible in the life cycle.
Simulation-based techniques are often not sufficiently
productive. We present an alternative, analytical, ap-
proach based on Real-Time Calculus. Modular perfor-
mance analysis is presented through a case study in
which several candidate architectures are evaluated for
a distributed in-car radio navigation system. The anal-
ysis is efficient due to the high abstraction level of the
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model, which makes the technique suitable for early
design exploration.

1 Introduction

Today’s embedded systems industry is mainly
characterized by the extremely high time-to-market pr-
essure. In particular, in the areas of consumer and mass-
market electronics, such as mobile telephones, product
life cycles are measured in weeks and months rather than
years. This tremendous pressure has caused a shift in the
way these embedded systems are designed. Recently,
industrial focus was mainly on improving the efficiency
of the design process and raising the quality of the engi-
neered product. Introduction of advanced tools for both
hardware and software design, the adoption of UML,
and the implementation of quality improvement pro-
grams to reach higher levels of the capability maturity
model (CMM) are just a few examples of these efforts.
Industry has now realized that these investments are
insufficient to become and stay competitive because
the gains achieved still do not meet the required time-
to-market targets. The main problem is that product
development times often exceed the technology inno-
vation cycle. At the time the product is ready, it may be
outdated altogether or it may be able to be produced at
lower cost using some other technology that has just
become available. Both scenarios are equally under-
mining for the business case of the product. Therefore,
industrial focus is shifting from improving the system
implementation phase towards improving the system
design phase. The capability to assess new ideas quickly,
either inspired by novel technology or by changed market
conditions, is essential. This evaluation process shall be
light-weight, fast, and reliable such that new products
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will meet customer requirements can be produced faster
and at minimum cost.

The main question to solve in the early stages of the
design is whether or not a particular distribution of func-
tionality over a proposed system decomposition (the
so-called system architecture) will meet the overall
requirements. This is a hard problem because, paradox-
ically, there are still many unknowns that might have
great impact on the system performance. Design space
exploration and system level performance analysis are
proposed as solutions to this problem and several tech-
niques have been developed to implement these con-
cepts. Note that performance analysis is not necessarily
restricted to the timing aspects of the system, although
it will be the main focus of this paper.

For example, SystemC [7] is such a system-level
design technique. It consists of a modeling language (a
C++ class library), a simulation-based kernel, and a ver-
ification library. These components are used to build
and exercise executable models at the system level. The
development process is improved mainly by raising the
level of abstraction from traditional VHDL or Verilog-
based hardware design and by providing a platform for
hardware/software co-design. Hence, it takes less time
to construct a model and analyze its fitness for purpose.

While this is already a big step forward, it still has
some major drawbacks, as is the case with other simula-
tion-based techniques as well, for example Matlab/Sim-
ulink. First of all, constructing a simulation model is, in
general, not a trivial task. Quite some effort is needed to
compose a model especially if it needs to cover a wide
range of architectural derivatives. Furthermore, these
models need to be sufficiently detailed to be of value
to support the major design decisions; often this has
repercussions on the amount of time needed to exe-
cute the models and analyze the simulation results. Of
course, libraries of building blocks can be developed
to construct new simulation models more efficiently.
But the initial cost of creating these building blocks
remains and this investment is only worthwhile if the
library is actually used sufficiently often. Application of
simulation-based techniques is therefore often po
stponed to later stages of the design process because
they are considered too expensive due to these long
lead times.

This paper proposes an approach to the problem of
performance analysis in the very early phases of the
system life cycle that does not have the disadvantages
described above. As mentioned before, one of the key
problems is that simulation based techniques require a
detailed description of the actual computation that is
performed. Our approach is to characterize functional-
ity merely by describing incoming and outgoing event
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rates, message sizes, and execution times. Similarly,
capacity of computing and communication resources
can be described. Real-Time Calculus [17] is then used
to compute hard upper and lower bounds of the sys-
tem performance. This calculation can be done very effi-
ciently, because the model is at a much higher level of
abstraction than a typical simulation-based model.

First, we introduce modular performance analysis
(MPA) with Real-Time Calculus. This technique is then
applied to a case study of a distributed in-car radio
navigation system. The case study is described using
sequence diagrams which we annotate to feed the analy-
sis method with data. Then, several architectural deriva-
tives are proposed and the analysis results are discussed.
Finally, we draw some conclusions from the case study
and suggest directions for future research.

Related work. Two recent publications give an extensive
overview of various performance evaluation methodol-
ogies that are currently available. Gries [6] lists method-
ologies from the area of system-on-chip design, where
the focus is on evaluating the performance of combined
hardware—software systems. However, the techniques
used in this domain are often more focused on hard-
ware than on software.

Balsamo et al. [2] compares methodologies that are
coming from the area of software engineering. There, the
focus is on evaluating the performance of software archi-
tectures on a given hardware platform. The design or
optimization of the hardware is typically not considered.

The case study presented in this paper is based on the
Real-Time Calculus presented in [3], which is also men-
tioned in the overview of Gries [6]. While the Real-Time
Calculus has until now mainly been applied for data-
dominated systems, such as network processors, we have
applied it to amore control-oriented and software-inten-
sive system. Real-Time Calculus is based on the well-
known Network Calculus [10] which is in turn based on
max-plus algebra [1]. Note that max-plus algebra has
been applied to a wide variety of problems, including
scheduling and performance analysis of dynamic dis-
crete event systems, see http.//www.maxplus.org. The
method proposed in this paper uses a notation that
is close to current engineering practice, while main-
taining the sound mathematical basis provided by the
Real-Time Calculus.

Some of the techniques used in this paper are in-
spired by other software-oriented performance analysis
methodologies mentioned in [2]. For example, software
performance evaluation (SPE [16]), also annotates
sequence diagrams with information on resource utili-
zation. However, the analysis is done differently: prob-
abilistic queuing networks are used as the underlying
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Fig. 1 Elements of modular performance analysis

analysis technique, whereas we use Real-Time Calculus,
which comes from the family of deterministic queuing
theories. Cortelessa et al. [4] describes a methodology
in which a probabilistic queuing network-based perfor-
mance model is automatically derived from UML use
case diagrams, sequence diagrams, and deployment dia-
grams. In this paper, the models are still constructed by
hand but this could certainly be automated as shown
by [16] and [4] and therefore we do not emphasize the
formalization of the informal requirements more than
necessary here.

