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Abstract

The behavior of entangled quantum systems can generally not be explained as being deter-
mined by purely classical shared randomness. In the first part of this paper, we propose a simple
game for n players demonstrating this non-local property of quantum mechanics: While, on the
one hand, it is immediately clear that classical players will lose the game with substantial prob-
ability, it can, on the other hand, always be won by players sharing an entangled quantum state.
The simplicity of the classical analysis of our game contrasts the often quite involved analysis of
previously proposed examples of this type.

In the second part, aiming at a quantitative characterization of the non-locality of an n-
partite quantum state |¥), we consider a general class of n-player games, where the amount of
communication between certain (randomly chosen) groups of players is measured. Comparing the
communication needed for both classical players and quantum players (initially sharing a state
|¥)) to win such a game, a new type of separation result is obtained. In particular, we show that,
in order to simulate two separated qubits of an n-partite GHZ state, at least Q(loglogn) bits of
information are required.

1 Introduction

1.1 Quantum Entanglement vs. Classical Correlation

Consider an entangled quantum state shared between n parties, each belonging to a separate, dy-
namically isolated system.! It is a known fact of quantum mechanics that entanglement can not
be used to achieve communication, i.e., no information can be exchanged between these parties.
Nevertheless, according to Bell’s well known theorem [2], the outcomes of local measurements in the
systems are generally correlated in a non-classical way. This means that the (classical) measurement
outcomes can not be simulated by parties only sharing classical information instead of quantum
entanglement. Consequently, albeit not allowing for communication, a shared quantum state might
help the n parties to accomplish certain tasks.

Aiming at understanding the nature of quantum entanglement, it is instructive to study simple
examples of such tasks. To this end, we will consider games between n collaborating players which,
in order to win, must generate certain outputs (possibly depending on a query). The game is won if
their outputs satisfy a given condition. To generate their answers, the players are allowed to perform
arbitrary local (quantum) computations (in particular, they are computationally unbounded) while
the communication between them is subject to restrictions.

It turns out that there are games which can always be won by players sharing an entangled
quantum state, while any classical strategy to win fails with some positive probability. They are

!One often considers systems which are spatially separated (after the common quantum state has been prepared),
such that, according to the theory of relativity, there is no causal connection between any two events of interest
belonging to different systems.



often called pseudo-telepathy games since the behavior of successful players can not be explained
classically without assuming some hidden extra communication between them. A nice example for
such a game has been presented in [3] where two collaborating players must answer a query in a
somehow correlated way without being allowed to communicate.

In Section 2, we propose another particularly simple game of this type involving n > 5 col-
laborating players: Two randomly picked players receive a bit b (being chosen by the remaining
n — 2 players) which they can either flip or leave unchanged. The game is won if the two players,
without being allowed to communicate (in particular, none of them knows who the other one is),
behave differently, meaning that ezactly one of them flips the bit b. Obviously, there is no classical
strategy for winning the game with certainty. Indeed, a simple argument (see Section 2.2) shows
that the probability to lose is substantial (roughly 1/4 for n large). This stands in contrast to other
similar games, where the classical analysis is often quite involved or where only asymptotic results
are proven.? On the other hand, our game can be won with certainty by players initially sharing a
GHZ state (Section 2.3).

1.2 Non-Local Information

An n-partite quantum state |¥) can be seen as a resource consisting of n components, each of them
taking a classical input (the measurement basis) and generating a classical output (the outcome of
the measurement performed on the respective part part of |¥)). As described above, such a resource
might be more powerful than its classical counterpart, i.e., n separated components sharing purely
classical information. This non-classical property of quantum states is often called non-locality or
non-local information of | V).

The non-local information of an n-partite quantum state |¥) over n subsystems can be char-
acterized by the minimal amount of communication between n separated classical systems needed
for simulating the behavior of the quantum subsystems. While, in general, it is not clear how to
determine this communication, it turns out that the games mentioned in the previous section are
useful to find certain bounds: Consider a game which can always be won by players sharing the quan-
tum state |¥). The non-local information of |¥) is then lower bounded by the minimal additional
communication being necessary for classical players to win this game.

To obtain a real-valued measure for the non-local information of in a state |¥), the communication
needed for its simulation has to be quantified. This can be done in several ways, but any concrete
measure only exhibits certain aspects of this communication, and, consequently, does not fully
characterize the non-local information contained in |¥). It thus seems that, in order to understand
the nature of non-locality, it is worth considering different types of such measures.

One possibility is to rely on the definition of communication complexity introduced by Yao [14].
In this setting, the communication between two parties is simply characterized by the number of
bits exchanged between them. In a generalization to n > 2 parties, any message sent by a player
is considered as being broadcasted, i.e., a bit sent to all players only counts once. Cleve and
Buhrman [8] were the first to propose an analysis of entanglement based on this communication
model. It could be shown [7] that the communication complezity of functions (which can be seen as
the communication necessary to win a certain game?) is generally larger for purely classical players
than for players sharing entangled quantum states. In a variety of papers, e.g., [1, 5, 6, 13, 7] (see [7]
or [4] for a survey), the communication complexity for both the quantum and the classical case, and
in particular the gap between them, has been studied extensively.

