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BALANCED ALLOCATIONS: THE HEAVILY LOADED CASE∗

PETRA BERENBRINK† , ARTUR CZUMAJ‡ , ANGELIKA STEGER§ , AND

BERTHOLD VÖCKING¶

Abstract. We investigate balls-into-bins processes allocating m balls into n bins based on the
multiple-choice paradigm. In the classical single-choice variant each ball is placed into a bin selected
uniformly at random. In a multiple-choice process each ball can be placed into one out of d ≥ 2
randomly selected bins. It is known that in many scenarios having more than one choice for each
ball can improve the load balance significantly. Formal analyses of this phenomenon prior to this
work considered mostly the lightly loaded case, that is, when m ≈ n. In this paper we present the
first tight analysis in the heavily loaded case, that is, when m � n rather than m ≈ n.

The best previously known results for the multiple-choice processes in the heavily loaded case
were obtained using majorization by the single-choice process. This yields an upper bound of the
maximum load of bins of m/n + O(

√
m lnn /n) with high probability. We show, however, that the

multiple-choice processes are fundamentally different from the single-choice variant in that they have
“short memory.” The great consequence of this property is that the deviation of the multiple-choice
processes from the optimal allocation (that is, the allocation in which each bin has either �m/n� or
�m/n� balls) does not increase with the number of balls as in the case of the single-choice process. In
particular, we investigate the allocation obtained by two different multiple-choice allocation schemes,
the greedy scheme due to Azar et al. and the always-go-left scheme due to Vöcking. We show that
these schemes result in a maximum load of only m/n + O(ln lnn) with high probability. All our
detailed bounds on the maximum load are tight up to an additive constant.

Furthermore, we investigate the two multiple-choice algorithms in a comparative study. We
present a majorization result showing that the always-go-left scheme obtains a better load balancing
than the greedy scheme for any choice of n, m, and d.
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1. Introduction. One of the central topics in the area of randomized algorithms
is the study of occupancy problems for balls-into-bins processes; see, e.g., [1, 2, 3, 5,
6, 8, 9, 10, 11, 12, 15, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33]. We consider
allocation processes in which a set of independent balls representing, e.g., tasks or
jobs is assigned to a set of bins representing, e.g., servers or machines. Since the
framework of balls-into-bins processes can be used to translate realistic problems into
a formal mathematical model in a natural way, it has been frequently analyzed in
probability theory [15, 17], random graph theory, and, most recently, in computer
science. For example, in theoretical computer science, the balls-into-bins processes
found many applications in hashing (see, e.g., [16]) or randomized rounding. They also
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play a crucial role in load balancing and resource allocation in parallel and distributed
systems (see, e.g., [1, 10, 18, 31, 32]). The goal of our study is to derive improved upper
and lower bounds on the maximum load or even the entire distribution of the load
in all bins for balls-into-bins processes in which each ball is placed in a load-adaptive
fashion into one out of a small number of randomly chosen bins.

In the classical single-choice process (see, e.g., [15, 17, 30]), each ball is placed into
a bin chosen independently and uniformly at random (i.u.r.). For the case of n bins and
m ≥ n lnn balls it is well known that there exists a bin receiving m/n+Θ(

√
m lnn /n)

balls (see, e.g., [30]). This result holds not only in expectation but even with high
probability (w.h.p.).1 Let the maximum load denote the number of balls in the fullest
bin and let the max height above average denote the difference between the maximum
load and the average number of balls per bin (which is m/n in our notation). Then
the max height above average of the single choice algorithm is Θ(

√
m lnn /n), w.h.p.

Observe that the deviation between the randomized single-choice allocation and the
optimal allocation increases with the number of balls.

In this paper we investigate randomized multiple-choice allocation schemes (see,
e.g., [1, 3, 11, 22, 23, 33]). The idea of multiple-choice algorithms is to reduce the
maximum load by choosing a small subset of the bins for each ball at random and
placing the ball into one of these bins. Typically, the ball is placed into a bin with
a minimum number of balls among the d alternatives. It is well known that having
more than one choice for each ball can improve the load balancing significantly [1, 33].
Previous analyzes, however, are only able to deal with the lightly loaded case, i.e.,
m = O(n); the bounds for m � n are far off. Our main contribution is the first
tight analysis for the heavily loaded case, i.e., when m = ω(n). We investigate two
different kinds of well-known multiple-choice algorithms, the greedy scheme and the
always-go-left scheme.

• Algorithm Greedy[d] was introduced and analyzed by Azar et al. in [1].
Greedy[d] chooses d ≥ 2 locations for each ball i.u.r. from the set of bins.
The m balls are inserted sequentially, one by one, and each ball is placed
into the least loaded among its d locations (if several locations have the same
minimum load, then the ball is placed into an arbitrary one among them).
Azar et al. [1] show that the max height above average (and the maximum
load) is ln lnn/ ln d + Θ(m/n), w.h.p.

• Algorithm Left[d] was introduced and analyzed by Vöcking in [33]. Let n
be a multiple of d ≥ 2. This algorithm partitions the set of bins into d
groups of equal size. These groups are ordered from left to right. Left[d]
chooses for each ball d locations: one location from each group is chosen i.u.r.
The m balls are inserted one by one and each ball is placed into the least
loaded among its d locations. If there are several locations having the same
minimum load, the ball is always placed into the leftmost group containing
one of these locations. Vöcking [33] proved, rather surprisingly, that the
use of this unfair tie breaking mechanism leads to a better load balancing
than a fair mechanism that resolves ties at random. In particular, the max
height above average (and the maximum load) produced by Left[d] is only
ln lnn/(d lnφd) + Θ(m/n), w.h.p., where 1.61 ≤ φd ≤ 2.

In the lightly loaded case, the bounds above are tight up to additive constants.
In the heavily loaded case, however, these bounds are not even as good as the bounds

1Throughout the entire paper we say an event A related to the process of allocating m balls into
n bin occurs with high probability (w.h.p.) if Pr[A] ≥ 1 − n−κ for an arbitrarily chosen constant
κ ≥ 0. Notice that this probability does not depend on m, the number of balls.
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known for the classical single-choice process. In fact, the best known bounds for the
multiple-choice algorithms in the heavily loaded case are obtained using majorization
from the single-choice process showing only that the multiple-choice algorithms do
not behave worse than the single-choice process.

Unfortunately, the known methods for analyzing the multiple-choice algorithms
do not allow us to obtain better results for the heavily loaded case. Both the tech-
niques used in [1] (“layered induction”) and [33] (“witness trees”) inherently assume a
load of 2m/n already in their base case and therefore they do not seem to be suitable
to prove a bound better than 2m/n. Alternative proof techniques using differential
equations as suggested in [5, 22, 23, 34, 35] fail for the heavily loaded case, too. The
reason is that the concentration results obtained by Kurtz’s theorem hold only for a
limited number of balls. Therefore, the analysis of the heavily loaded case requires
new ideas. Before we proceed with the detailed statement of our results we first
provide some terminology.

1.1. Basic definitions and notation. We model the state of the system by
load vectors. A load vector u = (u1, . . . , un) specifies that the number of balls in
the ith bin (the load of the ith bin) is ui. If u is normalized, then the entries in the
vector are sorted in decreasing order so that ui describes the number of balls in the
ith fullest bin. In the case of Greedy[d], the order among the bins does not matter so
that we can restrict the state space to normalized load vectors. In the case of Left[d],
however, we need to consider general load vectors.

Suppose Xt denotes the load vector at time t, i.e., after inserting t balls using
Greedy[d] or Left[d]. Then the stochastic process (Xt)t∈N corresponds to a Markov
chain M = (Xt)t∈N whose transition probabilities are defined by the respective al-
location process. In particular, Xt is a random variable obeying some probability
distribution L(Xt) defined by the allocation scheme. (Throughout the paper we use
the standard notation to denote the probability distribution of a random variable
U by L(U).) We use a standard measure of discrepancy between two probability
distributions ϑ and ν on a space Ω, the variation distance, defined as

‖ϑ− ν‖ =
1

2

∑
ω∈Ω

|ϑ(ω) − ν(ω)| = max
A⊆Ω

(ϑ(A) − ν(A)).

A basic technique used in this paper is coupling (cf., e.g., [4, 7]). A coupling
for two (possibly identical) Markov chains MX = (Xt)t∈N with state space ΩX and
MY = (Yt)t∈N with state space ΩY is a stochastic process (Xt, Yt)t∈N on ΩX × ΩY

such that each of (Xt)t∈N and (Yt)t∈N is a faithful copy of MX and MY , respectively.
Another basic concept that we use frequently is majorization (cf., e.g., [1]). We

say that a vector u = (u1, . . . , un) is majorized by a vector v = (v1, . . . , vn), written
u ≤ v, if for all 1 ≤ i ≤ n it holds that∑

1≤j≤i

uπ(j) ≤
∑

1≤j≤i

vσ(j),

where π and σ are permutations of 1, . . . , n such that uπ(1) ≥ uπ(2) ≥ · · · ≥ uπ(n) and
vσ(1) ≥ vσ(2) ≥ · · · ≥ vσ(n). Given an allocation scheme X defining a Markov chain
MX = (Xt)t∈N and an allocation scheme Y defining a Markov chain MY = (Yt)t∈N,
we say that X is majorized by Y if there is a coupling between the two Markov chains
MX and MY such that Xt ≤ Yt for all t ∈ N.

In order to express our results of the always-go-left scheme we use d-ary Fibonacci
numbers. Define Fd(k) = 0 for k ≤ 0, Fd(1) = 1, and Fd(k) =

∑d
i=1 Fd(k−i) for k ≥ 2.
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Let φd = limk→∞
k
√
Fd(k). Then Fd(k) = Θ(φ k

d ). Notice that φ2 corresponds to the
golden ratio. φd is called the d-ary golden ratio. In general 1.61 < φ2 < φ3 < · · · < 2.

1.2. New results. Our main contribution is the first tight analysis for multiple-
choice algorithms assuming an arbitrary number of balls. Our first result is a tight
analysis of Greedy[d] in the heavily loaded case when the number of balls is upper-
bounded by a polynomial in the number of bins.

Lemma 1.1. Let β ≥ 1 be an arbitrary constant. Suppose we allocate m balls to
n bins using Greedy[d] with d ≥ 2 and m ≤ nβ. Then the number of bins with load at
least m

n + i + γ is upper bounded by n · exp(−d i), w.h.p., where γ denotes a suitable
constant, γ = γ(β).

Even if Lemma 1.1 may seem to be a simple extension of the analysis of the greedy
algorithm with m = O(n) from [1], our analysis is significantly more complicated.
The main idea behind the proof is similar to the layered induction approach from [1].
However, the fact that the number of balls is only bounded by a polynomial in the
number of bins requires many additional tricks to be applied. In particular, unlike in
[1], we have to consider the entire distribution of the bins in our analysis (while in [1]
the bins with load smaller than the average could be ignored).

The techniques used to prove Lemma 1.1 cannot be extended to deal with the
case when m is unbounded. This is because the analysis in the proof of Lemma 1.1
is based on an inductive argument showing that the bound given in the lemma holds
after throwing any number m′ ≤ m of the balls. Of course, this approach cannot
work if m is unbounded, because in that case we expect that for some m′ ≤ m there
will be some bins having a huge load, even w.h.p. Therefore, to extend the result of
Lemma 1.1 to all values of m we will need other techniques.

Our next result is the main technical contribution of this paper and is central for
extending Lemma 1.1 to all values of m. It shows that the multiple-choice processes
are fundamentally different from the classical single-choice process in that they have
“short memory.”

Lemma 1.2 (Short Memory Lemma). Let ε > 0. Let d ≥ 2 be any integer.
Let X and Y be any two load vectors describing the allocation of m balls to n bins.
Let Xt (Yt) be the random variable that describes the load vector after allocating t
further balls on top of X (Y , respectively) using protocol Greedy[d]. Then there is a
τ = O(mn6 ln4(1/ε)) such that ‖L(Xτ )−L(Yτ )‖ ≤ ε. In the special case when d = 2,
this result holds even with τ = O(mn2 + n4 ln(m/ε)).

The proof of Lemma 1.2 is done by analyzing the mixing time of the underlying
Markov chain describing the load distribution of the bins. Our study of the mixing
time is via a new variant of the coupling method (called neighboring coupling (see
Lemma 3.2 in section 3.1.2)) which may be of independent interest.

The Short Memory Lemma implies the following property of the Greedy[d] pro-
cess (see Corollary 4.1 for a precise statement). Suppose that we begin in an arbitrary
configuration with the load difference between any pair of bins being at most Δ. Then
the Greedy[d] process “forgets” this unbalance in Δ ·polylog(Δ) ·poly(n) steps. That
is, the allocation after inserting further Δ · polylog(Δ) · poly(n) balls is stochastically
undistinguishable from an allocation obtained by starting from a totally balanced sys-
tem. This is in contrast to the single-choice process that requires Δ2 · poly(n) steps
to “forget” a load difference of Δ. We show that this property implies a fundamental
difference between the allocation obtained by the multiple- and the single-choice al-
gorithms. While the allocation of the single-choice algorithm deviates more and more
from the optimal allocation with an increasing number of balls, the deviation between
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the multiple-choice and the optimal allocation is independent of the number of balls.
This allows us to concentrate the analysis for the large number of balls m on the case
when m is only a polynomial of n.

Next, we show how to incorporate the results above, in Lemmas 1.1 and 1.2, to
obtain our main result about the load distribution of Greedy[d].

Theorem 1.3. Let γ denote a suitable constant. Suppose we allocate m balls to n
bins using Greedy[d] with d ≥ 2. Then the number of bins with load at least m

n + i+γ
is upper bounded by n · exp(−d i), w.h.p.

This result is tight up to additive constants in the sense that, for m ≥ n, the
number of bins with load at least m

n + i±Θ(1) is also bounded below by n · exp(−d i),
w.h.p. In particular, Theorem 1.3 implies immediately the following corollary, which
is tight up to a constant additive term.

Corollary 1.4. If m balls are allocated into n bins using Greedy[d] with d ≥ 2,
then the number of balls in the fullest bin is m

n + ln lnn
ln d ± Θ(1), w.h.p. (that is, the

max height above average is ln lnn
ln d ± Θ(1), w.h.p.).