Contribution of this paper. We show that Real-Time
Calculus can be used to evaluate system architectures
effectively. The technique provides a high level of abstra-
ction which allows for fast model evaluation, while still
producing results that are sufficiently accurate. Further-
more, the typical set-up costs associated with simulation-
based models are avoided. It is possible to find weak
spots in the design even with little available data — cir-
cumstances that are typical for the early stages of the
system life cycle. For example, we show that sensitivity
analysis can be performed on the models to determine
robustness of the design. Modular performance anal-
ysis supports the system architect in his design activi-
ties by providing timely feedback at little investment.
Confidence in the design can be increased and risks are
reduced if this technique is applied. We believe that this
has a positive effect on both the development time and
quality of the product.

Analysis results

2 MPA and Real-Time Calculus

In the domain of communication networks, powerful
abstractions have been developed to model flow of data
through a network. In particular Network Calculus [10]
provides the means to deterministically reason about
timing properties of data flows in queuing networks, and
can be viewed as a deterministic queuing theory. Real-
Time Calculus [17] extends the concepts of Network
Calculus to the domain of real-time embedded systems,
and in [3] a unifying approach to MPA with Real-Time
Calculus has been proposed. It is based on a general
event and resource model, allows for hierarchical sched-
uling and arbitration, and can take computation as well
as communication resources into account.

With Real-Time Calculus, hard upper and lower bounds
can be computed to various performance criteria in a
real-time system, such as end-to-end delays of event
streams, or buffer requirements. Real-Time Calculus
hence qualifies to analyze hard real-time systems. This
clearly distinguishes Real-Time Calculus from any prob-
abilistic performance estimation methods, or from per-
formance estimation through simulation.

Figure 1 presents an overview of the basic elements
of MPA, and the relations between them. We basically
follow the well-known Y-chart scheme as proposed in
[9]. The central idea of MPA is to first build an ab-
stract performance model of the concrete system that
bundles all information needed for performance analy-
sis with Real-Time Calculus. The abstract performance
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model unifies essential information about the environ-
ment, about the available computation and communica-
tion resources, about the application tasks (or dedicated
HW/SW components), as well as about the system archi-
tecture itself.

The environment models describe how a system is
being used by the environment: how often will system
functions be called, how much data is provided as input
to the system, and how much data is generated by the
system back to its environment. Environment models
can be derived from formal behavior specifications or
for example from measured input traces. We will show
how UML sequence diagrams can be used to formalize
these aspects.

The resource models provide information about the
properties of the computing and communication re-
sources that are available within a system, such as pro-
cessor speed and communication bus bandwidth. This
information is typically found in data sheets or bench-
marks, or can be obtained from measurements on exist-
ing systems.

The application task (or dedicated HW/SW compo-
nent) models provide information about the processing
semantics that is used to execute the various application
tasks or to run the dedicated HW/SW components.

Finally, the system model captures information about
the applications and the available hardware architec-
ture, and it also defines the mapping of tasks to com-
putation or communication resources of the hardware
architecture and specifies the scheduling and arbitration
schemes used on these resources. In Sect. 3, we will elab-
orate in more detail on how to specify this information
using UML and other methods, and we will show how to
construct abstract performance models using this infor-
mation. We will present the model of the environment
in Sect. 2.1 and the model of computation and commu-
nication resources in Sect. 2.2. The model of application
tasks and dedicated HW/SW components and construc-
tion of the abstract performance model is presented in
Sect. 2.3 and 2.4. Finally, we explore the analysis of the
abstract performance models in Sect. 2.5.

2.1 Arrival curves: a general event stream model

A trace of an event stream can conveniently be de-
scribed by means of a cumulative function R(¢), defined
as the number of events seen on the event stream in
the time interval [0,7). While any R always describes
one concrete trace of an event stream, a tuple @(A) =

[&” (A), @ (A)] of upper and lower arrival curves 5] pro-

vides an abstract event stream model, representing all
possible traces of an event stream.
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For this, the upper arrival curve o*(A) provides an
upper bound on the number of events that are seen on
the event stream in any time interval of length A, and
analogously, the lower arrival curve @'(A) provides a
lower bound on the number of events in a time inter-
val A. In other words, in any time interval of length A
there will always arrive at least @/ (A) and at most @“(A)
events on an event stream that is modeled by «(A).

Arrival curves were first introduced in [5], and are
defined as follows:

Definition 1 (arrival curves) Let R(f) denote the num-
ber of events that arrive on an event stream in the time
interval [0,7). Then, R, @" and @' are related to each
other by the following inequality

@(t—s) <R@) —R(s) <a“(t—s), Vs<t 1)

with @ (0) = @“(0) = 0. o

Arrival curves substantially generalize the classical
representation of standard event arrival patterns such as
sporadic, periodic, periodic with jitter, or others.
Besides being able to represent any event stream with
known deterministic timing behavior that is obtained
from a system specification, it is also possible to deter-
mine arrival curves corresponding to any finite length
event stream trace, obtained for example from observa-
tion or simulation. For this, a sliding window approach
can be used.

Example 1 In literature, standard event arrival patterns

are often specified by a parameter triple (p,j, d), where

p denotes the period, j the jitter, and d the minimum

inter-arrival distance of events in the modeled stream.

Event streams that are specified using these parameters

can directly be modeled by the following arrival curves:
A—-j

o |27

o =l [ [2])

# events

Fig. 2 Arrival curves from (p, j, d)
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In Fig. 2, the relation between these parameters and
the corresponding arrival curves is graphically depicted.
Note that in this particular example the jitter is much
greater than the period which is typical for a so-called
event streams with bursts. This also explains the steep
ascend at the beginning of the upper arrival curve.

Figure 3 shows some typical examples of arrival curves.