Next, we analyze the always-go-left scheme. The load distribution is described in
terms of Fibonacci numbers defined in the previous section.

Theorem 1.5. Let γ denote a suitable constant. Suppose we allocate m balls into
n bins using Left[d] with d ≥ 2. Then the number of bins with load at least m

n + i+ γ
is upper bounded by n · exp(−φ d·i

d ), w.h.p.
Also this bound is tight up to additive constants because the number of bins with

load at least m
n + i± Θ(1) is lower-bounded by n · exp(−φ d·i

d ), w.h.p., too. Similarly
as in the case of the analysis of Greedy[d], Theorem 1.5 immediately implies a tight
bound for the maximum load when using Left[d].

Corollary 1.6. If m balls are allocated into n bins using Left[d] with d ≥ 2,
then the number of balls in the fullest bin is m

n + ln lnn
d·lnφd

± Θ(1), w.h.p. (that is, the

max height above average is ln lnn
d·lnφd

± Θ(1), w.h.p.).
In addition to these quantitative results, we investigate the relationship between

the greedy and the always-go-left scheme directly.
Theorem 1.7. Left[d] is majorized by Greedy[d].
In other words, we show that the always-go-left scheme produces a (stochastically)

better load balancing than the greedy scheme for any possible choice of d, n, and m.
We notice also that Theorem 1.7 is the key part of our analysis in Theorem 1.5.

1.3. Outline. In the first part of the paper we present the analysis of the greedy
process. We begin in section 2 with the analysis of Greedy[d] for a polynomial number
of balls (Lemma 1.1). Next, in section 3, we show that Greedy[d] has short memory
(Lemma 1.2). Based on this property, we show in section 4 that our analysis for a
polynomial number of balls can be extended to the analysis of the allocation for an
arbitrary number of balls (Theorem 1.3).

In the second part of the paper we analyze the always-go-left process. Here we do
not prove the short memory property explicitly. Instead, our main tool is majorization
of Left[d] by Greedy[d]. In section 5, we show this majorization result, Theorem 1.7.
In section 6, we analyze the allocation obtained by Left[d] based on the knowledge
about the allocation of Greedy[d] to prove Theorem 1.5.

2. The behavior of Greedy[d ] in the polynomially loaded case. In this
section, we investigate the allocation obtained by Greedy[d] in the polynomially loaded
case. In particular, we prove Lemma 1.1. In this theorem it is assumed that the
number of balls is polynomially bounded by the number of bins, that is, m ≤ nδ with
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δ > 0 denoting an arbitrary constant. The theorem states that there exists a constant
γ ≥ 0 such that the number of bins with load at least m

n +i+γ is at most n ·exp(−d i),
w.h.p. Recall that the term w.h.p. means that an event holds with probability at least
1 − n−κ for any fixed κ ≥ 0. Of course, the choice of γ has to depend on κ and δ.
Observe that if n < n0 for some constant n0, then the theorem is trivially satisfied by
setting γ = n δ

0 . We will use this observation at several points in our analysis at which
certain inequalities hold only under the assumption n ≥ n0 for a suitable choice of
n0. The choice of n0 might depend only on δ and κ.

Without loss of generality, we assume that m ≤ nδ is a multiple of n. We prove
the theorem by induction. For this purpose, we divide the set of balls into at most
nδ−1 batches of size n each. The allocation at time t describes the number of balls
in the bins after we have inserted the balls of the first t batches, i.e., after placing
tn balls, starting with a set of empty bins at time 0. Our proof is by induction on
t ≥ 0. We provide several invariants characterizing a typical distribution of the balls
among the bins at time t. We prove by induction that if these invariants hold before
allocating a new batch, then they hold also after allocating the batch with probability
at least 1 − n−κ for any given κ > 0. This implies that the invariants hold with
probability at least 1 − n−κ+(δ−1) after inserting the last batch because the number
of batches is upper-bounded by nδ−1. In other words, we prove that each individual
induction step holds w.h.p. which implies that the invariants hold w.h.p. over all steps
because the number of induction steps is polynomially bounded.

2.1. Invariants for Greedy[d ]. The average number of balls per bin at time
t (that is, after allocating t n balls) is t. The bins with less than t balls are called
underloaded bins and the bins with more than t balls are called overloaded bins. The
number of holes at time t is defined as the minimal number of balls one would need
to add to the underloaded bins so that each bin has load at least t. The height of
a ball in a bin is defined such that the ith ball allocated to a bin has height i. We
investigate the number of holes in the underloaded bins and the number of balls in
the overloaded bins. In particular, we show that the following invariants hold w.h.p.

• L(t): At time t, there are at most 0.74n holes.
• H(t): At time t, there are at most 0.27n balls of height at least t + 3.

We prove these invariants by an interleaved induction; that is, the proof for L(t)
assumes H(t − 1) and the proof for H(t) assumes L(t). Notice that since t is the
average number of balls per bin at time t, the number of holes at time t corresponds
to the number of balls above height t. Thus, invariant L(t) implies that there are at
most 0.74n balls with height t + 1 or larger at time t. This property will enable us
to show the upper bound on the number of balls with large height given in H(t). In
turn, we will see that there is a way to translate the upper bound on the number of
balls with large height given in H(t− 1) into an upper bound on the number of holes,
which will enable us to prove invariant L(t).

Observe that the two invariants above do not directly imply Lemma 1.1. However,
they will allow us to split the analysis into two parts: one for the underloaded bins
and one for the overloaded bins. These two parts depend on each other only through
the invariants L and H. In both of these parts we will specify further invariants.
Finally, the invariants for the overloaded bins will imply Theorem 1.1.

Throughout the analysis, we use the following notation. For i, t ≥ 0, α
(t)
i denotes

the fraction of bins with load at most t− i at time t, and β
(t)
i denotes the fraction of

bins with load at least t + i at the same time. Figure 1 illustrates this notation.
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2.2. Analysis of the underloaded bins. In this section, we analyze the num-
ber of holes in the underloaded bins. We prove the following two invariants for time
t ≥ 0. Let c1 and c2 denote suitable constants with c1 ≤ c2.

• L1(t): For 1 ≤ i ≤ c1 lnn, α
(t)
i ≤ 1.3 · 2.8−i.

• L2(t): For i ≥ c2 lnn, α
(t)
i = 0.

Observe that the invariants L1(t) and L2(t) imply the invariant L(t) as the number
of holes at time t is at most


c2 lnn�∑
i=1

1.3 · 2.8−min(i,�c1 lnn) · n ≤ 0.74n,

where the last inequality holds if n ≥ n0 for suitably chosen constant term n0. In
the following, we prove that L1(t) and L2(t) hold w.h.p. Our analysis is focused on
Greedy[2]; that is, we explicitly prove that the invariants L1(t) and L2(t) hold for
Greedy[2]. Given that the invariants hold for d = 2, a majorization argument [1,
Theorem 3.5] implies that the same invariants hold for every d ≥ 2. In fact, the
same argument shows that the choice of the tie breaking mechanism of Greedy[2] is
irrelevant. Therefore, without loss of generality, we can assume that Greedy[2] breaks
ties among bins of the same height by flipping a fair coin. Under this assumption, we
have the following lemma.

Lemma 2.1. Let � be an arbitrary integer and assume that at some point in
time there exist (at most) a
 n bins with at most � balls and (at most) a
−1 n bins
with at most � − 1 balls. Suppose that b is a bin with load exactly �. Then, the
probability that the next ball allocated by Greedy[2] will be placed into bin b is (at
least) (2 − a
 − a
−1)/n.

Proof. Since the term (2− a
− a
−1)/n is decreasing in both a
 and a
−1, we can
assume without loss of generality that there are exactly a
 n bins with at most � balls
and exactly a
−1 n bins with at most � − 1 balls. The probability that the ball goes
to one of the bins with load � is

(a
 − a
−1)
2 + 2(a
 − a
−1)(1 − a
) = (a
 − a
−1) · (2 − a
 − a
−1),

because this event happens if and only if either both random locations of the ball
point to a bin with load � or at least one of them points to a bin with load � and the
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other to a bin with load larger than �. Now, since we assume a random tie breaking
mechanism, each of the bins with load � is equally likely to receive the ball. Thus,
given that the ball falls into one of these bins, the probability that b receives the ball
is 1

(a�−a�−1)n
because the number of bins with load � is (a
−a
−1)n. Multiplying the

two probabilities yields the lemma.

Combining Lemma 2.1 with invariant L1, we can now analyze the probability that
a ball from batch t falls into a fixed bin b with a given number of holes. Applying

invariant L1(t− 1), there are at most α
(t−1)
i n ≤ 1.3 · 2.8−i · n bins with load at most

(t − 1) − i at time t − 1 for every 1 ≤ i ≤ c1 lnn. This upper bound not only holds
at the time immediately before the first ball of batch t is inserted but can be applied
to any ball from this batch since the load of a bin is nondecreasing over time. Now,
applying Lemma 2.1 yields that the probability that a ball from batch t is assigned
to a bin with load at most (t− 1) − i is at least

2 − α
(t−1)
i − α

(t−1)
i+1

n
≥ 2 − 1.3 · 2.8−i − 1.3 · 2.8−(i+1)

n
.

For i ≥ 3, this probability is larger than 1.9/n, which yields the following observation.

Observation 2.2. The probability that a ball from batch t goes to any fixed bin
with load at most t− 4 at the ball’s insertion time is at least 1.9/n, unless invariant
L1(t− 1) fails.

Thus bins with load t− 4 or less have almost twice the probability of receiving a
ball than the average. This might give an intuition as to why none of the bins falls
far behind. The following analysis puts this intuition into formal arguments.

Lemma 2.3. Let t ≥ 0. Suppose the probability that one of the invariants
L1(0), . . . , L1(t − 1) fails is at most n−κ′

for κ′ ≥ 1. For any fixed κ > 0, there
exist constants c0, c1, c2, c3 (solely depending on κ) such that

• there are at most n · 0.18 · 3−i+2 bins containing at most t − i balls, for
c0 < i ≤ c1 lnn, and

• every bin contains at least t− c2 lnn balls,

with probability at least 1 − n−κ − n−κ′
, provided n ≥ c3.

Proof. Consider a bin b. For any integer s ≥ 0, let �s denote the load of bin b
at time s, and let qs be the number of holes in bin b at time s; that is, qs = s − �s.
Now, suppose qt ≥ i + 4, for i ≥ 0. Since the number of holes can increase by at
most one during the allocation of a batch, there exists an integer t′, 0 ≤ t′ < t, such
that qt′ = 4 and for all s ∈ {t′ + 1, . . . , t} it holds that qs ≥ 4. Observe that by this
definition of t′, the number of balls from the batches t′ + 1, . . . , t that are assigned to
bin b is at most t− t′ − i.

The definition of t′ implies that the bin b has at least four holes at any time
during the allocation of the batches t′ + 1, . . . , t. More formally, at the insertion time
of any ball from batch s ∈ {t′ +1, . . . , t}, the bin b contains at most s−4 balls. Thus,
by Observation 2.2, it follows that every ball from these batches has probability at
least 1.9/n to be assigned to bin b or there exist s < t such that invariant L1(s) fails.
Ignoring the latter event, the number of balls from these batches that are placed
into bin b is stochastically dominated by a binomially distributed random variable
B((t − t′)n, 1.9/n). However, we cannot simply condition on L1(0, . . . , t − 1) as this
gives an unwanted bias to the random experiments under consideration. Instead we
explicitly exclude the event ¬L1(0, . . . , t − 1) from our considerations. This way, we
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obtain

Pr[(qt ≥ i + 4) ∧ L1(0, . . . , t− 1)] ≤
t−1∑
t′=0

Pr[B((t− t′)n, 1.9/n) ≤ t− t′ − i]

≤
∞∑
τ=1

Pr[B(τ n, 1.9/n) ≤ τ − i]

=

∞∑
τ=1

τ∑
k=i

Pr[B(τ n, 1.9/n) = τ − k].

Next, for 0 ≤ k < τ , we obtain

Pr[B(τ n, 1.9/n) = τ − k] =

(
τ n

τ − k

)
·
(

1 − 1.9

n

)τ n−τ+k

·
(

1.9

n

)τ−k

≤ (1.9 e τ)τ−k

(τ − k)!
e−(τ n−τ+k) 1.9/n

≤ (1.9 τ)τ−k

(τ − k)τ−k
e−0.9 τ−k+1.9 τ/n

≤
(

1.9 τ

τ − k

)τ−k

e−0.89 τ−k,

where the last inequality holds for n ≥ 190. Now, set z = τ/k > 1. Then, we obtain
for k > 0

Pr[B(τ n, 1.9/n) = τ − k] ≤
(

1.9 z k

(z − 1) k

)(z−1) k

e−0.79 z k−0.1 τ−k

=

(
1.9 z

z − 1

)(z−1) k

e−0.79 (z−1) k−1.79 k−0.1 τ

=

(
e−1.79

(
1.9 z

e0.79 (z − 1)

)(z−1)
)k

e−0.1 τ .

The term

(
1.9 z

e0.79 (z − 1)

)(z−1)

, z ≥ 1, takes its maximum at z = 2.22 . . . and is

bounded from above by 1.74. Therefore,

Pr[B(τ n, 1.9/n) = τ − k] ≤
(
1.74 · e−1.79

)k · e−0.1 τ ≤ 3.4−k · e−0.1 τ

for 0 < k < τ . The same inequality also holds for k = 0, because for n ≥ 13 it holds
that

Pr[B(τ n, 1.9/n) = τ − 0] = Pr[B(τ n, 1.9/n) = τ ]

=

(
τ n

τ

)
·
(

1 − 1.9

n

)τ (n−1)

·
(

1.9

n

)τ

≤
(
e τ n

τ

)τ

e1.9 τ n−1
n ·

(
1.9

n

)τ

=

(
1.9 e

e1.9 n−1
n

)τ

≤ e−0.1 τ .
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Finally, we can obtain the same bound for k = τ . In this case,

Pr[B(τ n, 1.9/n) = τ − k] = Pr[B(τ n, 1.9/n) = 0]

=

(
1 − 1.9

n

)τ n

≤ e−1.9 τ

≤ 3.4−k · e−0.1 τ .

Substituting this bound into the upper bound for Pr[qt ≥ i + 4] gives

Pr[(qt ≥ i + 4) ∧ L1(0, . . . , t− 1)] ≤
∑
τ≥1

∑
k≥i

3.4−k · e−0.1τ ≤ 13.5 · 3.4−i.

Now let Qt denote the maximum number of holes over all bins at time t. Recall
that the probability for the event ¬L1(0, . . . , t − 1) is bounded from above by n−κ′

.
Consequently,

Pr[Qt ≥ i + 4] ≤ n−κ′
+ Pr[(Qt ≥ i + 4) ∧ L1(0, . . . , t− 1)] ≤ n−κ′

+ n · 13.5 · 3.4−i.

It follows Qt = O(log n), w.h.p. More specifically, for every κ ≥ 0, there exists a
constant c2 such that every bin contains at least t − c2 lnn balls, with probability
1 − n−κ′ − 1

2n
−κ. This yields the second statement given in the lemma. In the

following, we show that the first statement holds with probability at least 1 − 1
2n

−κ.
In particular, we prove that for any given κ > 0, there are constants c0, c1, c3 such
that, for c0 < i ≤ c1 lnn and n ≥ c3, there are at most 0.18 · 3−i+2 ·n bins containing
t− i or less balls at time t, with probability at least 1− n−κ−1 ≥ 1− (2c1 n

κ lnn)−1.
This way, the probability that one of the statements listed in the lemma fails is at
most n−κ′

+ n−κ, so that the lemma is shown.
Let c0 = 40. For i > c0, we obtain

Pr[qt ≥ i] ≤ n−κ′
+ 13.5 · 3.4−i+4 ≤ n−1 + 0.65 · 2.8−i.

Now let Xb be an indicator random variable that is 1 if bin b holds at most t− i balls,
and that is 0, otherwise. Define X =

∑
Xb. We have to prove that X ≤ 1.3·2.8−i ·n,

w.h.p.
Let us first notice that

E[X] ≤ n · Pr[qt ≥ i] ≤ 0.65 · 2.8−i · n + 1.

The random variables Xb are “negatively associated” in the sense of [14, Proposi-
tion 7]. Hence, we can apply a Chernoff bound to these variables: For every μ ≥ E[X],
Pr[X ≥ 2μ] ≤ e−μ/2. We choose μ = 0.65 · 2.8−i · n + 1, set c1 = 0.5, and assume
that c3 is sufficiently large so that μ ≥ 2 (κ+ 1) lnn for every i ≤ c1 lnn and n ≥ c3.
This yields

Pr[X ≥ 1.3 · 2.8−i · n + 2] ≤ Pr[X ≥ 2μ] ≤ e−μ/2 ≤ e−(κ+1) lnn = n−κ−1.

This completes the proof of Lemma 2.3.
The second part of the lemma corresponds to invariant L2(t), and the first part

corresponds to invariant L1(t), but only for i > c0. Thus, it remains to show invariant
L1(t) for 1 ≤ i ≤ c0; that is, we have to show αt

i ≤ 1.3 · 2.8−i. We will solve this
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problem by specifying a recursive formula upper-bounding the term α
(t)
i , 1 ≤ i ≤ c0,

in terms of the vector (α
(t−1)
i−1 , . . . , α

(t−1)
i+3 ).

Lemma 2.4. Let ε > 0 and a0, . . . , a4 be constant reals with 0 < a4 < · · · a0 < 1.
Let k be a constant integer. Let � denote any integer. Suppose for i = 0, . . . , 4 there
are at most ai n bins with load at most �− i at time t−1. Then, at time t, the number
of bins with load at most � is at most gk(0) ·n, w.h.p., where the function g is defined
by

gj(i) =

{
ai if j = 0 or i = 4,
(1 + ε) · (gj−1(i + 1) + (gj−1(i) − gj−1(i + 1)) · E) otherwise,

where

E = exp

(
−2 − gj−1(i + 1) − gj−1(i)

k

)
.

Proof. For the time being, let us assume that n is a multiple of k. We divide the
allocation of the n balls into k phases, into each of which we insert n/k balls using
Greedy[2]. For 0 ≤ i ≤ 4 and 1 ≤ j ≤ k, we show that n · gj(i) is an upper bound on
the number of bins with load at most � − i after phase j. Observe that this claim is
trivially satisfied for i = 4.

We perform an induction on j, the index of the phase. Observe that for 0 ≤ i ≤ 4,
n·g0(i) is an upper bound on the number of bins with load at most �−i at the beginning
of phase 1. In the inductive hypothesis we assume that n · gj−1(i) is an upper bound
on the number of bins with load at most �− i at the beginning of phase j ≥ 1. Now
consider the allocation of the n/k balls in phase j. Suppose b is a bin having load �− i
(0 ≤ i ≤ 3) at the beginning of that phase. Lemma 2.1 implies that the probability
that b receives none of the next n/k balls is at most(

1 − 2 − gj−1(i) − gj−1(i + 1)

n

)n/k

≤ exp

(
−2 − gj−1(i + 1) − gj−1(i)

k

)
= E.

Thus, the expected number of bins with load exactly �− i not receiving a ball in this
phase is at most

n · (gj−1(i) − gj−1(i + 1)) · E.

As a consequence, the expected fraction of bins containing at most �− i balls at the
end of phase k is upper-bounded by

gj−1(i + 1) + (gj−1(i) − gj−1(i + 1)) · E

for 0 ≤ i ≤ 3. This term, however, by the definition, is equivalent to gj(i)/(1+ε), and
hence the expected number of bins containing at most � − i balls is upper-bounded
by n gj(i)/(1 + ε). Applying Azuma’s inequality to this expectation, we can observe
that the deviation is at most o(n), w.h.p. Hence, since n · gj(i) ≥ a4 · n = Θ(n),
we conclude that the stochastic deviation can be bounded by a factor (1 + ε) for any
ε > 0, provided n is sufficiently large. We conclude that the fraction of bins containing
at most �− i balls at the end of phase k is at most gj(i), w.h.p.

Now let us consider the case that n is not a multiple of k. In this case, we can
upper-bound the probability that b receives none of the at least n/k − 1 balls from
the next batch by (

1 − 2

n

)−1

· E
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instead of E as before. Obviously the leading factor in front of the E can be made
arbitrarily small by choosing n sufficiently large so that it is covered by the 1 + ε
factor that we already used above to cover stochastic deviations. This completes the
proof of the lemma.

In the following, we apply the recursive formula given in Lemma 2.4 to prove that
invariant L1(t) holds for every i ∈ {1, . . . , c0−1}. The recursion gives an upper bound

for α
(t)
i in terms of the vector (a0, . . . , a4) = (α

(t−1)
i−1 , . . . , α

(t−1)
i+3 ). For i ≥ 2, the terms

α
(t−1)
i−1 , . . . , α

(t−1)
i+3 can be estimated using invariant L1(t− 1). Suppose this invariant

is given. Fix any i ∈ {2, . . . , c0 − 1}. For i′ = 0, . . . , 4, we set ai′ = 1.3 · 2.8−(i+i′−1).
Then, ai′ is an upper bound on the fraction of bins with load at most i − i′ at time
t − 1. Now we choose k = 20 and ε = 1

1000 , and we numerically calculate gk(0)
using Maple. For such a choice of parameters, we obtain gk(0) ≤ 1.3 · 2.8−i. By

Lemma 2.4, gk(0) is an upper bound on α
(t)
i , w.h.p. Thus, invariant L(t) is shown for

i ≥ 2. Unfortunately, this approach does not work for i = 1, because in that case a0

corresponds to α
(t−1)
0 , which is not covered by invariant L1(t−1). In what follows, we

prove another lemma that gives an upper bound on α
(t−1)
0 based on invariant H(t−1).

Lemma 2.5. Suppose H(t−1) is fulfilled. Let (a0, . . . , a4) := (α
(t−1)
0 , . . . , α

(t−1)
4 ).

Then

a0 ≤ 1 − a1 + a2 + a3 + a4 − 0.27

2
.

Proof. At any time τ ≥ 0, the number of holes at time τ is Aτ =
∑

j≥1 α
(τ)
j n.

Since the number of balls above the average height is equal to the number of holes, we
can conclude that Aτ also corresponds to the number of balls with height at least τ+1
at time τ . Now, suppose invariant H(τ) holds. Then, there are at most Bτ = 0.27n
balls of height at least τ + 3 at time τ . Combining these two bounds, the number of
balls with height either τ +1 or τ +2 is lower-bounded by Aτ −Bτ . This implies that
at least (Aτ − Bτ )/2 bins contain more than τ balls at time τ . As a consequence,
the number of bins containing at most τ balls is upper-bounded by n− (Aτ −Bτ )/2.
Hence,

α
(τ)
0 n ≤ n− Aτ −Bτ

2
≤ n ·

(
1 −

∑4
j=1 α

(τ)
j − 0.27

2

)
.

Finally, setting τ = t− 1 and α
(τ)
j = aj gives the lemma.

Now, we are ready to prove invariant L1(t) by showing gk(0) ≤ 1.3 · 2.8−1 for all
choices of ai′ ∈ [0, 1.3 · 2.8−i′ ], 1 ≤ i′ ≤ 4, and a0 ∈ [0, 1− 1

2 (a1 +a2 +a3 +a4 − 0.27)].
Again, we check the condition on gk(0) numerically using Maple. For this purpose
we need to discretize the domains of the ai’s. For the discretization, we use the
monotonicity of gk(0): the term gk(0) is monotonically increasing in each of the
terms a0, . . . , a4. Therefore, it suffices to check the parameters a1, . . . , a4 in discrete
steps of a suitable size δ > 0 while assuming

a0 = 1 − a1 + a2 + a3 + a4 − 0.27 − 4 δ

2
.

In fact, we choose k = 20, ε = 1
1000 , and δ = 1

400 . The numerical calculations with
Maple show that the above condition on gk(0) is satisfied in all cases. Hence, the
invariants L1(t), L2(t), and, thus, L(t) are shown.



1362 BERENBRINK, CZUMAJ, STEGER, AND VÖCKING

2.3. Analysis of the overloaded bins. In this section, we will analyze the
distribution of load in the overloaded bins. In particular, we prove invariant H(t)
stating that the number of balls with height at least t + 3 is at most 0.27n. Our
analysis is based on invariant L(t) which we proved in the previous section based on
H(t− 1). Thus H(t− 1) yields L(t) and, in turn, L(t) yields H(t).

Our analysis of invariant H(t) is obtained by the analysis of two further invariants
that will imply invariant H(t) and will yield the proof of Lemma 1.1. These invariants
are defined as follows. Let

h(i) = 0.7 · 0.53d
i−2

.

Let � denote the smallest integer i such that h(i) ≤ n−0.9. Let b ≥ 1 denote a suitable
constant, whose value will be specified later. For i ≥ 3, define

f(i) =

⎧⎨⎩
h(i) for 2 ≤ i < �,
max{h(i), 1

4 n
−0.9} for i = �,

b n−1 for i = � + 1.

We will prove that the following invariants hold w.h.p.

• H1(t): β
(t)
i ≤ f(i) for 2 ≤ i ≤ �,

• H2(t):
∑

i>
 β
(t)
i ≤ b n−1.

Roughly speaking, invariant H1 states that the sequence β2, β3, . . . , β
 decreases dou-
bly exponentially, and the number of balls on layer � is upper-bounded by 1

4 n
0.1.

Furthermore, invariant H2 states that there is only a constant number of balls with a
height larger than �. These two invariants imply the bounds given in Lemma 1.1. Fur-
thermore, these invariants imply the invariant H(t) as they upper-bound the number
of balls above layer t + 3 by


−1∑
i=3

h(i)n +
1

4
n−0.1 + b ≤ 0.26n +

1

4
n−0.1 + b ≤ 0.27n,

where the last inequality holds for n ≥ 50b + 78. We show the invariants H1 and H2

by induction. Our induction assumptions are H1(0), . . . , H1(t − 1), H2(t − 1), and
L(t). We prove that these assumptions imply H1(t), H2(t), and H(t), w.h.p. Our
analysis starts by summarizing some properties of the function f . We assume that n
is sufficiently large.

Claim 2.6.

A1. f(2) = 0.371;
A2. f(i) ≥ 0.53−2f(i + 1) for 3 ≤ i ≤ �;
A3. f(i) ≥ 0.7−1f(i− 1)d for 3 ≤ i ≤ �;
A4. f(i) ≥ 1

4n
−0.9 for 3 ≤ i ≤ �.

Proof. The properties A1 and A4 follow directly from the definition of f . Property
A2 can be seen as follows. For 3 ≤ i ≤ �−2, f(i) = h(i) as well as f(i+1) = h(i+1).
Thus,

f(i + 1) = 0.7 · 0.53d
i−1

= 0.7 · 0.53d
i−2·d ≤ 0.7 · 0.53d

i−2+2 ≤ 0.532 · f(i).

If i = �− 1, then f(i+ 1) = h(i+ 1) or f(i+ 1) = 1
4n

−0.9. In the former case, we can
apply the same argument as before. In the latter case, we apply f(i) ≥ n−0.9 which
immediately yields f(i)/f(i+1) > 4 ≥ 0.53−2. Finally, in the case i = �, we need the
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assumption that n is sufficiently large so that f(�)/f(� + 1) ≥ 1
4n

−0.9/(bn) ≥ 0.53−2.
It remains to prove property A3. For 3 ≤ i ≤ �,

f(i− 1)d = (0.7 · 0.53d
i−3

)d = 0.7d · 0.53d
i−2 ≤ 0.7 · f(i).