The arrival curves in Fig. 3a model a strictly periodic
event stream, while the arrival curves in Fig. 3b model a
periodic event stream with jitter, and the arrival curves
in Fig. 3c model a periodic event stream with bursts.
The arrival curves in Fig. 3d model an event stream
with more complex timing behavior. This event stream
may have short steep bursts, longer lasting less steep
bursts, and the maximum long-term period does not
equal the minimum long-term period. An event stream
with such a complex timing behavior can not be repre-
sented accurately by any of the classical event arrival
patterns. o

As defined above, the arrival curves @ and @ denote
the number of events that arrive on an event stream in
any given time interval. For performance analysis we are
however not so much interested in the number of events
that arrive, but rather in the resource demand that these
arriving events produce on a HW/SW component. We
therefore introduce resource-based arrival curves that
are denoted as a(A) = [a*(A),a/(A)]. While event-
based arrival curves represent the number of arriving
events per unit of time interval, the resource-based ar-
rival curves represent the generated resource demand
per unit of time interval.

In the most basic scenario, every arriving event
generates the same resource demand on a HW/SW
component, i.e., the worst-case execution demand equals

10 (a) 10 (b)

8 — 8 oY
o o
26 g6
% v
@ 4 o ] 4 il
=+ =+ o
2 2
00 10 20 30 D0 10 20 30
A A

# events

Fig. 3 Examples of arrival curves

the best-case execution demand. Resource-based arrival
curves can then be obtained directly by multiplying the
event-based arrival curves with a constant that rep-
resents the resource demand of a single event. And
analogously, event-based arrival curves are obtained
by dividing resource-based arrival curves by the same
constant.

In more complex systems, the events arriving on an
event stream may be of one of several different event
types, each having a different resource demand, or it
may be known that not all events lead to the worst-
case execution demand. In such systems, automata may
be used to represent possible arrival patterns of the
different event types, and the information captured in
these automata may then be used to transform event- to
resource-based arrival curves. A similar approach may
also be used to model system state-dependent workload
demands, as introduced for example by caches. For more
details see [12], [18], and [19].

2.2 Service curves: a general resource model

Analogously to the cumulative function R(¢), the con-
crete availability of a computation or communication
resource can be described by a cumulative function C(¢),
that is defined as the number of available resources, e.g.,
processor cycles or bus capacity, in the time interval
[0,7).

Analogous to arrival curves that provide an abstract
event stream model, a tuple B(A) = [B*(A), B1(A)] of
upper and lower service curves then provides an abstract
resource model. The upper service curve f“(A) provides
an upper bound on the available resources in any time
interval of length A, and the lower service curve ,31 (A)
provides a lower bound on the available resources in a
time interval A. And in other words again, in any time
interval of length A there will always be at least 8/(A)
and at most 8%(A) capacity available on a resource that
is modeled by B(A).

In Real-Time Calculus, service curves are defined as
follows:

Definition 2 (service curves) Let C(¢) denote the num-
ber of processing or communication cycles available
from a resource over the time interval [0,#). Then C,
B“, and ' are related by the following inequality

Bt —s) < Ct) — C(s) < B“(t — 5),
with 8(0) = B%(0) = 0. O

Vs <t 4)

Note that the above definition of lower service curves
corresponds to the definition of strict service curves in
Network Calculus [10], while the definition of upper ser-
vice curves as given above is not used in [10].
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The service curves of a resource can be determined
using data sheets, using analytically derived properties,
or by measurement. For example, in the simplest case
of an unloaded processor, whose capacity we measure
in available processing cycles per time unit, both the
upper and the lower resource curves are equal and are
represented by straight lines *4(A) = Bl(A) = f - A,
where f equals the processor speed, i.e., the number of
available processing cycles per time unit. With service
curves, we may also model communication resources,
where the service curves are bounded by the minimum
and maximum number of transmittable bits in a given
time interval.

Example 2 Figure 4 shows some examples of service
curves that model the resource availability on proces-
sors or communication channels. The service curves in
Fig. 4a model a resource with full availability, while the
service curves in Figure 4(b) model a bounded delay
resource. The service curves in Fig. 4c model the re-
source availability of one slot on a time division multiple
access (TDMA) resource, and finally the service curves
in Fig. 4d model a periodic resource as defined in [15]. O

2.3 From components to abstract components

In a real-time system, an incoming event stream is typi-
cally processed on a sequence of HW/SW components,
that we will interpret as tasks on a task chain that are
executed on possibly different hardware resources.
Figure 5 shows such a component. A trace of an event
stream, described by R(f), enters the component and is
processed using a hardware resource whose availability
is described by C(r). After being processed, the events
are emitted on the output of the component, resulting

15 15 u
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[} [}
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Fig. 4 Examples of service curves
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Fig. 5 A concrete component, processing an event stream on a
resource

in an outgoing event stream trace, described by R'(¢),
and the remaining resources that were not consumed to
process the event trace R(f) are made available to other
components and are described by an outgoing resource
availability C'(¢).

The relations between R(t), C(¢), R'(¢), and C'(¢) de-
pend on the processing semantics of the component. The
outgoing event stream R’(¢) will typically not equal the
incoming event stream R(f), as it may, for example, ex-
hibit more (or less) jitter. Analogously, C'(¢) will differ
from C(7).

For modular performance analysis with Real-Time
Calculus, we model such a HW/SW component as an
abstract component as shown in Fig. 6. Here, an abstract
event stream «(A) enters the abstract component and is
processed using an abstract resource S(A). The output
is then again an abstract event stream «’(A), and the
remaining resources are expressed again as an abstract
resource B'(A).

8
6
4 BA)
: A
8 8
6 6
: | Fe > ;Hf
; A . A
a(A) . a'(A)
6
4 B'A)
2
. A

Fig. 6 An abstract component, processing an abstract event
stream on an abstract resource
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Internally, such an abstract component is specified
by a set of functions that relate the incoming arrival and
service curves to the outgoing arrival and service curves:

o = fyle, B) )
B’ = fa(e. B) (6)

For a given abstract component, these relations f;, and
fs depend on the processing semantics of the modeled
concrete component, and must be determined such that
a’(A) correctly models the event stream with event trace
R'(¢) and that B'(A) correctly models the resource avail-
ability C'(¢).