Now we use these properties to show H1(t) using a “layered induction” on the
index i, similar to the analysis presented in [1]. For the base case, i.e., i = 2, we apply
invariant L(t). This invariant yields that, at time t, there exist at most 0.74n balls
of height larger than t. Consequently, the number of bins with t + 2 or more balls is

at most 0.74n/2 = 0.37n. Applying property A1 yields β
(t)
2 ≤ 0.37 ≤ f(2). Thus,

invariant H1(t) is shown for i = 2.
Next we prove H1(t) for i ∈ {3, . . . , �}. Fix i, 3 ≤ i ≤ �. We assume that H1(t)

holds for i − 1. Let q denote the number of bins that contain t + i or more balls at
time t− 1, i.e., immediately before batch t is inserted, and let p denote the number of
balls from batch t that are placed into a bin containing at least t+ i− 1 balls at time

t. Observe that β
(t)
i · n ≤ q + p. Thus, it suffices to show q + p ≤ f(i) · n. Applying

induction assumption H1(t− 1), we obtain

q ≤ β
(t−1)
i+1 · n ≤ f(i + 1) · n

(A2)

≤ 0.532 · f(i) · n.

Bounding p requires slightly more complex arguments. For 3 ≤ i ≤ �, the probability
that a fixed ball of batch t is allocated to height t + i is at most f(i − 1)d. This is
because each of its locations has to point to one of the bins with t + i − 1 or more
balls, and by our induction on i, the fraction of these bins is bounded from above by
f(i− 1). Taking into account all n balls of batch t, we obtain

E[p] ≤ f(i− 1)d · n
(A3)

≤ 0.7 · f(i) · n.

Applying a Chernoff bound yields, for every ε ∈ (0, 1],

Pr[p ≥ (1 + ε) · 0.7 · f(i) · n] ≤ exp

(
−0.7 ε2

2
· f(i) · n

)
(A4)

≤ exp

(
−0.7 ε2

8
· n0.1

)
≤ n−κ,

where the last inequality holds for any given κ and ε > 0, provided n is sufficiently

large. Hence, p ≤ (1 + ε) · 0.7 · f(i) · n, w.h.p. Consequently, β
(t)
i · n ≤ q + p ≤

(0.532 +0.7 · (1+ ε)) · f(i) ·n, w.h.p. We set ε = 0.02 so that (0.532 +0.7 · (1+ ε)) ≤ 1.
This proves invariant H1(t) for 2 ≤ i ≤ �.

Finally, we prove invariant H2(t). For 0 ≤ τ ≤ t, let xτ denote a random variable
which is one if at least one ball of batch τ is allocated into a bin with load larger
than τ + �, and zero, otherwise. Furthermore, let hτ denote the number of balls from
batch τ that are allocated into a bin with load larger than τ + �. Because of the
invariants H1(1), . . . , H1(t), the probability that a fixed ball from batch τ will fall
into a bin with more than τ + � balls is at most f(�)d ≤ (n−0.9)d ≤ n−1.8. Therefore,
Pr[xτ = 1] ≤ n · n−1.8 = n−0.8. In particular, for any integer j ≥ 1,

Pr[hτ ≥ j] ≤
(
n

j

)(
1

n1.8

)j

≤ n−0.8j .
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In other words, hτ = O(1), w.h.p. Thus, we can assume that there exists a
suitable constant j so that hτ ≤ j for 1 ≤ τ ≤ t. A violation of H2(t) implies that the
bins with load at least t+ �+ 1 contain more than b balls of height at least t+ �+ 1.
Observe that these balls must have been placed during the last b rounds or one of the
invariants H2(1), . . . , H2(t− 1) is violated. That is, if H2(1), . . . , H2(t− 1) hold, then
a violation of H2(t) implies that j ·

∑t
τ=t−b xτ ≥ b. The probability for this event is

at most

Pr

[
t∑

τ=t−b

xτ ≥ b/j

]
≤

(
b

b/j

)
·
(

1

n0.8

)b/j

≤
(

ej

n0.8

)b/j

≤ n−κ

for any constant κ, provided that n is sufficiently large. Consequently, invariant H2

holds, w.h.p., over all batches. This completes the proof of Lemma 1.1.

3. Greedy has short memory. The goal of this section is to prove the Short
Memory Lemma, Lemma 1.2. We will study the performance of Greedy[d] by analyz-
ing the underlying Markov chain describing the load distribution of the bins and our
analysis uses a new variant of coupling approach (neighboring coupling (see section
3.1.2)) to study the convergence time of Markov chains.

Remark 1. It is well known that the Short Memory Lemma does not hold for d = 1,
that is, for the single-choice algorithm. In that case, in order to claim that Xτ has
stochastically almost the same distribution as Yτ one must have τ = Ω(m2 ·poly(n)).

3.1. Auxiliary lemmas. In this subsection we state some auxiliary results that
will be used in order to prove Lemma 1.2.

3.1.1. A simple load estimation. We present here the following simple (and
known) lemma (see, e.g., [15, 17, 30]) that we use in the proof of Lemma 3.9.

Lemma 3.1. Suppose that m balls are allocated in n bins using Greedy[2]. Let p
be any positive real. Then with probability at least 1− p the minimum load in any bin
is larger than or equal to

m

n
−
√

2m

n
· ln n

p
.

Proof. The proof follows easily from the fact that the minimum load in Greedy[2]
is (stochastically) not smaller than the minimum load in the process that allocates m
balls in n bins i.u.r. (this follows, for example, from the majorization results presented
in [1, Theorem 3.5]). The minimum load in the process that allocates m balls in n
bins i.u.r. can be estimated by looking at each bin independently. Then, we apply the
Chernoff bound2 to estimate the probability that the load of the bin is smaller than

the expected load (i.e., from m
n ) by more than

√
2m
n · ln n

p . We apply the Chernoff

bound to m independent random variables X1, . . . , Xm with Xi indicating the event
that the ith ball is allocated in the given bin. Then, we obtain for every t ∈ N

Pr
[
given bin has load ≤ m

n
− t

]
≤ exp

(
−n t2

2m

)
.

2We use the following form of the Chernoff bound (see, e.g., [21, Theorem 2.3 (c)]): If X1, . . . , Xm

are binary independent random variables and if X =
∑m

j=1 Xj , then for any δ, 0 < δ < 1, it holds

that Pr[X ≤ (1 − δ)E[X]] ≤ exp(−δ2 E[X]/2).
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Therefore, by the union bound,

Pr
[
minimum load ≤ m

n
− t

]
≤ n · exp

(
−n t2

2m

)
.

This implies our result by setting t =
√

2m
n · ln n

p .

3.1.2. Neighboring coupling. Our main tool in the analysis of the convergence
of Markov chains is a new variant of the path coupling arguments that extends the
results from [7, 13] and which is described in the following lemma.

Lemma 3.2 (Neighboring Coupling Lemma). Let M = (Yt)t∈N be a discrete-
time Markov chain with a state space Ω. Let Ω∗ ⊆ Ω. Let Γ be any subset of Ω∗ ×Ω∗

(elements (X,Y ) ∈ Γ are called neighbors). Suppose that there is an integer D such
that for every (X,Y ) ∈ Ω∗×Ω∗ there exists a sequence X=Λ0,Λ1, . . . ,Λr =Y , where
(Λi,Λi+1) ∈ Γ for 0 ≤ i < r, and r ≤ D.

If there exists a coupling (Xt, Yt)t∈N for M such that for some T ∈ N, for all
(X,Y ) ∈ Γ, it holds that Pr[XT 	= YT | (X0, Y0) = (X,Y )] ≤ ε

D , then

‖L(XT |X0 = X) − L(YT |Y0 = Y )‖ ≤ ε

for every (X,Y ) ∈ Ω∗ × Ω∗.
Proof. For any pair of neighbors (Λ,Λ′) ∈ Γ,

‖L(ZT |Z0 = Λ) − L(ZT |Z0 = Λ′)‖ ≤ ε

D

by the well-known Coupling Lemma (see, e.g., [4, Lemma 3.6]). As a consequence, we
obtain

‖L(ZT |Z0 = X) − L(ZT |Z0 = Y )‖

≤
r∑

i=1

‖L(ZT |Z0 = Λi) − L(ZT |Z0 = Λi−1)‖ ≤ r · ε

D
≤ ε.

Thus, if we can find a neighboring coupling, we obtain immediately a bound on
the total variation distance in terms of the tail probabilities of the coupling time, i.e.,
a random time T for which Xt = Yt for all t ≥ T.

3.1.3. Random walks on N. In this section we present some auxiliary results
on the convergence rates of a random walk on the line N with the starting point D,
with the absorbing barrier at 0, and with a drift β ≥ 0 toward 0. We feel that these
results might be known, but since we have not seen them in forms needed in our
paper, we decided to present them here in detail for the sake of completeness.

We begin with the following result which can be viewed as a bound on the number
of steps needed by a random walk on the integer line with positive drift toward 0 until
the “barrier” 0 is hit.

Lemma 3.3 (random walk on N—positive drift toward 0). Let ε and β be any
positive reals. Let D be an arbitrary natural number. Let c ≥ 1 be an arbitrary
constant. Let (Xt)t∈N be a sequence of (not necessarily independent) random variables
such that

(1) 0 ≤ X0 ≤ D,
(2) for every t ∈ N, |Xt+1 −Xt| ≤ c,
(3) for every t ∈ N, if Xt > 0 then E[Xt+1 −Xt | X0,X1, . . . ,Xt] ≤ −β, and
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(4) for every t ∈ N, if Xt ≤ 0 then Xt+1 = 0.
Then, for certain T = Θ(D/β + ln(1/ε)/β2), if τ ≥ T then Pr[Xτ > 0] ≤ ε.
Proof. We eliminate the requirement that Xt is never negative by introducing

a new sequence of random variables (Yt)t∈N. If Xt > 0 then we set Yt = Xt, and
otherwise we define Yt = Yt−1 − β.

Then, conditions (1)–(2) still hold for sequence (Yt)t∈N, condition (3) holds for
(Yt)t∈N even without the assumption that Yt > 0, and we have a new condition (4∗)
such that for every t ∈ N, if Yt ≤ 0 then Yt+1 ≤ 0. Additionally, it is easy to see that
for every t ∈ N it holds that Pr[Yt > 0] = Pr[Xt > 0].

Next, since for every t we have E[Yt+1 − Yt | Y0, . . . ,Yt] ≤ −β, we see that
E[Yt] ≤ D − β t. Therefore, we can apply the Hoeffding–Azuma inequality (see, e.g.,
[21, Theorem 3.10]) to obtain that for every α > 0 it holds that

Pr[Yt > α + E[Yt]] ≤ e−α2/(2tc).

Since for α = t β −D we have α + E[Yt] ≤ 0, we can conclude that

Pr[Xt > 0] = Pr[Yt > 0] ≤ e−(t β−D)2/(2tc),

which yields the lemma.
Next, we investigate random walks on the integers with “balanced” drift, or a

drift which is very small; that is, β in Lemma 3.3 is tiny and hence the bound at that
lemma is weak.

Lemma 3.4 (random walk on N—balanced case). Let ε be any positive real. Let
D be an arbitrary natural number. Let c ≥ 1 be an arbitrary constant. Let (Xt)t∈N

be a sequence of (not necessarily independent) integer random variables such that the
following properties hold:

1. 0 ≤ Xt ≤ D for every t ∈ N,
2. for every t ∈ N, |Xt+1 −Xt| ≤ c,
3. for every t ∈ N, if Xt > 0 then Xt+1 	= Xt and E[Xt+1−Xt | X0,X1, . . . ,Xt] ≤

0, and
4. for every t ∈ N, if Xt = 0 then Xt+1 = 0.

Then, for certain T = Θ(D2 · ln(1/ε)), if τ ≥ T then Pr[Xτ > 0] ≤ ε.
Proof. We first observe that it is enough to prove the lemma only for E[Xt+1 −

Xt | X0, . . . ,Xt] = 0. We follow here arguments given in [19, Lemma 4]. Recall
that random variables V0,V1, . . . , form a submartingale with respect to a sequence
(Wt)t∈N if E[Vt+1 − Vt | W0,W1, . . . ,Wt] ≥ 0 for every t ∈ N. A random variable
τ is a stopping time for the submartingale if for each t one can determine if τ ≥ t.
We shall use the optional stopping time theorem (due to Doob) for submartingales
which says that if (Ut)t∈N is a submartingale (Ut)t∈N with bounded |Ut+1 − Ut| for
every t ∈ N and τ is a stopping time with finite expectation, then E[Uτ ] ≥ E[U0].

Fix X0. Define the stochastic process Z0,Z1, . . . such that for every t ∈ N,

Zt =

{
(D −Xt)

2 − t if either t = 0 or t > 0 and Xt−1 > 0,
Zt−1 if t > 0 and Xt−1 = 0.

Let us first observe that Zt is a submartingale with respect to the sequence (Xt)t∈N.
Indeed, conditioned on X0,X1, . . . ,Xt, if Xt = 0 then Zt+1 − Zt = 0. Otherwise, if
Xt > 0, then we obtain E[Zt+1 −Zt] = E[((D−Xt+1)

2 − (t+1))− ((D−Xt)
2 − t)] =

E[(Xt+1−Xt)
2−1+2·(Xt−Xt+1)·(D−Xt)] ≥ E[(Xt+1−Xt)

2]−1+2·(D−Xt)·E[Xt−
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Xt+1] ≥ 1 − 1 + 0 ≥ 0. Here, we used the fact that if Xt > 0 then Xt+1 	= Xt, and
therefore since each of Xt+1 and Xt is an integer, it holds that E[(Xt+1 −Xt)

2] ≥ 1.
Next, we notice that the differences |Zt+1 − Zt| are bounded for every t ∈ N

and the random time TX0 = min{t : Xt = 0} is a stopping time for Zt with finite
expectation. Moreover, Z0 = (D−X0)

2 and ZTX0
= D2−TX0 . Since E[ZTX0

] ≥ E[Z0]

by the optional stopping time theorem, we get E[TX0 ] ≤ X0 · (2D −X0) ≤ D2.
Take t = e · D2. The Markov inequality implies that Pr[TX0 ≥ t] ≤ e−1. If we

run ln(1/ε) independent trials of length t then for T = t · ln(1/ε) the probability that
XT 	= 0 is at most ε−1.

3.2. Greedy[d ] has short memory: Analysis for d=2. In this section we
prove Lemma 1.2 for d = 2. More precisely, we will prove various properties about
Greedy[d]. For d = 2 these properties will immediately imply Lemma 1.2. For d > 2
we need some additional arguments which are then presented in section 3.3.

Throughout this section we deal only with normalized load vectors. For every
k ≥ 0, let Ωk denote the set of normalized load vectors with k balls. In our analysis, we
investigate the following Markov chain M[d] = (Mt)t∈N, which models the behavior
of protocol Greedy[d]:

Input: M0 is any load vector in Ωm

Transitions Mt ⇒ Mt+1:

Pick q ∈ [n] at random such that Pr[q = k] = kd−(k−1)d

nd

Mt+1 is obtained from Mt by adding a new ball to the qth fullest bin

It is easy to see that the choice of q is equivalent to the choice obtained by
the following simple randomized process: Pick q1, q2, . . . , qd ∈ [n] i.u.r. and set q =
max{qi : 1 ≤ i ≤ d}. This in turn, is equivalent to the choice of q obtained by
Greedy[d]: Pick d bins i.u.r. and let the least loaded among the chosen bins be the qth
fullest bin in the system.

Our proof of Lemma 1.2 is via the neighboring coupling method discussed in detail
in section 3.1.2. Let X and Y denote two vectors from Ωm. We study the process
by which we add new balls on the top of each of the allocations described by these
vectors. We analyze how many balls one has to add until the two allocations are
almost indistinguishable.

3.2.1. Neighboring coupling. In order to apply the Neighboring Coupling
Lemma to analyze the Markov chain M[d] = (Mt)t∈N, we must first define the notion
of neighbors. Let us fix m and n. Let us define Ω∗ = Ωm and let Γ be the set of pairs
of those load vectors from Ωm which correspond to the balls’ allocations that differ in
exactly one ball (cf. Figure 2). In that case, if X can be obtained from Y by moving
a ball from the ith fullest bin into the jth fullest bin, then we write X = Y − ei + ej .
Thus,

Γ = {(X,Y ) ∈ Ωm × Ωm : X = Y − ei + ej for certain i, j ∈ [n], i 	= j}.

Clearly, for each X,Y ∈ Ωm there exists a sequence X = Z〈0〉, Z〈1〉, . . . , Z〈l−1〉, Z〈l〉

= Y , where l is the number of balls on which X and Y differ, l ≤ m, and (Z〈i〉, Z〈i+1〉) ∈
Γ for every i, 0 ≤ i ≤ l − 1. Thus, we can apply the Neighboring Coupling Lemma
with D = m.
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8 7 5 4 4 3 389X 8 7 4 4 4 3 38Y 10

Fig. 2. An example of neighboring load vectors X and Y with X = Y − e1 + e5 and Δ(X,Y ) = 6.

3.2.2. Short memory lemma using neighboring coupling. The main result
of this section is the following technical lemma.

Lemma 3.5. Let ε > 0 and let d ≥ 2 be integer. Let X,Y ∈ Ωm. There exists a
coupling (Xt, Yt)t∈N for M[d] and there is T = Θ(m ·nd +n2 d · ln(m/ε)) such that for
any τ ≥ T it holds that Pr[Xτ 	= Yτ | (X0, Y0) = (X,Y )] ≤ ε.

Let us first observe that for d = 2 Lemma 3.5 immediately implies the Short
Memory Lemma for Greedy[2]. However, Lemma 3.5 yields a weaker bound for d ≥ 3.
Therefore, a more specialized analysis for the case d ≥ 3 is postponed to section 3.3.

Notice that since for any pair X,Y ∈ Ωm there exists a sequence Λ0,Λ1, . . . ,Λk

such that k ≤ m, Λ0 = X, Λk = Y , and (Λi−1,Λi) ∈ Γ for every 1 ≤ i ≤ k, Lemma
3.5 follows immediately from the following lemma.

Lemma 3.6. Let ε > 0 and let d ≥ 2 be integer. Let X,Y ∈ Γ. There exists a
coupling (Xt, Yt)t∈N for M[d] and there is T = Θ(m ·nd +n2 d · ln(m/ε)) such that for
any τ ≥ T it holds that Pr[Xτ 	= Yτ | (X0, Y0) = (X,Y )] ≤ ε

m .
The rest of this subsection is devoted to the proof of Lemma 3.6.
For any load vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) with X = Y −ei+ej ,

i, j ∈ [n], let us define the distance function Δ(X,Y ) (cf. Figure 2),

Δ(X,Y ) = max{|xi − xj |, |yi − yj |}.

Observe that Δ(X,Y ) is always a nonnegative integer, it is zero only if X = Y and it
never takes the value of 1. Let

ξ = min{Pr[Greedy[d] picks the jth fullest bin]

− Pr[Greedy[d] picks the ith fullest bin] : i, j ∈ [n], i < j}.

Then, clearly, ξ ≥ 1/nd. The following lemma describes main properties of the desired
coupling.

Lemma 3.7. If (X,Y ) ∈ Γ then there exists a coupling (Xt, Yt)t∈N for M[d] that,
conditioned on (X0, Y0) = (X,Y ), satisfies the following properties for every t ∈ N:

• if Xt = Yt then Xt+1 = Yt+1,
• if Xt 	= Yt then Xt and Yt differ in at most one ball,
• Δ(Xt+1, Yt+1) − Δ(Xt, Yt) ∈ {−2,−1, 0, 1}, and
• if Xt 	= Yt then E[Δ(Xt+1, Yt+1) | Xt, Yt] ≤ Δ(Xt, Yt) − ξ.

Proof. We use the following natural coupling: each time we increase the vectors
X and Y by one ball, we use the same random choice. That is, in each step the
obtained load vectors will be obtained from X and Y , respectively, by allocating a
new ball to the qth fullest bin for certain q ∈ [n].
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6 6 5 5 5 4 3 2 2 13

α

8

βl ri j

X 6 6 6 5 5 4 38 2 2 12

l α β ri j

Y

Fig. 3. Illustration to the proof of Claim 3.8. In this case X = Y − e4 + e9, Δ(X,Y ) = 4,
l = 2, α = 6, β = 8, and r = 11.

The lemma now follows directly from the properties of the coupling described in
Claim 3.8 below.

Claim 3.8. Let X,Y be two load vectors from Ωm that differ in one ball with
X = Y − ei + ej for certain i < j. Let X〈q〉 and Y 〈q〉 be obtained from X and Y ,
respectively, by allocating a new ball to the qth fullest bin. Then, either

1. X〈q〉 = Y 〈q〉 and Δ(X〈q〉, Y 〈q〉) = Δ(X,Y ) − 2, or
2. X〈q〉 and Y 〈q〉 differ in one ball and

Δ(X〈q〉, Y 〈q〉) =

⎧⎨⎩
Δ(X,Y ) − 1 if and only if q = j,
Δ(X,Y ) + 1 if and only if q = i,
Δ(X,Y ) otherwise.

Proof. The proof is by case analysis which is tedious but otherwise straightforward
(see also Figure 3 for some intuition behind the coupling). We assume that Δ(X,Y ) =
yi − yj ; the case Δ(X,Y ) = xi − xj can be done similarly. Let

l = min{s ∈ [n] : ys = yi},
α = max{s ∈ [n] : xi = xs},
β = min{s ∈ [n] : xs = xj},
r = max{s ∈ [n] : yj = xs}.

Let us notice that 1 ≤ l ≤ i ≤ α, l < α, β ≤ j ≤ r ≤ n, and β < r. We first consider
six cases when either 1 ≤ q ≤ i or j ≤ q ≤ n.

Case (1) 1 ≤ q < l. Since q < l the same happens for both processes. For
certain s, s ≤ q, we have X〈q〉 = X + es and Y 〈q〉 = Y + es. Therefore, after
adding the ball to the qth fullest bin, we still have X〈q〉 = Y 〈q〉 − ei + ej . Hence,

Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i − y

〈q〉
j = yi − yj = Δ(X,Y ).

Case (2) l ≤ q < i. After reordering of the bins, the load of the lth largest
bin has increased by one for both load vectors (note that all load vectors between the
lth largest and the i− 1th largest bin have the same load in both processes). Hence,
X〈q〉 = X + el and Y 〈q〉 = Y + el. Therefore, X〈q〉 = Y 〈q〉 − ei + ej and the rest of
the case is similar to Case (1).

Case (3) q = i. In this case we have X〈q〉 = X+ei. After reordering of the load
vector of Y we have Y 〈q〉 = Y + el (see Case (2)). This yields X〈q〉 = Y 〈q〉 − el + ej

and Δ(X〈q〉, Y 〈q〉) = y
〈q〉
l − y

〈q〉
j = (yl + 1) − yj = Δ(X,Y ) + 1.

Case (4) q = j. The βth and the jth largest bins have the same number of
elements after adding a ball to the jth largest bin of X. Hence, X〈q〉 = X + eβ and
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Y 〈q〉 = Y + ej (in the case of Y the bins do not have to be reordered). Therefore
X〈q〉 = Y 〈q〉 − ei + eβ .

Now, there are two possibilities. First, if Δ(X,Y ) = 2, then i = β and therefore
X〈q〉 = Y 〈q〉. Otherwise, Δ(X,Y ) > 2 and hence i ≤ α < β, which implies that

Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i − y

〈q〉
β = yi − (yj + 1) = Δ(X,Y ) − 1.

Case (5) j < q ≤ r. After reordering we have X〈q〉 = X + ej+1 and Y 〈q〉 =

Y + ej . We get X〈q〉 = Y 〈q〉 − ei + ej+1 and Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i − y

〈q〉
j+1 = yi − yj =

Δ(X,Y ).

Case (6) r < q ≤ n. This case is similar to Case (1). For certain s, r < s ≤ q,
it holds that X〈q〉 = X + es and Y 〈q〉 = Y + es. Therefore, X〈q〉 = Y 〈q〉 − ei + ej and
Δ(X〈q〉, Y 〈q〉) does not change.

Now it remains to consider the case when i < q < j. We distinguish here two
main cases.

Case (A) xi = xj . In this case we have Δ(X,Y ) = 2. After reordering we
have X〈q〉 = X + ei and Y 〈q〉 = Y + ei+1. This means X〈q〉 = Y 〈q〉 − ei+1 + ej and

Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i+1 − y

〈q〉
j = yi − yj = 2 = Δ(X,Y ).

Case (B) xi > xj . In this case α < β and we distinguish three subcases:

Case (B.1) i < q ≤ α. After reordering we get X〈q〉 = X + ei and Y 〈q〉 =
Y + ei+1. Therefore, X〈q〉 = Y 〈q〉 − ei+1 + ej and Δ(X〈q〉, Y 〈q〉) =

y
〈q〉
i+1 − y

〈q〉
j = yi − yj = Δ(X,Y ).

Case (B.2) α < q < β. Again, this case is similar to Case (1); for certain
s, α < s ≤ q < β, we get X〈q〉 = X + es and Y 〈q〉 = Y + es. Hence,
Δ(X,Y ) does not change.

Case (B.3) β ≤ q < j. In this case X〈q〉 = X + eβ and Y 〈q〉 = Y + eβ .
Therefore, X〈q〉 = Y 〈q〉 − ei + ej and Δ(X,Y ) does not change.

Now we are ready to present the proof of Lemma 3.6.

Proof. We use the coupling constructed in Lemma 3.7. Observe that if we define
Δt = Δ(Xt, Yt), t ≥ 0, then from Lemma 3.7 the random variable Δt behaves like a
random walk on N with drift toward 0; see section 3.1.3. By our assumption, we can
set ξ = 1/nd. Given that, we can conclude the proof by applying Lemma 3.3 with
Xt = Δ(Xt, Yt), ct = 2 for every t ∈ N, and with D = m and β = ξ = 1/nd.

3.3. Short memory property of Greedy[d ] for large d . The main problem
with applying Lemma 3.7 for large d is that the value of ξ may be very small. Now
we modify the analysis above to give a better bound for Greedy[d] than the one of
Lemma 3.5 for all d > 2.

3.3.1. Load difference reduction in Greedy[d ] for d ≥ 3. For any load
vector W let us denote by Low(W) (Upp(W)) the minimum load (respectively, the
maximum load) in W. We prove that independently of the initial difference between
Low(W) and Upp(W) at some moment of the allocation process Greedy[d], after
allocating some new balls, this difference will be kept small.

Lemma 3.9. Let n and M be any positive integers and let ε be any positive
real. Let d ≥ 2 be any integer. Let X ∈ ΩM . Let M[d] = (Xt)t∈N with X0 =
X; that is, X0, X1, . . . is the sequence of random variables describing the Markov
chain M[d] conditioned on the event X0 = X. Then, there exist a certain T =
Θ
(
M n2 + n4 · ln(M/ε)

)
and a constant c > 0 such that the following hold.
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(1) If M = O(n3 ln(n/ε)), then the following two bounds hold:

Pr

[
Low(XT) ≤ M + T

n
− c ·

√
(M + n2 ln(M/ε)) · n · ln(n/ε)

]
≤ ε,

Pr

[
Upp(XT) ≥ M + T

n
+ c ·

√
(M + n2 ln(M/ε)) · n · ln(n/ε)

]
≤ ε.

(2) If M = Ω(n3 ln(n/ε)), then the following two bounds hold:

Pr

[
Low(XT) ≤ M + T

n
− c · n1.25 ·M0.25 · (ln(n/ε))0.75

]
≤ ε,

Pr

[
Upp(XT) ≥ M + T

n
+ c · n1.25 ·M0.25 · (ln(n/ε))0.75

]
≤ ε.

Proof. We prove the lemma only for M being the multiple of n; the general case
can be handled similarly. Since the proofs for Low(W) and Upp(W) are almost the
same, we will deal only with Low(W). We also point out that our proof uses ideas
similar to those discussed later in section 4.

Let Y0, Y1, . . . be the sequence of random variables (normalized load vectors)
describing the Markov chain M[2] conditioned on the event Y0 = X. It is known
that for every l ∈ N the normalized load vector Xl is majorized by the normalized
load vector Yl (see, e.g., [1, Theorem 3.5]). Therefore, in particular, Low(Xl) is
stochastically larger than or equal to Low(Yl) (the minimum load in Yl). Hence, it
is enough to prove the lemma only for the load vectors Y0, Y1, . . . .