As an example of an abstract component, consider a
concrete component that is triggered by the events of
an incoming event stream. A fully preemptable task is
instantiated at every event arrival to process the incom-
ing event, and active tasks are processed in a greedy
fashion in FIFO order, while being restricted by the
availability of resources. Such a component can be mod-
eled as an abstract component with following internal
relations! [3]:

oy = min {(a" @ 8") @ 8, 5" )
oy = min {(o«' @ ) @ ', ') ®)
Bt = (8" —o) B0 ©)
Bip = (' —a") B0 (10)

Components with the above described processing seman-
tics are very common in the area of real-time embedded
systems, and we will refer to them as a fixed priority (FP)
components.

To model a component with different processing
semantics, one has to determine the appropriate inter-
nal relations f, and f to obtain a corresponding abstract
component.

2.4 Abstract system performance models

At this point, we know how to model event streams,
computation and communication resources, as well as
single HW/SW components (tasks). But in order to ana-
lyze performance criteria of a system, we need to build
an abstract model of the complete system architecture.
We will call such a model the abstract performance model
of a system.

To obtain the abstract performance model of a sys-
tem, we first need to abstractly model all event streams
that trigger the system, all computation and commu-
nication resources that are available to the system, as

I See the Sect. 6 for a definition of ®, @, ®, and Q.

well as all components (tasks) in the system, using the
corresponding abstract representations, as described in
the preceding sections. Then, by correctly interconnect-
ing all arrival and service inputs and outputs of all these
abstract models, we obtain the abstract performance
model of the system. An example of an abstract
performance model is depicted in Fig. 14.

The arrival inputs and outputs in the abstract perfor-
mance model are interconnected to reflect the flow of
data in the system horizontally, while the interconnec-
tions of service inputs and outputs model the resource
sharing policies in the system vertically.

To elaborate on the service interconnections, suppose
that several components of a system are allocated to
the same resource. In the concrete system, these com-
ponents share this resource according to a scheduling
policy. In the abstract performance model, this sched-
uling policy on a resource can then be modeled by the
way the abstract resources § are distributed among the
different abstract components.

For example, consider preemptive fixed priority sched-
uling: an abstract component A with the highest priority
may use all available resources of a CPU, whereas an
abstract component B with the second highest priority
only gets the resources that were not consumed by A.
This resource sharing policy is modeled in the abstract
performance model by using the service curves g/, that
exit the abstract FP component A as input to the abstract
FP component B.

For some other scheduling policies, such as GPS (gen-
eralized processor sharing) or TDMA (time division
multiple access), the available resources must be dis-
tributed differently, while for some scheduling policies,
such as EDF (earliest deadline first) or non-preemptive
scheduling, different abstract components, with tailored
internal relations, must be used. Some examples of how
to model different scheduling policies are depicted in
Fig. 7.

2.5 Analysis

After interconnecting all abstract models of a system to
the system’s abstract performance model as described in
the previous section, this abstract performance model
captures all the information that builds the basis for
performance analysis with Real-Time Calculus. Various
performance criteria, such as end-to-end delay guaran-
tees or buffer requirements can be computed analyt-
ically in this abstract performance model. The exact
analysis methods may thereby slightly vary for differ-
ent abstract components but remains deterministic at
all times. Following, we present the performance anal-
ysis methods for FP components. The analysis methods
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(b)
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(d)

Fig.7 Modeling of preemptive fixed priority scheduling (a), EDF
scheduling (b), GPS scheduling (¢) and TDMA scheduling (d) in
MPA

for other abstract components are mostly very similar
or even equal to these.

When an event stream with arrival curves « is pro-
cessed by an FP component on a resource with service
curve f, then the maximum delay dmax experienced by
any event on the event stream is bounded by [3,10]:

dmax = s0p [inf {7z 0: a6 = g6+ D}

Y Del(a, gl (11)

When an event stream is processed by a sequence of
several components, we could simply add the different
maximum delays of each individual component together
to obtain an end-to-end delay guarantee. However, in
this case we can exploit the phenomenon known as “Pay
Bursts Only Once” [10], and the end-to-end delay guar-
antee can be tightened to [10]:

diax < Del (o, Bl © L ® -~ ® ) (12)
On the other hand, the maximum buffer space bpax
that is required to buffer an event stream with arrival

curve « in the input queue of an FP component on a
resource with service curve g is bounded by [10]:

@ Springer

bmax < sup {a“(k) - ﬁl(k)} 4 Buf (ot”, Z) (13)
A>0

and when the buffers of several consecutive components

use the same shared memory, the total required buffer

space can even be tightened to:

bmax < Buf (oc”, Bepe.. . ® ﬂ,i) (14)

In Fig. 8, the relations between «, 8, dmax, and bmax
are depicted graphically. From this figure, we see that
dmax and bpmax are bounded by the maximum horizon-
tal and maximum vertical distance between the upper
arrival curve and the lower service curve, respectively.
This corresponds to the intuition that dmax and bpax
occur when the maximum load arrives at the same time
as the minimum resources are available.

Besides enabling the computation of the various end-
to-end delay guarantees and buffer requirements in a
system, the abstract performance model of a system may
also provide other interesting insights to a system that
may for example be obtained by analyzing the char-
acteristics of the outgoing service curves. This analysis
may for example expose the utilization of the various
computation or communication resources in the system.

2.6 The relation between network and Real-Time
Calculus

Real-Time Calculus is based on Network Calculus [10]
and extends the basic concepts of it to the domain of
real-time embedded systems, as we already mentioned
at the start of this chapter. The foundations of Network
Calculus itself are Max-Plus and Min-Plus algebra. A
good introduction to these algebras can be found in [1]
and [10].

Real-Time Calculus is a direct extension of Network
Calculus, and therefore there are many fundamental
results that exist in both the calculi. However, there
are also differences between Real-Time Calculus and

service curve P!

S/

arrival curve ot

[ delay dmax

backlog bmax

AT

A

Fig.8 Delay and backlog obtained from arrival and service curves
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Network Calculus, that are sometimes only subtle but
nevertheless important. In the following, we comment
on the most important differences.

First of all, in Network Calculus the basic quantity
that interconnects everything in an analyzed network
system is the cumulative flow R(¢), although (upper)
arrival curves are also of some importance. Most results
in [10] are derived to work directly on cumulative flows,
and also the definition of service curves in [10] is based
directly on the relation between R(f) and R’ (¢).

In Real-Time Calculus, on the other hand, the basic
quantities that connect everything are arrival curves «
as well as service curves . In Real-Time Calculus, the
same regard is paid to the resource model as to the event
stream model, and both models use consequently upper
as well as lower curves.

In Network Calculus, lower arrival curves do not exist,
and upper service curves play an insignificant role. In
Real-Time Calculus, these curves, however, play a sig-
nificant role and lead to tighter results for delay guar-
antees and buffer requirements in distributed systems
with multiple input event streams. Without upper ser-
vice curves that limit the maximum available service
to a component, this maximum available service must
be assumed to be infinite. This, however, would mean
that any number of backlogged events could in the best-
case be processed in zero time, possibly leading to a
large burst on the output event stream that consequently
would lead to a big worst-case resource demand burst on
the succeeding component. With upper service curves,
such bursts are flattened. Lower arrival curves, on the
other hand, are similarly needed to tighten outgoing
upper service curves of a component, and sometimes
their existence is even essential, for example, to ana-
lyze real-time systems with play-out buffers, see [11].
As a consequence of the importance of upper service
curves and lower arrival curves, the relations that define
abstract component, as for example (7)-(10), are differ-
ent from the ones known from Network Calculus.

Another big difference is the treatment of remaining
resources. In Network Calculus, remaining resources are
not explicitly considered, and consequently no results
are presented in [10] to compute them. In Real-Time
Calculus, on the other hand, remaining resources and
therefore the computation of 8’ plays a crucial role for
the ability of modular composability, and lays also the
foundation to the modeling of various scheduling poli-
cies.

2.7 Deficiencies of MPA with Real-Time Calculus

The key enabling factor for the modularity in MPA and
the easy analyzability of abstract performance models

with Real-Time Calculus is the consequent representa-
tion of all time-varying quantities (event streams and
resources) in a time interval domain. This abstraction
from the time domain to the time interval domain does,
however, not come for free.

Consider a system that processes two event streams
described by R (¢) and R (¢), and assume that both event
streams are periodic with periods p; = p». Depending
on the application area, it may be known that the event
streams are implicitly synchronized and that a fixed time
shift exists between events arriving on Ry (f) and Ry ().
Due to this time shift, it may be that events of these
two event streams may never arrive at the same time
in the real system. If we model these event streams
in the time interval domain, using arrival curves, then
the knowledge of this time shift that was implicitly rep-
resented in Rq(f) and R(¢) gets lost. The Real-Time
Calculus analysis results would reflect the worst-case
scenario, where the events of the two event streams
would always arrive at the same time, even though this
worst-case scenario may never occur in the real system,
due to the implicit dependency of the two event streams.

The same deficiency on representing concrete time
also limits the capability of Real-Time Calculus to
analyze systems with synchronized resources. Research
is, however, going on to, at least partly, eliminate these
deficiencies [20].

2.8 Areas of application

The framework of MPA with Real-Time Calculus is tai-
lored towards performance analysis of distributed real-
time systems, where independent applications share a
common execution platform to process event streams.

In such systems, the framework can be used not only
to compute hard upper and lower bounds on maxi-
mum end-to-end delays and buffer requirements, but
also other performance criteria such as individual re-
source utilizations may be analyzed.

The obtained analysis results are deterministic and
provide hard upper and lower bounds for any analyzed
quantity. This enables the framework to be used for the
analysis of hard real-time systems. However, as a con-
sequence it is obviously not possible to obtain average
case results for any performance criteria in a system.

The framework can analyze distributed systems con-
sisting of any number of interconnected computation
and communication resources that are shared among
different applications using preemptive fixed priority
scheduling (FP), rate monotonic scheduling (RM), gen-
eralized processor sharing (GPS), or time division mul-
tiple access (TDMA). The framework can also analyze
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resources that are shared with any hierarchical compo-
sition of these scheduling policies.

Research is currently going on to analyze systems with
shapers, as well as resources that are shared using earli-
est deadline first scheduling (EDF) and non-preemptive
scheduling policies.

So far, the framework was only used to analyze sys-
tems without cyclic dependencies. For systems with cyclic
dependencies, it is, however, possible to perform a fixed-
point analysis. While this area still requires further re-
search, first promising results are already available [14].

In the framework, tasks are specified only by their
execution demand. This sometimes limits the level of
detail that can be modeled and analyzed, especially
when it comes to including functional properties of a sys-
tem. The framework may, however, be used to analyze
systems with deterministic execution demand variability
as introduced for example by deterministic caches, data
dependencies or different occurring event types.

3 Case study: distributed in-car radio navigation system

The case study presented in this section is inspired by a
system architecture definition study for a distributed in-
car radio navigation system. Such a system typically exe-
cutes a number of concurrent applications that share a
common platform. Nevertheless, each application might
have hard individual performance requirements that
need to be met by the platform. During the system defi-
nition phase, several candidate platform architectures
might be proposed by the engineers and the system
architect needs to evaluate each one. Typical questions
that need to be answered are: (1) does this platform
meet the performance requirements of all applications
(2) how robust is the platform with respect to changes
in application or architecture parameters and (3) can I
replace components in the architecture by cheaper (but
less powerful) components to save cost but still meet the
performance criteria of all applications? We present the
applications and the architecture candidates in Sect. 3.
We briefly show how these are modeled and how a MPA
model is composed. In Sect. 4 we will show how typical
design questions, as the ones mentioned before, can be
analyzed using Real-Time Calculus.

An overview of the system is presented in Fig. 9, it is
composed of three main clusters of functionality:

— The man-machine interface (MMI) which takes care
of all interaction with the user, such as handling key
inputs and graphical display output.
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Fig. 9 High-level overview of a distributed radio navigation
system

— The navigation functionality (NAV) which is respon-
sible for destination entry, route planning, and turn-
by-turn route guidance giving the driver both audible
and visual advices. The navigation functionality re-
lies on the availability of a map database, typically
stored on a CD or DVD, and positioning informa-
tion, e.g., speed and GPS. The latter is not shown
here.