Let ς be any positive real. Let Z be the ideally balanced load vector in ΩM (i.e.,
the loads of all bins in Z are the same). Let Z0, Z1, . . . be the sequence of random
variables (normalized load vectors) describing the Markov chain M[2] conditioned on
the event Z0 = Z. Lemma 3.5 implies that for certain T = Θ(M n2 + n4 · ln(M/ς)),
for any t ≥ T the load vectors Yt and Zt are almost indistinguishable (formally,
‖L(Zt) − L(Yt)‖ ≤ ς). In particular, this means that the random variables Low(Yl)
and Low(Zl) are stochastically the same with probability at least 1−ς. Furthermore,
by Lemma 3.1, we know that for any t ∈ N, it holds that

Pr

[
Low(Zt) ≤

M + t

n
−
√

2 (M + t)

n
ln

n

ς

]
≤ ς.(1)

Therefore, since for any t ≥ T we have ‖L(Zt) − L(Yt)‖ ≤ ς, we may conclude that
for t ≥ T it holds that

Pr

[
Low(Yt) ≤

M + t

n
−
√

2 (M + t)

n
ln

n

ς

]
≤ 2 ς.(2)

With inequality (2) we immediately obtain the first estimation for Low by setting
ε = 2 ς and T = t = T .

In order to obtain the second estimation, we first fix the smallest τ ≥ T such that

τ is a multiple of n. Let E be the event that Low(Yτ ) ≥ M+τ
n −

√
2 (M+τ)

n ln n
ς . Let

us condition on this event for a moment.
For any t ≥ τ , let Y ∗

t be the load vector obtained from Yt after removing

r = �M+τ
n −

√
2 (M+τ)

n ln n
ς � balls from each bin in Yt. Clearly, since Low(Yt) ≥



1372 BERENBRINK, CZUMAJ, STEGER, AND VÖCKING

Low(Yτ ) ≥ r, Y ∗
t is a proper normalized load vector in Ωt+M−r·n. Notice further

that there are M∗ = M + τ − r · n balls in the system described by Y ∗
τ .

Now we apply once again a similar procedure as we did above for the first esti-
mation. Let V be the ideally balanced load vector in ΩM∗ (i.e., each bin in V has the
same load). Let V0, V1, . . . be the sequence of random variables (normalized load vec-
tors) describing the Markov chain M[2] conditioned on the event V0 = V . Proceeding
similarly as above, we want to compare Y ∗

t+τ with Vt for t ≥ 0.
Lemma 3.5 implies that for certain T ∗ = Θ(M∗ n2+n4 ·ln(M∗/ς)), for any t ≥ T ∗

it holds that ‖L(Vt) − L(Y ∗
t+τ )‖ ≤ ς. Therefore, in particular, the random variables

Low(Y ∗
t+τ ) and Low(Vt) are stochastically the same with probability at least 1 − ς.

Furthermore, by Lemma 3.1, we know that for any t ∈ N it holds that

Pr

[
Low(Vt) ≤

M∗ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

]
≤ ς.

Therefore, since ‖L(Vt)−L(Y ∗
t+τ )‖ ≤ ς for any t ≥ T ∗, we may conclude that for any

t ≥ T ∗ it holds that

Pr

[
Low(Y ∗

t+τ ) ≤
M∗ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

]
≤ 2 ς.

Furthermore, since the load vector Y ∗
t+τ is obtained from the load vector Yt+τ by

removing r balls from each bin, we obtain that (conditioned on E) for any t ≥ T ∗,

Pr

[
Low(Yt+τ ) ≤

M + τ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

∣∣∣ E] ≤ 2 ς.

Finally, since we have proved that event E holds with probability at least 1− 2 ς (see
inequality (2)), we can conclude that for any t ≥ T ∗ it holds that

Pr

[
Low(Yt+τ ) ≤

M + τ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

]
≤ 4 ς.

Now, it remains to resolve this bound with respect to n, M , and ς. We observe that

τ = Θ(M n2 + n4 ln(M/ς))

and

M∗ = Θ
(√

τ n ln(n/ς)
)

= Θ
(
n1.5

√
M ln(n/ς) + n2.5

√
ln(M/ς) ln(n/ς)

)
.

Furthermore,

T ∗ = Θ(M∗ n2 + n4 · ln(M∗/ς))

= Θ

(
n3.5

√
M · ln(n/ς) n4.5

√
ln(M/ς) ln(n/ς)

+ n4 ln

(
nM ln(n/ς) ln(M/ς)

ς

))
.

Now, we use our assumption that M = Ω(n3 ln(n/ς)) for ς = Θ(ε). In this case,
the first term dominates the other one in the bounds for τ and for M∗ and the first
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term dominates the other two in the bound for T ∗. Hence, τ = Θ(M n2), M∗ =
Θ(n1.5

√
M ln(n/ς)), T ∗ = Θ(n3.5

√
M · ln(n/ς)), and τ + T ∗ = Θ(τ). Therefore, we

can conclude with the following claim: There exists a positive constant c such that
for T = τ + T ∗ it holds that

Pr

[
Low(XT) ≤ M + T

n
− c · n1.25 ·M0.25 · (ln(n/ς))0.75

]
≤ 4 ς.

Now, the lemma follows by setting ε = 4 ς.

3.3.2. Coupling arguments and the short memory lemma for d > 2.
Observe that a trivial implication of Lemma 3.9 is that if we start with any pair of
normalized load vectors X0, Y0 ∈ ΩM , then for certain τ = Θ(M n2 + n4 ln(M/ε)),
w.h.p. (depending on ε and κ), it holds that for any integer κ > 0, and for all t,
0 ≤ t < κ, the difference in the maximum load and the minimum load in Xτ+t (or
Yτ+t) is upper-bounded by

ζ =

{
O
(√

(M + n2 ln(M/ε))n ln(n/ε)
)

for M = O(n3 ln(n/ε)),

O
(
n1.25 M0.25 (ln(n/ε))0.75

)
for M = Ω(n3 ln(n/ε)).

From now on we shall fix τ and κ and shall condition on this event (which, by applying
the union bound to Lemma 3.9, is satisfied with probability larger than 1 − 2κ ε).

Now we proceed with coupling arguments. Let X,Y ∈ Γ. We use the same
distance function Δ(·, ·) as in section 3 and the same coupling as in Lemma 3.7 and
Claim 3.8. Observe that by our discussion in section 3.2.2, for any t ∈ N, either Xt

and Yt are identical or they differ by one ball.
Epochs. Let τ and κ be set as above. We divide the time into epochs. The 0th

epoch starts at time step l0 = 0 and ends in time step r0 = τ . Each following epoch
corresponds to the time period when the value of Δ remains unchanged. That is, if
the (k − 1)st epoch, k ≥ 1, ends in time step rk−1, then, inductively, the kth epoch
begins in time step lk = 1 + rk−1 and ends in the smallest time step t ≥ lk for which
Δ(Xt−1, Yt−1) 	= Δ(Xt, Yt). Additionally, if Xrk−1

= Yrk−1
, then we define rk = ∞,

and the kth epoch lasts until the infinity.
Claim 3.10. Let μ be any positive integer. Let for every t, τ ≤ t ≤ τ + κ, the

difference between the maximum load and the minimum load in each of Xt and Yt be
upper-bounded by μ. Then, for every 1 ≤ k ≤ κ

2nμ+1 , if Xrk−1
	= Yrk−1

, then the kth
epoch lasts at most 2nμ + 1 time steps.

Proof. Let Xt = Yt − ei + ej with i < j and let Xt+1 = Yt+1 − ei∗ + ej∗ , where
Xt+1 and Yt+1 are obtained from Xt and Yt, respectively, by allocating a ball to bin
q. By the case analysis (cf. also the proof of Claim 3.8) one can show that one of the
following two cases must hold:

• q = i or q = j in the transition (Xt, Yt) → (Xt+1, Yt+1) of the coupling.
• The load of the i∗th fullest bin in Yt+1 is the same as the load of the ith

fullest bin in Yt.
Consider a kth epoch and suppose that Xrk−1

	= Yrk−1
with Xrk−1

= Yrk−1
−ei∗ +ej∗ ,

i∗ < j∗, in time rk−1. Let � be the load of the i∗th fullest bin in Yrk−1
. Then, by

the observation above and by Claim 3.8, for every t with rk−1 ≤ t ≤ rk − 1, if
Xt = Yt − ei + ej with i < j, then the load of the ith fullest bin in Yt is �.

Now, we want to use the assumption that for every t, τ ≤ t ≤ τ +κ, the difference
between the maximum load and the minimum load in Yt is upper-bounded by μ.
Therefore, if τ ≤ rk−1 ≤ τ + κ, then in time rk−1 the value of � (which is the load of
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one of the bins in Yrk−1
) is at most rk−1

n + μ. Furthermore, if τ ≤ rk ≤ τ + κ, then
in time rk − 1 the value of � (which is the load of one of the bins in Yrk−1) is at least
rk−1
n − μ. Therefore, we obtain that

rk−1

n + μ ≥ � ≥ rk−1
n − μ.

This implies immediately that rk − lk ≤ 2nμ. This also yields inductively that if
1 ≤ k ≤ κ/(2nμ + 1) and Xrk−1

	= Yrk−1
, then the kth epoch lasts at most 2nμ + 1

time steps.

Let Δk be the value of Δ(Xt, Yt) for t = rk, i.e., for t being the last time step of
the kth epoch. Clearly, Δk−1 	= Δk. Furthermore, by Claim 3.8 the following holds:

• If Δk−1 ≥ 3 then Δk ∈ {Δk−1 − 1,Δk−1 + 1} and E[Δk − Δk−1] < 0.
• If Δk−1 = 2 then Δk ∈ {0, 3} and E[Δk − Δk−1] < 0.

Therefore, similarly as in the proof of Lemma 3.5, we can model sequence Δ0,Δ1, . . .
as a random walk on the line N with the starting point D ≤ ζ, the absorbing barrier
in 0, and with a positive drift toward 0. This time, however, the drift is very small
and therefore we use a weaker bound for the convergence of this random walk. From
Lemma 3.4 we obtain that

Pr[Δk > 0] ≤ 2κ ε for all k ≥ γ ζ2 ln(2κ ε)−1,

where γ is some absolute positive constant. Now, since by Claim 3.10 each epoch
k with Δk−1 > 0 lasts at most 2n ζ + 1 time steps, the last inequality implies the
following. For all t, t ≥ τ+γ ζ2 ln(2κ ε)−1·(2n ζ+1), it holds that Pr[Xt 	= Yt] ≤ 2κ ε.
Since, by Lemma 3.9, we have proven that with probability larger than or equal to
1 − 2κ ε, for every t, τ ≤ t < τ + κ, the difference between the maximum load and
the minimum load in each of Xt and Yt is upper bounded by ζ, we can conclude with
the following lemma.

Lemma 3.11. Let n and m be any positive integers and let ε be any positive real.
Let d ≥ 2 be any integer. Let X0, Y0 ∈ Ωm.

(1) If m = O(n3 ln(n/ε)), then there is a coupling (Xt, Yt)t∈N for M[d] such that
for certain T

∗,

T
∗ = Θ

(
n2.5 · (m + n2 ln(n/ε))1.5 · ln(n/ε)1.5 · ln(1/ε)

)
;

it holds for any t ≥ T
∗ that

Pr[Xt 	= Yt | (X0, Y0) = (X,Y )] ≤ ε.

(2) If m = Ω(n3 ln(n/ε)), then there is a coupling (Xt, Yt)t∈N for M[d] such that
for certain T

∗,

T
∗ = Θ

(
m · n2 + m0.75 · n4.75 · (ln(m/ε))2.25 · ln(1/ε)

)
;

it holds for any t ≥ T
∗ that

Pr[Xt 	= Yt | (X0, Y0) = (X,Y )] ≤ ε.

Now, Lemma 3.11 directly implies the Short Memory Lemma, Lemma 1.2, for all
values of d.
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4. A reduction to a polynomial number of balls for Greedy[d ]. In this
section, we discuss our main use of the Short Memory Lemma which is a reduction of
the analysis of the problem of allocating an arbitrary number m of balls into n bins to
the case when m is upper-bounded by a polynomial of n. If we combine this analysis
with the analysis for a polynomial number of balls in section 2, we will immediately
obtain Theorem 1.3.

Our arguments are similar to those used in section 3.3. We begin with the fol-
lowing corollary which follows directly from Lemma 1.2.

Corollary 4.1. Let X0 be any normalized load vector describing an arbitrary
allocation of some number m of balls to n bins. Let Δ be the difference between
the maximum and the minimum load in X0. Let Y0 be the normalized load vector
describing the optimally balanced allocation of m balls into n bins (that is, each bin in
Y0 has either �m/n� or �m/n� balls). Let Xk and Yk, respectively, denote the vectors
obtained after inserting k ≥ 1 further balls into both systems using Greedy[d]. For
every constant α there is a constant c such that if k ≥ cn7Δ ln4(nΔ), then

||L(Xk) − L(Yk)|| ≤ k−α.

Proof. Let � denote the minimum load of any bin in X0. We consider the scenario
after removing � balls from each bin in X0 and Y0; let X∗

0 and Y ∗
0 be the respective

load vectors. X∗
0 and Y ∗

0 have an identical number of balls that we denote by m∗.
Observe that since the maximum load in X0 was � + Δ, we have m∗ ≤ nΔ.

Next, let X∗
t and Y ∗

t , respectively, denote the vectors obtained after inserting t ≥ 1
further balls to the systems corresponding to X∗

0 and Y ∗
0 , where we use Greedy[d] to

place the balls. We apply the Short Memory Lemma, Lemma 1.2, to the sequences
X∗

t and Y ∗
t to obtain that there is τ ≤ c′m∗ n6 ln4(1/ε) ≤ c′Δn7 ln4(1/ε) for a

suitable constant c′ > 0, such that for every t ≥ τ we have ||L(X∗
t ) − L(Y ∗

t )|| ≤ ε.
Therefore, if we set ε = k−α and choose k such that it satisfies k = c′Δn7 α ln4 k =
O(n7Δ ln4(nΔ)), we have ||L(X∗

k) − L(Y ∗
k )|| ≤ k−α.