— The radio functionality (RAD) which is responsible
for basic tuner and volume control as well as han-
dling of traffic information services such as RDS/
TMC (radio data system/traffic message channel).
RDS/TMC is broadcast along with the audio signal
of radio channels.

The key question that is investigated in this paper
is how to distribute the functionality over the available
resources, such that we meet our global timing require-
ments. To achieve this goal, the following steps were
taken:

1. identify key usage scenarios and system functions
quantify event rates, message sizes, and execution
times

3. identify resources and their communication struc-
ture

4. quantify resource and communication capacities

5. compose a MPA model, calculate, and evaluate
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A general description of a new product is typically
made during the initial phase of an industrial product
creation process. For example, an Operational Concept
Description from the IEEE 12207 system life cycle stan-
dard [8] may be produced. Such a document does not
only list functional and non-functional requirements,
boundary conditions and other restrictions for the design,
it should also contain high-level use-cases. These use-
cases are the starting point for the design of the system
architecture. The use-cases and associated sequence dia-
grams are analyzed and annotated in such a way that
they are useful for MPA analysis. This is step 1 and
2 of the recipe described above. Although there is no
principle limit to the amount of scenarios that can be
analyzed, it is not uncommon to first concentrate on
those scenarios that are expected to have the highest
impact on the set of requirements to be met. It is the
system architect who makes this decision, often based
on previous experience. The order of magnitude of the
numbers shown in the sequence diagrams in this paper is
realistic. During the design, the system architect tries to
improve the accuracy of the numbers by using for exam-
ple better estimation techniques on details of the design,
such as worst-case execution time analysis (WCET) or
by performing measurements on existing and compara-
ble systems. In our case study, we have selected three
distinctive scenarios:

1. “Change volume” —The user turns the rotary button
and expects instantaneous audible feedback from
the system. Furthermore, the visual feedback (the
volume setting on the screen) should be timely and
synchronized with the audible feedback. This seem-
ingly trivial use-case is actually quite complex be-
cause many components are affected. Changing
volume might involve commanding a digital signal
processor (DSP) and an amplifier in such a way that
the quality of the audio signal is maintained while
changing the volume. This scenario is shown in detail
in Fig. 10. Note that three operations are identi-
fied, HandleKeyPress, AdjustVolume, and Update-
Screen. Execution times, event rates, and message
sizes are estimated and annotated in the sequence
diagram together with the principle timing require-
ments applicable to this scenario.

2. “Address look-up” — Destination entry is supported
by a smart “typewriter” style interface. By turning
a knob the user can move from letter to letter; by
pressing it the user will select the currently high-
lighted letter. The map database is searched for each
letter that is selected and only those letters in the on-
screen alphabet are enabled that are potential next

letters in the list. This scenario is shown in detail in
Fig. 11. Note that the DatabaseLookup operation
is expensive compared to the other operations and
that the size of the output value of the operation is
16 times larger than the input message.

3. “TMC message handling” — Digital traffic informa-
tion is very important for in-car radio navigation
systems. It enables features such as automatic re-
planning of the planned route in case a traffic jam
occurs ahead. It is also increasingly important to
enhance road safety by warning the driver, for exam-
ple when a ghost driver is spotted on the planned
route. RDS TMC is such a digital traffic information
service. TMC messages are broadcast by radio sta-
tions together with stereo audio sound. RDS TMC
messages are encoded: only problem location iden-
tifiers and message types are transmitted. The map
database is accessed to translate these identifiers
and to construct human readable text. The TMC
message handling scenario is shown in Fig. 12.

The scenarios sketched above have an interesting
property: they can occur in parallel. RDS TMC messages
must be processed while the user changes the volume or
enters a destination. However, “Change Volume” and
“Address Look-up” cannot occur at the same time be-
cause they share a common resource; the rotary button
is used for both. The architecture shown in Fig. 9 sug-
gests to assign the three clusters of functionality each
to its own processing unit. The computation resources
are interconnected by a single communication bus. Does
this architecture meet our requirements and is it the best
architecture for our applications?

Figure 13 shows that there are many more potential
architectures that might be applicable. Note that the
capacity of the resource units and communication infra-
structure is quantified, completing steps 3 and 4 of our
approach. Again, the order of magnitude of the num-
bers shown in the diagram is correct — they are taken
from the data sheets of several commercially available
automotive CPUs. Observe that architecture (b) can
only be evaluated if we introduce an additional oper-
ation on the MMI resource that transfers the data from
one communication link to another, in the case that NAV
wants to communicate to RAD or vice versa.

Sufficient information is now available to construct
the MPA models for each architecture. The model for
architecture (a) is shown in Fig. 14. Note that the re-
sources occur as column headings in the model.
Observe that all outgoing horizontal arrows from the
performance components NAV, RAD, and MMI, repre-
senting their respective output message flows, connect
to an input of a BUS performance component, which
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Fig. 10 Annotated sequence diagram for “change volume”

encodes the notion of the shared communication medium.
In the case of architecture (b), two BUS resources
(columns) would exist in the model instead of one.

The scenarios, that were defined by the sequence dia-
grams, are depicted as the rows of the model. Each
row starts with a load scenario symbol, which is con-
nected to the input of a performance component. The
flow of the sequence diagrams can be followed, in hor-
izontal direction, in the MPA model. Take for exam-
ple the “change volume” scenario from Fig. 10. Events
arrive at the MMI where HandleKeyPress is executed
and the result is forwarded, via the communication bus,
to RAD. AdjustVolume is executed and the result is sent
back to MMI via the same communication bus. Finally,
UpdateScreen is executed and the scenario is completed.
The load scenario data, « is extracted from the annota-
tions in the sequence diagram. The resource model data,
B, is extracted from the informal deployment diagrams
shown in Fig. 13.

As described in Sect. 2.4, the order of the rows in
the MPA model determines the priority. In this case, the
“change volume” scenario is assigned a higher priority
than “Handle TMC”. The system architect decides the
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initial priority setting again based on experience. This
does not hinder the evaluation in any way, since the pri-
orities are easily changed by rearranging the vertical or-
der of the scenarios. A MPA model must be constructed
for each proposed architecture. This is normally a sim-
ple tasks because it is merely reconnecting event flows
in the horizontal direction.

4 System analysis

In this section, we will look at some typical design prob-
lems that occur during the early phases of a system
design cycle, and we will address them using the approach
to MPA presented in Sect. 2.

For a correct interpretation of the results in this
section, we need to remember that in order to be appli-
cable for the analysis of hard real-time systems, the
modular performance analysis presented in Sect. 2 is
designed to compute hard upper and lower bounds for
all system characteristics. While these upper and lower
bounds are always hard, they are in general not tight
(exact). So the analysis performed is conservative and
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Fig. 12 Annotated sequence diagram for “TMC message handling”

the computed maximum delays in this section are
therefore hard upper bounds to the real maximum de-
lays in the real system.

Due to this conservative approach, it may be that
we reject a system architecture that would fulfill all

system requirements in reality, but for which our analysis
cannot guarantee the fulfillment of all system require-
ments. The other way around, we can guarantee that any
system architecture accepted by our analysis fulfills all
system requirements in reality.
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Fig. 13 Alternative system architectures to explore

Without any attempts to optimization, analyzing one
system architecture in the design space took around 1s
on a Pentium Mobile 1.6 GHz using Matlab 7. There-
fore, computing the four mesh plots in Fig. 19 took for
example around 5 min.

To compute the end-to-end delay of an event stream
in a given system architecture, we first construct the
performance model of the given system architecture.
By applying the transformations given in formulas 7-10
at every performance component of the performance
model, we eventually end up with the output event
streams and the remaining system resources. We then
use formula 11 to compute the upper bound of the
maximum delay of an event stream at every perfor-
mance component it passes in the performance model.
Finally, we sum up all these delays, using formula 12
to obtain a hard upper bound on the maximum end-
to-end delay of the event stream in the given system
architecture.

4.1 Design problems and analysis results

We will now present three typical design problems and
show how they are analyzed.

Problem 1 In Fig. 13, five different system architectures
are proposed for the in-car radio navigation system.
How do these system architectures compare with respect
to the different end-to-end delay requirements of the
three use-cases? Consider that the “change volume”
and the “address look-up” scenarios may not occur at
the same time, because the same rotary button is used
for these functions. However, “TMC message handling”
does occur in parallel with either scenario.
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We build the performance model for the “change
volume” & “TMC message handling” situation (depicted
in Fig. 14), as well as the performance model for the
“address lookup” and “TMC message handling” situa-
tion. For both models, we compute the upper bounds to
the end-to-end delay of every event stream as described
in the last section, and we then take the end-to-end
delays obtained from the two analysis runs (for the TMC
delay, we take the bigger value of the two runs). From
the results presented in Fig. 15, we see that all proposed
system architectures fulfill the requirements (as men-
tioned in Figs. 10, 11, 12) on the different maximum
end-to-end delays. Furthermore, the results suggest that
architectures (d) and (e) process the input data to the
system particularly fast. This may be explained partly
by the reduced communication overhead in these archi-
tectures, but most probably, these architectures are also
over-dimensioned.

Problem 2 Suppose that the in-car radio navigation sys-
tem is implemented using architecture (a). How robust
is this architecture? Where is the bottleneck of this archi-
tecture?

To investigate the robustness of architecture (a), we
first compute its sensitivity towards changes in the input
data rates. These sensitivity results are shown in Fig. 16.
The height of the columns in this figure depict the in-
crease of end-to-end delays relative to the respective
specified maximum end-to-end delays, in dependence
to increasing input data rates. For example, the tallest
column in Fig. 16 shows us that if we increase the data
rate of the “change volume” scenario slightly (i.e., by
3%, to 33.3 events/s), the end-to-end delay of the TMC
message handling increases by 1.14% of its specified
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Fig. 14 MPA model for
system architecture (a) of
Fig. 13

ChangeVolume

ReceiveTMC

D)

CpPU2

sHL

@a

&

Fig. 15 Maximum

Vol K2V Delay [ms]

Vol A2V Delay [ms]

end-to-end delays for each
system architecture

A B C E A B C D E
Addr Delay [ms] TMC Delay [ms]
80 450
60 300
40
20 150
0 0

maximum end-to-end delay (i.e., 1.14% of 1,000 ms or
11.4 ms).

From the results shown in Fig. 16, we see that archi-
tecture (a) is very sensitive towards increasing the in-
put data rate of the “change volume” scenario, while
increasing the input data rate of the “address look-up”
and the “TMC message handling” scenarios do not re-
ally affect the response times. And in fact, further anal-
ysis reveals that in order to still guarantee all system
requirements, we must not increase the input data rate
of the “change volume” scenario by more than 7%, while
we could increase the input data rate of the other two
scenarios by a factor of more than 20.

After investigating the system sensitivity towards
changes in the input data rates, we investigate the
system sensitivity towards changes in the resource capac-
ities. These sensitivity results are shown in Fig. 17. The

height of the columns in this figure depicts the increase
of end-to-end delays relative to the respective specified
maximum end-to-end delays, in dependence to decreas-
ing resource capacities. For example, from the tallest
column in Fig. 17 we know that if we decrease capac-
ity of the MMI processor by 1% (i.e., to 21.78 MIPS),
the end-to-end delay of the TMC message handling in-
creases by 3.22% of its specified maximum end-to-end
delay (i.e., 3.22% of 1,000 or 32.2 ms).

From the results shown in Fig. 17, we see that archi-
tecture (a) is most sensitive towards the capacity of the
MMI processor. This suggests that the MMI processor
is a potential bottleneck of architecture (a). To inves-
tigate this further, we compute the end-to-end delay of
the TMC message handling for different MMI processor
capacities. The results of these computations are shown
in Fig. 18.
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Fig. 17 Sensitivity towards changes in the resource capacities

From Fig. 18, we see that indeed at its given operation
point, the end-to-end delay of the TMC message han-
dlingin architecture (a) is very sensitive towards changes
of the MMI processor capacity. And the analysis reveals
that with a decrease of the MMI processor capacity to
89% of its initial capacity, we cannot guarantee finite
response times anymore.