Now, the claim follows from the fact that for every t ≥ 0 the distributions of Xt

and Y ∗
t , and Yt and Y ∗

t , respectively, differ only in that every bin corresponding to
Xt (Yt) has � less balls than the corresponding bin in X∗

t (Y ∗
t , respectively).

Using Corollary 4.1, we present a general transformation which shows that the
allocation obtained by an allocation process with “short memory” is more or less
independent of the number of balls. The following theorem shows that the allocation
(its distribution) is essentially determined after inserting a polynomial number of balls.
In particular, this theorem together with Lemma 1.1 immediately imply Theorem 1.3.
We assume that n is sufficiently large.

Theorem 4.2. Let us consider the process Greedy[d], d ≥ 2, in which the balls are

allocated into n bins. For any integer m, let Xm = (x
(m)
1 , . . . , x

(m)
n ) be a load vector

obtained after allocating m balls with Greedy[d] and let X̃m = (x
(m)
1 − m

n , . . . , x
(m)
n −

m
n ). Let N = n36. Then, for every M , M ≥ N , that is a multiple of n,

||L(X̃M ) − L(X̃N )|| ≤ N−α,

where α denotes an arbitrary constant.
Proof. Let us first begin with the claim that if M and m are multiples of n with

M ≥ n36 and M ≥ m ≥ M0.8, then

||L(X̃M ) − L(X̃m)|| ≤ M−α.(3)
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Let us set m′ = M −m. We use the majorization from the single-choice process to
estimate the distribution of the bins’ loads after inserting m′ balls. Since Greedy[d]

is majorized by the single-choice process, each bin contains m′

n ±O(
√
m′ ln(n/p)/n)

balls, with probability at least 1 − p for any p ∈ [0, 1]. We set Δ = M0.6 and

p = M−α/2. Applying M ≥ m′ ≥ n yields that every bin contains between m′

n −Δ/2

and m′

n + Δ/2 balls, with probability at least 1 − p, provided that n is sufficiently

large. Let us now condition on this event and assume that the entries in X̃m′ are in
the Δ-range specified above.

Let Y describe another system in which the first m′ balls are inserted in an
optimal way; that is, Ym′ = (m

′

n , . . . , m′

n ). Now, we add m balls using protocol
Greedy[d] on top of Xm′ and Ym′ , respectively. Now, applying Corollary 4.1, we
obtain ||L(XM ) − L(YM )|| ≤ m−2·α ≤ M−α/2 as m ≥ M0.8 ≥ n7 M0.6 ln4 M ≥
c n7 Δ ln4(nΔ), where c is the constant specified in the corollary. Thus, conditioned

on the event that the values in X̃m′ are in the interval [m
′

n −Δ/2, m′

n +Δ/2], we have

L(ỸM ) = L(X̃m), with probability at least 1−M−α/2. Therefore, since the condition
is satisfied with probability at least 1 −M−α/2 as well, we have

||L(X̃M ) − L(X̃m)|| ≤ M−α/2 + ||L(XM ) − L(YM )|| ≤ M−α/2 + M−α/2 = M−α,

which completes the proof of inequality (3).
Finally, we use inequality (3) to prove Theorem 4.2. Observe first that if M ≤

N1/0.8, then (3) directly implies Theorem 4.2. Otherwise, we have to apply inequality
(3) repeatedly as follows. Let m0,m1, . . . ,mk denote a sequence of integers such that
m0 = N , mk = M , m0.8

i ≤ mi−1, and mα
i ≥ 2mα

i−1. Then

||L(X̃M ) − L(X̃N )|| ≤
k∑

i=1

||L(X̃mi
) − L(X̃mi−1

)|| ≤
k∑

i=1

m−α
i ≤ N−α,

where the last inequality follows from the fact that m−α
i ≤ 2−im−α

0 = 2−iN−α.
Remark 2. It is easy to see that the proof above does not use any of the properties

of Greedy[d] but the following two: Corollary 4.1 and the fact that Greedy[d] is ma-
jorized by the single-choice process. Therefore, Theorem 4.2 holds for any allocation
protocol P that has short memory (in the sense of Corollary 4.1) and that is majorized
by the single-choice process.

5. Greedy[d ] majorizes Left[d ]. In this section, we will begin our analysis of
the always-go-left allocation scheme and prove Theorem 1.7. Let d ≥ 2, n be any
multiple of d, and m ≥ 0. We show that Left[d] is majorized by Greedy[d].

Our proof is by induction on the number of balls in the system. Let u denote the
load vector obtained after inserting some number of balls with Left[d], and let v denote
the load vector obtained after inserting the same number of balls with Greedy[d].
Without loss of generality, we assume that u and v are normalized, i.e., u1 ≥ u2 ≥
· · · ≥ un and v1 ≥ v2 ≥ · · · ≥ vn. Notice that the normalization of u jumbles the
bins in the different groups used by Left[d] in some unspecified way so that it remains
unclear which bin belongs to which group. Let u′ and v′ denote the load vectors
obtained by adding another ball b with Left[d] and Greedy[d], respectively. To prove
Theorem 1.7 by induction, we show that if u ≤ v then there is a coupling of Left[d]
and Greedy[d] with respect to the allocation of b such that u′ ≤ v′, regardless of the
unspecified mapping of the bins to the groups underlying u.
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As a first step in the description of the coupling, we replace the original formula-
tions of the allocation rules of the two random processes by alternative formulations
that enable us to define an appropriate coupling.

• At first, we describe the alternative formulation of the allocation rules for
Greedy[d]. For 1 ≤ i ≤ n, let ei denote the ith unit vector, and define

bi = Pr[v′ = v + ei]. For 0 ≤ i ≤ n, let Bi =
∑i

j=1 bi; that is, Bi denotes
the probability that the next ball is added to a bin with index at most i with
respect to the considered order of bins. Without loss of generality, we assume
that Greedy[d] gives the ball to the bin with larger index in case of a tie.
Then Bi = (i/n)d because Greedy[d] places the ball b in a bin with index
smaller than or equal to i if and only if all of the d locations of b point to bins
whose indices are at most i. Instead of inserting the next ball using the rules
of Greedy[d], we now choose a continuous random variable x uniformly at
random from the interval [0, 1] and allocate b in the ith bin if Bi−1 < x ≤ Bi.
By our construction, this results in the same distribution.

• Now we turn our attention to Left[d]. Given any allocation of the balls to bins
corresponding to the load vector u, define ai = Pr[u′ = u + ei] for 1 ≤ i ≤ n

and Ai =
∑i

j=1 ai for 0 ≤ i ≤ n. Observe that the probabilities ai and Ai

do not depend only on the index i (as in the case of Greedy[d]) or the vector
u, but also on the hidden mapping of the bins to the groups. Consequently,
we cannot specify these terms as a functional of i or u. Nevertheless, for any
given mapping of the bins to groups, the terms A0, . . . , An are well defined
so that we can replace the original allocation rules by the following rule that
results in the same distribution: Choose a random variable x uniformly at
random from the interval [0, 1] and allocate the ball b into the ith bin if
Ai−1 < x ≤ Ai.

For the coupling, we now assume that Left[d] and Greedy[d] use the same random
number x to assign the ball b. By our construction, this coupling is faithful. Under
the coupling, we have to show u′ ≤ v′. Let u′ = u + ei and v′ = v + ej for some i
and j; that is, i and j specify the indices of the bins in the vectors u and v into which
Left[d] and Greedy[d], respectively, put the ball b.

First, let us assume that the initial vectors u and v are equal. In this case, we
have to show that u+ei ≤ u+ej . Consider the plateaus of u, i.e., maximal index sets
of bins with the same height. Suppose there are k ≥ 2 plateaus U1, . . . , Uk such that
the load is decreasing from U1 to Uk. Let I and J denote the indices of the plateaus
that contain i and j, respectively. Observe that I ≥ J implies u+ei ≤ u+ej because
adding a ball to different positions of the same plateau results in the same normalized
vector. Thus, we have only to show that J ≤ I. Let � = max{UI}. Since i ≤ �, we
have x ≤ A
. In the following lemma, we show that A
 ≤ (�/n)d. Above we have
shown that B
 = (�/n)d. Therefore, the lemma implies x ≤ B
, which shows that
Greedy[d] places its ball in a bin with index at most �; that is, j ≤ � and, hence,
J ≤ I. Consequently, u + ei ≤ u + ej .

Lemma 5.1. For any mapping of the bins to the groups underlying the vector u,
A
 ≤ (�/n)d.

Proof. Recall that A
 corresponds to the probability that Left[d] places the ball
b in a location with index (with respect to u) smaller than or equal to �. Let �k for
0 ≤ k < d denote the number of bins in group k with load greater than or equal to
u
. Then A
 =

∏d−1
k=0


k
n/d because the kth location of b must be one of those �k bins

among the d/n bins in group k that have load at least u
. Since
∑d−1

k=0 �k = �, A
 is
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maximized for �0 = · · · = �d−1 = �/d. Consequently, A
 ≤ (�/n)d.
Until now we have analyzed only the case when u = v and have shown u + ei ≤

u+ ej . This, however, can be easily generalized to arbitrary normalized load vectors.
Indeed, for any two normalized load vectors w and w′, w ≤ w′ implies w+ei ≤ w′+ei,
cf. [1, Lemma 3.4]. Consequently, we can conclude from u + ei ≤ u + ej that
u′ = u + ei ≤ u + ej ≤ v + ej = v′. Thus, Theorem 1.7 is shown.

6. Analysis of Left[d ]. In this section, we investigate the allocation generated
by Left[d]. In particular, we prove Theorem 1.5, that is, we show that the number of
bins with load at least m

n + i + γ is at most n · exp(−φ d·i
d ), w.h.p., where φd denotes

the d-ary golden ratio (cf. section 1.1) and γ is a suitable constant. Similarly to the
proof for Greedy[d], we divide the set of balls into batches of size n and we apply an
induction on the number of batches. On one hand, the proof for Left[d] is slightly
more complicated since we have to take into account that the set of bins is partitioned
into d groups. On the other hand, we can avoid the detour through analyzing the
holes below average height as we can instead make use of the majorization of Left[d]
by Greedy[d].

For the time being, let us assume that m ≥ n log2 n. We will use the majorization
from Greedy[d] to estimate the allocation after allocating the first m′ = m− n log2 n
balls. The special properties of Left[d] will only be taken into account for the remain-
ing n log2 n balls. Let us divide the set of these balls into log2 n batches of size n
each. Let time 0 denote the point of time before the first ball from batch 1 is inserted,
that is, after inserting the first m′ balls; and, for 1 ≤ t ≤ log2 n, let time t denote the

point of time after inserting the balls from batch t. Furthermore, set Γ = m′

n +7 and,

for i ≥ 0, 0 ≤ j < d, 0 ≤ t ≤ log2 n, let ν
(t)
i,j denote the number of bins with load at

least Γ + t + i in group j at time t. The following lemma gives an upper bound on
the allocation of Left[d] obtained by the majorization from Greedy[d] at time 0. This
upper bound is specified in terms of the function

h0(i) =
1

4i · 64d
.

Later we will use the same lemma to estimate parts of the allocation also for other
points of time, t ≥ 1.

Lemma 6.1. Let � denote the smallest integer such that h0(�) ≤ n−0.9, i.e.,
� = �0.9 log4 n − log4 d� − 2. For 0 ≤ i < �, 0 ≤ j < d, 0 ≤ t ≤ log2 n, it holds

ν
(t)
i,j ≤ h0(i) · n/d, w.h.p. For i ≥ �, ν

(t)
i,j = 0, w.h.p.

Proof. Fix a time step t. Theorem 1.3 shows that, when using Greedy[d], the frac-

tion of bins with load at least m′

n +t+ i is upper-bounded by a function that decreases
doubly exponentially in i. Now, in order to simplify the subsequent calculations, we
upper-bound this function by another function that decreases only exponentially in
i, namely, the function h0. With lots of room to spare, the analysis in section 2.3
yields that the fraction of bins with load at least Γ + t + i can be upper-bounded by
h0(i)/(2d), w.h.p., provided n is sufficiently large. This result holds for Greedy[d],
and we want to apply it to Left[d] via majorization. In order to make use of the
majorization of Left[d] by Greedy[d], we need a bound on the number of balls above
some given height rather than a bound on the number of bins with load above the
height. However, since the bound given above on the number of bins decreases geo-
metrically in i, the number of balls of height at least Γ + t + i when using Greedy[d]
is bounded from above by h0(i) · n/d. Now, because of the majorization, this result
holds for Left[d], too. In turn, the number of balls above height Γ+t+i upper-bounds
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the number of bins with load at least Γ + t + i. Hence, when using Left[d], the total
number of bins with load at least Γ + t + i is bounded from above by h0(i) · n/d. Of
course, the same upper bound holds for the number of such bins in each individual
group.

Finally, it remains to be shown that ν
(t)
i,j = 0, w.h.p., for i ≥ � with � =

�0.9 log4 n− log4 d�−2. Again this follows via majorization from Greedy[d]. Theorem
1.3 implies that the maximum load of Greedy[d] and, hence, also of Left[d] at time
t is bounded from above by Γ + t + O(logd log n), w.h.p. Thus there is no ball with
height Γ + t + �, w.h.p.

Before we turn to the technical details, let us explain the high-level idea behind the

following analysis. We will use a function f(k, t) as an upper bound for ν
(t)

k/d�,jmodd.

For t = 0, f(k, t) will be set equal to h0(�k/d�), and we will use the above lemma to

show that f(k, 0) upper-bounds ν
(0)

k/d�,kmodd. When increasing t, the function f(k, t)

will become more similar to the function h1(k) defined by

h1(k) =
exp(−Fd(k − d + 1))

64d
,

where Fd(k) denotes the kth d-ary Fibonacci number as defined in section 1.1. Let
i = �k/d� and j = k mod d. Then h1(k) will serve as an upper bound on the fraction
of bins with height Γ + t+ i in group j. As explained in section 1.1, we use the d-ary
golden ratio to upper-bound the d-ary Fibonacci numbers. This way,

h1(k) =
exp

(
−φ

k±O(d)
d

)
64d

=
exp

(
−φ

(i±O(1))d
d

)
64d

.