To sum up, the above analysis results suggest that
increasing the capacity of the MMI processor would
make architecture (a) more robust. To support this state-
ment, we individually increase the capacity of each re-
source by 20%, and we then analyze how much we can
increase the input data rate of the “change volume” sce-
nario while still fulfilling the requirements. Remember,
with the initial resource capacities, we can increase the

@ Springer

data rate of the “change volume” scenario by 7% and
the data rate of the other two scenarios by a factor of
more than 20 while still guaranteeing all requirements.
From this analysis, we learn that increasing the resource
capacities of the RAD processor, the NAV processor,
and the BUS does not allow to increase the input date
rate of the “change volume” scenario more than with
the initial capacities, while increasing the MMI proces-
sor capacity allows us to increase the data rate of the
“change volume” scenario by 60%.

Problem 3 Suppose system architecture (d) is chosen
for further investigation. The results of Problem 1 indi-
cate that architecture (d) is probably over-dimensioned.
So how should the two processors in this system archi-
tecture be dimensioned, to obtain an economic system
that still fulfills the end-to-end delay requirements of all
scenarios?

‘We compute the upper bound to the end-to-end delay
of every event stream in architecture (d) for different
processor capacities. The results are shown in Fig. 19.

In the plots in Fig. 19, the NAV processor capacity
is varied in steps of 5% from 100% down to 10% of
its initial capacity. At the same time, the MMI/RAD
processor capacity is varied in steps of 5% from 100%
down to 20% of its initial capacity.

As we see from the plots, the delays of the “change
volume” scenario are not much affected by changes
of the NAV processor capacity and the delay of the
“address look-up” scenario is not much affected by
changes of the MMI/RAD processor capacity. On the
other hand, the delay of the “TMC message handling
scenario” is affected by the changes of both proces-
sor capacities. From the results, we learn that we could
decrease both the NAV processor capacity as well as
the MMI/RAD processor capacity down to 25% of their
initial capacity (i.e., 29 and 33 MIPS, respectively), while
still guaranteeing the fulfillment of all system require-
ments.

5 Conclusions and future work

Real-Time Calculus was originally intended for stream-
based applications. We have shown in this case study that
it is also well-suited for modeling control-oriented and
distributed software-intensive systems. Creating MPA
models is a relatively simple task that requires little
effort. The models presented in this paper were com-
posed manually and analyzed within the same working
day. Quantifying the event rates and resource capaci-
ties actually took up more time than building the model
because this information is seldom readily available.
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The method can play an important role in the typical
dialog of a design team because of the short cycle time.
Recalculation of a model is fast. If input data or analysis
results are doubted, which is always the case in the early
design stages, it is easy to change the data and investigate
the consequence of that change. Especially non-techni-
cians find this way of working satisfactory because they
normally are reluctant to accept results coming from
complex modeling and analysis exercises that they can-
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not oversee and understand completely. The attention
is shifted away from the method towards the problem,
hence it influences the design process positively.

A disadvantage of the Real-Time Calculus technique
is thatit can be too pessimistic. Since the calculusis based
on both best and worst cases of event streams and avail-
able resources, it might be that a design is oversized to
meet a worst case requirement, whereas in practice this
situation does occur rarely. In soft real-time systems this
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might entail a design which is too expensive. The current
approach to counter this phenomenon is to increase the
level of detail in the model, while still preserving the
simplicity of the approach. The future research goal is
that a few critical parts of a system may be modeled in
detail, while other less critical parts may be modeled
on a higher level of abstraction. With this approach, the
model of system parts that seem to be critical may even
be refined during the analysis process.

Modular performance analysis is a composable tech-
nique. Abstract performance components can actually
consist of other MPA models. This approach has not
been explored in this paper, neither have we investi-
gated its impact on the analysis speed.

Future work. A Java implementation of the Real-Time
Calculus, using Matlab as the user interface, is currently
under development. These tools are inspired by a proto-
type implementation that was made earlier using
Mathematica. Our aim is to compare MPA to other per-
formance analysis techniques based on the case study
presented in this paper. Comparison would include (but
is not restricted to) classical scheduling analysis tech-
niques, timed automata, Markovian, and traditional
simulation. Furthermore, we plan to evaluate larger case
studies, in particular, to investigate the scalability of
MPA. Integration with UML tools, in particular, through
the profile for schedulability, performance, and time
[13] is needed to make MPA tool support acceptable
to industry. The complete MPA model of the case study
presented here can be found at http://www.mpa.ethz.ch.
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Appendix: Min-Plus and Max-Plus Calculi

Both min-plus and max-plus calculi define a special
algebra (the min-plus dioid and max-plus dioid, respec-
tively). Traditionally, we are used to work with the
algebraic structure (R, +, x), i.e., with the set of reals
endowed with the operations of addition and multipli-
cation that possess a number of properties such as asso-
ciativity, commutativity, distributivity, etc.
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In difference to this, min-plus calculus works with an
algebraic structure (R U oo, Vv, +). Here, the operation
of addition becomes the computation of the infimum
(or the minimum), and the operation of multiplication
becomes the addition. Most axioms known from con-
ventional algebra still apply to this algebraic structure.
And in max-plus calculus, the infimum and minimum
are simply replaced by supremum and maximum.

In Real-Time Calculus, we often need to compute
convolutions and deconvolutions defined in min-plus
and max-plus calculi. These operations are defined as
follows [10]:

The min-plus convolution ® and the min-plus decon-
volution @ of two functions f and g are defined as:

feg) = oi?EA{f(A —A) +gM)} (15)
fog) = iﬁgff(A + 1) — g} (16)

The max-plus convolution ® and the max-plus decon-
volution @ of two functions f and g are defined as:

F®g) @)= sup {f(A-2)+g0) (17)
(f @ 8) (A) = inf{f(A +2) —g() (18)

For more information on min-plus and max-plus cal-
culi see [10] and [1].
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