Hence, for large t, the fraction of bins with some given height decreases “Fibonacci
exponentially” with the height, exactly as described in Theorem 1.5.

Now we come to the technical details. We define

f(k, t) = max{h0(�k/d�) · 2−t, h1(k)}.

Observe that f changes smoothly from h0 into h1 when increasing t. In particular,
f(k, 0) = h0(�k/d�) and f(k, log2 n) ≤ h1(k) + 1

n . We need to refine the function f
slightly. Intuitively, we truncate the function when the function values become “too
small.” Let c denote a sufficiently large constant term, whose value will be specified
later. Let �t denote the smallest integer such that f(�t, t) ≤ n−0.9. We set

f ′(k, t) =

⎧⎪⎨⎪⎩
max

{
n−0.9

4
, f(k, t)

}
if 0 ≤ k < �t + d,

cd

n
if k ≥ �t + d.

The following properties of f ′ are crucial for our analysis. They hold only if n is
sufficiently large.

Lemma 6.2.

B1. f ′(k, t) = h0(0) for 0 ≤ k < d, t ≥ 0;
B2. f ′(k, t) ≥ 2 · f ′(k + d, t− 1) for d ≤ k < �t + d, t ≥ 1;

B3. f ′(k, t) ≥ (4d) ·
∏d

j=1 f
′(k − j, t) for d ≤ k < �t + d, t ≥ 0;

B4. f ′(k, t) ≥ n−0.9/4 for d ≤ k < �t, t ≥ 0.
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Proof. We start with the proof of property B1. First, let us check the property
for f instead of f ′. For 0 ≤ k < d, Fd(k−d+1) = 0 so that h1(k) = 1/(64d) = h0(0).
Hence, for every t ≥ 0,

f(k, t) = max{h0(�k/d�) · 2−t, h1(k)} = h0(0).

If n is sufficiently large then the same is true for f ′.

Next we show property B2, first for f and then for f ′. The function f(k, t) is
defined by the maximum of the two terms h0(�k/d�) · 2−t and h1(k). We study these
terms one after the other. The definition of h0 immediately implies

h0(�k/d�) · 2−t = 4h0(�(k + d)/d�) · 2−t = 2h0(�(k + d)/d�) · 2−(t−1).

Furthermore, for k ≥ d,

h1(k) =
exp(−Fd(k − d + 1))

64d
≥ 2 exp(−Fd(k + 1))

64d
= 2h1(k + d).

As a consequence, f(k, t) ≥ 2f(k+d, t−1), that is, B2 is shown for f . The refinement
from f to f ′ might raise the right-hand side of the inequality from 2f(k + d, t − 1)
to the value 2n−0.9/4, or the right-hand side might take the value 2cd/n. At first,
suppose f ′(k + d, t − 1) = n−0.9/4. Then k < �t−1 so that f(k, t − 1) ≥ n−0.9. Now
this implies f(k, t) ≥ n−0.9/2 as f(k, t) ≥ f(k, t− 1)/2. Consequently,

f ′(k, t) = max

{
f(k, t),

n−0.9

4

}
≥ n−0.9

2
= 2f ′(k + d, t− 1).

In the second case, f ′(k + d, t − 1) = cd/n. Observe that property B2 needs to be
shown only for k < �t + d. For this choice of k, f ′(k, t) ≥ n−0.9/4 so that f ′(k, t) ≥
2f ′(k + d, t− 1) if n is sufficiently large. Hence, B2 is shown.

Property B3 is shown as follows. Again we first show the property for f and then
for f ′. Fix k ≥ d. Depending on the outcome of the terms f(k−d, t), . . . , f(k−1, t), we
distinguish two cases. First, suppose there exists δ ∈ {1, . . . , d} such that f(k−δ, t) =
h0(�(k − δ)/d�) · 2−t. Observe that h0(�(k − δ)/d�) ≤ h0(�k/d� − 1) = 4h0(�k/d�).
We obtain

d∏
j=1

f(k − j, t) = h0(�(k − δ)/d�) · 2−t ·
d∏

j=1

j �=δ

f(k − j, t)

≤ 4h0(�k/d�) · 2−t ·
(

1

64d

)d−1

≤ h0(�k/d�) · 2−t

4d

≤ f(k, t)

4d
.
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Second, suppose f(k − δ, t) = h1(k − δ) for all δ ∈ {1, . . . , d}. Then

d∏
j=1

f(k − j, t) =

d∏
j=1

exp (−Fd(k − j − d + 1))

64d

=
exp

(
−
∑d

j=1 Fd(k − j − d + 1)
)

(64d)d

≤ exp (−Fd(k − d + 1))

(4d)(64d)

=
h1(k)

4d

≤ f(k, t)

4d
.

The refinement from f to f ′ affects the above proof only if f ′(k, t) 	= f(k, t), since
otherwise, f(k−δ, t) = f ′(k−δ, t) for all 0 ≤ δ ≤ d, so that the above arguments hold.
If f ′(k, t) 	= f(k, t) then f ′(k, t) = n−0.9/4. In this case, either f ′(k− 1, t) might take
the value n−0.9/4 as well or it takes the value f(k−1, t). In the latter case, B3 follows
by the same arguments as before, if we additionally apply f(k, t) ≤ n−0.9/4 = f ′(k, t).
If both f ′(k, t) and f ′(k − 1, t) take the value n−0.9/4, then

d∏
j=1

f(k − j, t) ≤ n−0.9

4
·

d∏
j=2

f(k − j, t) ≤ n−0.9

4
· 1

4d
=

f(k, t)

4d
.

Thus, B1, B2, and B3 hold for f and f ′. B4 does not hold for f . However, our
refinement explicitly ensures this property for f ′.

Based on these properties we prove now that the following invariants hold w.h.p.
for every t ∈ {0, . . . , log2 n}. We say that a ball has index k at time t if the ball
belongs to one of the batches 1, . . . , t and it is placed in group k mod d with height
�(Γ + t + k)/d�.

• H1(t): ν
(t)
i,j ≤ f ′(id + j, t) · n/d for i ≥ 0, 0 ≤ j < d.

• H2(t): The number of balls with index at least �t + d at time t is bounded
from above by a constant term c.

Observe that these invariants imply the bounds given in Theorem 1.5 as the function
f ′(i, log2 n) decreases “Fibonacci exponentially” in i as discussed above.

We show the invariants H1 and H2 by an induction on the number of rounds t.
Lemma 6.1 gives that the invariants hold at time 0. In the following, we prove that
H1(t) and H2(t) hold w.h.p. assuming that H1(t − 1) and H2(t − 1) are given. Fix
t ∈ {1, . . . , log2 n}. First, we consider H1(t). We prove this invariant by a further
induction on k = id+j. Observe that we need only to prove the invariant for k < �t+d
as the upper bound given for k ≥ �t + d is a direct consequence of invariant H2. For
k ∈ {0, . . . , d− 1}, property B1 gives f ′(k, t) = h0(0). Hence, for k < d, invariant H1

follows again directly from Lemma 6.1.
Now assume d ≤ k < �t +d. Suppose H1(t) is shown for all k′ < k. For i = �k/d�

and j = k mod d, let q(k) = q(i, j) denote the number of bins of group j containing
Γ + t + i balls already at the beginning of round t, and let p(k) = p(i, j) denote the
number of balls from batch t that are placed into a bin of group j that contains at
least Γ + t + i− 1 balls. Clearly,

ν
(t)
i,j ≤ q(k) + p(k).



1382 BERENBRINK, CZUMAJ, STEGER, AND VÖCKING

In the following, we calculate upper bounds for q(k) and p(k).

Observe that q(k) = q(i, j) corresponds to ν
(t−1)
i+1,j . Hence, invariant H1(t−1) gives

q(k) ≤ f ′((i + 1)d + j, t− 1) · n
d

≤ f ′(k + d, t− 1) · n
d

(B2)

≤ 0.5 · f ′(k, t) · n
d

for d ≤ k < �t + d.
The term p(k) = p(i, j) can be estimated as follows. If a ball is placed into a bin

of group j with Γ + t + i − 1 balls, the d possible locations for that ball fulfill the
following conditions. The randomly picked location from group g, 0 ≤ g < j, points
to a bin with load at least Γ + t + i. (Otherwise, the always-go-left scheme would
assign the ball to that location instead of location j.) At the ball’s insertion time the

number of these bins is at most ν
(t)
i,g . By the induction on k, ν

(t)
i,g ≤ f ′(i ·d+ g, t) ·n/d.

Thus, the probability that the location points to a suitable bin is at most f ′(i·d+g, t).
Furthermore, the randomly picked location from group g, j ≤ g < d, points to a bin
with load at least Γ + t+ i− 1. At the ball’s insertion time, the number of these bins

is at most ν
(t)
i−1,g. Thus, the probability for this event is at most f ′((i− 1) · d + g, t).

Now multiplying the probabilities for all d locations yields that the probability that
a fixed ball is allocated to group j with height Γ + t + i or larger is at most

j−1∏
g=0

f ′(i · d + g, t) ·
d−1∏
g=j

f ′((i− 1) · d + g, t) =

d∏
g=1

f ′(k − g, t)
(B3)

≤ f ′(k, t)

4d

for d ≤ k < �t + d. Taking into account all n balls of batch t, we obtain E[p(k)] ≤
n · f ′(k, t)/(4d). Applying a Chernoff bound yields

Pr

[
p(k) ≥ 2n · f

′(k, t)

4d

]
≤ exp

(
−n · f

′(k, t)

8d

)
(B4)

≤ exp

(
−n0.1

32d

)
.

As a consequence, p(k) ≤ 0.5f ′(k, t) · n/d, w.h.p.
Combining the bounds on q(k) and p(k) gives

ν
(t)
i,j ≤ q(k) + p(k) ≤ f ′(k, t) · n

d
≤ f ′(id + j, t) · n

d

for d ≤ k = id + j < �t + d. Thus, invariant H1(t) is shown.
Now we turn to the proof of H2(t). For s ≥ 0, let Ls denote the number of balls

with index at least �s + d at time s. Using this notation, invariant H2(t) states that
Lt ≤ c. For s ≥ r ≥ 1, let Ls(r) denote the number of balls from batch r with index
at least �s + d at time s. We claim

Lt =

t∑
s=1

Lt(s) ≤
t∑

s=1

Ls(s).

The first equation follows directly from the definition. The second equation can be
seen as follows. First, observe that �s−1 might be larger than �s as the function f ′

decreases over time. However, property B2 combined with the fact that f ′ decreases
by at most a factor of two from time s − 1 to time s yields �s−1 ≤ �s + d for every
s ≥ 0, which implies Ls(r) ≤ Ls−1(r) for every r ≤ s − 1. By induction, we obtain
Lt(r) ≤ Ls(r) for r ≤ s ≤ t and especially Lt(s) ≤ Ls(s).
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Let us study the probability that a fixed ball from batch s has index at least
�s + d at time s and, hence, contributes to Ls(s). This event happens only if each of
the d randomly selected locations of the ball points to a bin whose topmost ball has
index at least �s + d− d = �s. invariant H1(s) yields that the fraction of such bins in
each group is at most f(�s, s) ≤ n−0.9. Thus, the probability that a ball from batch s
contributes to L(s) is at least n−0.9d ≤ n−1.8. Now let us estimate the probability that
there exist c balls from the batches 1 to t that fulfill this condition. This probability
is at most

(
tn

c

)
·
(

1

n1.8

)c

≤
(

log2 n

cn0.8

)c

≤ n−c/2,

where the last inequality holds for sufficiently large n. Consequently, with probability
at least 1− n−c/2, Lt ≤

∑t
s=1 Ls(s) ≤ c. Thus, we have shown that H1(0), . . . , H1(t)

imply H2(t), w.h.p. This completes the proof for the case m ≥ n log2 n.

Finally, let us investigate the case m < n log2 n. We break the set of balls into at
most t ≤ log n batches. All batches except for the last one contain exactly n balls; only
the last batch might contain less. We use a simplified variant of the above analysis. In
particular, we define f(k, t) = h1(k) instead of f(k, t) = max{h0(�k/d�) · 2−t, h1(k)}.
The invariants H1 and H2 can be shown by the same arguments as before. The
advantage is that the identity between f(k, t) and h1(k) is given from the beginning
on, so that one does not have to iterate for log2 n batches until the two functions
become similar. In other words, the invariants H1 and H2 imply the bounds described
in the theorem already after the first batch as well as after all subsequent batches.
This completes the proof of Theorem 1.5.

7. Conclusions. We have presented the first tight analysis of two balls-into-bins
multiple-choice processes: the greedy protocol of Azar et al. [1] and the always-go-left
scheme due to Vöcking [33]. We showed that these schemes result in a maximum
load (w.h.p.) of only m

n + ln lnn
ln d + Θ(1) and m

n + ln lnn
d lnφd

+ Θ(1), respectively. Both
these bounds are tight up to additive constants. In addition, we have given upper
bounds on the number of bins with any given load. Furthermore, we presented the
first comparative study of the two multiple-choice algorithms and gave a majorization
result showing that the always-go-left scheme obtains a stochastically better load
balancing than the greedy scheme for any choice of d, n, and m.

Our important technical contribution is the Short Memory Lemma, which infor-
mally states that the multiple-choice processes quickly “forget” their initial distri-
bution of balls. The great consequence of this property is that the deviation of the
multiple-choice processes from the optimal allocation (that is, the allocation in which
each bin has either �m/n� or �m/n� balls) does not increase with the number of balls
as in the case of the single-choice process. This property played a fundamental role
in our analysis. We also hope that it will find further applications in the analysis
of allocation processes. In particular, we believe that the use of the Markov chain
approach to estimate the mixing time of underlying stochastic processes will be an
important tool in analyzing other balls-into-bins or similar processes.

Our calculations in section 2 use some help from computers; it would be interesting
to come up with a more elegant analysis that would possibly provide more insight on
the greedy process for a polynomial number of balls.
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