2E.g., for the mentioned two-player game from [3], the probability to lose has been shown (based on graph-theoretical
results) to be positive, but no lower bound for this probability is known yet (cf. [10, 9]).

3Let f be a function of n variables. The communication complexity of f is defined as the minimal amount of
communication necessary for n players, each holding one input variable, to compute the value of f. The setting thus
corresponds to a game which is won if each player outputs the correct value of f.



In this paper, we derive a slightly different type of separation results. The idea is to not only
consider the overall entanglement of a quantum state, but also the non-local information contained in
certain of its parts. For instance, given a state |¥) defined on n subsystems, one might be interested
in the non-local correlation between any two of the subsystems and, additionally, the dependence
between this correlation from the information contained in the other n — 2 subsystems.*

Our results are, similar to the mentioned results based on Yao’s model, derived from an analysis
of the communication necessary to win certain games. This communication is however quantified
in a different way: Instead of considering all messages exchanged between the players, only bits
transmitted between certain groups of players are counted (ignoring all communication within these
groups).

This concept is introduced more formally in Section 3. As an example, we show that, in order
to win the n-player game from Section 2 classically, the amount of information that the two chosen
players must receive is at least €(loglogn) bits (Section 3.2). This is in contrast to the quantum
case where one bit always suffices, given that the n players share a GHZ state. Consequently, to
simulate local measurements on each of two arbitrary qubits of an n-partite GHZ state, (loglog n)
bits of additional information are needed. Note that this amount can be arbitrarily large (for large
n), while the two simulated systems are both two-dimensional.

To obtain even stronger separation results, we propose a generalized version of the game from
Section 2. It is shown (Section 3.4) that the number of bits which has to be exchanged between n
classical players in order to win this generalized game is at least Q(logn). On the other hand, if the
players are allowed to share a GHZ state, one bit of communication still suffices.

2 A Simple Pseudo-Telepathy Game

2.1 The Game and Its Rules

Consider the following game G} involving n > 5 collaborating players P,..., P,. First, two of the
players are chosen randomly in such a way that neither of them knows who the other one is. (The
non-chosen, remaining, n — 2 players can be allowed to know which pair of players was chosen.) In
the following, we will (without loss of generality) call the two chosen players P; and P,.

The remaining players are now allowed to communicate and generate one “hint” bit b, which
they say out loud (in particular, P; and P, can hear the bit). The chosen players P, and P, must
then independently (i.e., no communication between them is allowed) generate a bit by and bo,
respectively. The game is won simply if by # bs.

We will show that this game can be won with probability at most (roughly) 75% classically (if
n is large enough), but with probability 1 (for any value of n) if the players can share quantum
information.

2.2 Classical Analysis

Let us first consider a classical setting where the players rely on arbitrary classical (but no quantum)
information which might have been shared during an initialization phase (before the start of the
game).

Each player has a fixed strategy defining his behavior for the case he is chosen. While this
strategy might in general be probabilistic, i.e., depend on some randomness, we can, without loss

“This is motivated by classical information-theoretic measures: Given n random variables X1, ..., Xy, one usually
is not only interested in the overall correlation between them, but also in the correlation between two random vari-
ables (the mutual information I(Xj;; X)), possibly conditioned on a third one (the conditional mutual information
I(X3; X5] X))



of generality, assume that this randomness is fixed before the game starts. This means that by the
time the player is chosen, his strategy is deterministic.

Once a player is chosen, the only information he gets is the hint bit b. For any given (determin-
istic) strategy, this bit b thus completely determines his output. Obviously, there exist exactly four
possible strategies, namely to output 0, 1, b, or b (where b denotes the complement of b).

If the strategies of the chosen players are the same, they will clearly output the same bit and
the game is lost. (Otherwise, if their strategies are different and if the remaining players know these
strategies, they can always win.) Finding the minimal probability of losing the game thus amounts
to determining the minimal probability of the event that two players with the same strategy (where
four strategies are possible) are picked.

For n = 4k + r players (where k, r are integers, 0 < k, and 0 < r < 4), the probability of this
event is at least

k k-1 k+1 k
—(4—7r).- 2. . . )
p(n) = ) n n—1+r n n—1

We have for instance p(5) = 1/10, p(8) = 1/7, and p(n) — 1/4 for n — oc.

2.3 A Winning Strategy for Quantum Players

We will now show that the game can be won with certainty if the players can not only share classical
information, but are additionally allowed to store a quantum state which is generated and shared
before the game starts. (During the game, the players are only allowed to process the quantum
information locally, i.e., an external observer would not be able to detect that the players follow a
quantum strategy.)

Assume that each player P; (for ¢ = 1,...,n) controls a two-dimensional subspace H; of a
quantum system H = H1®---@H,. Let {|eg), |e1)} be an orthonormal basis of H; (fori =1,...,n).
The diagonal and the circular basis of H; are then given by the vectors

fo) == %uew T lex)) )= %uew ~lea)) (1)

and

1

lg1) == ﬁﬂeo) —ile1)), (2)

lg0) = %uew Tiler))

respectively.
The quantum strategy to win the game is the following: The players start with a so called GHZ

state (see [11, 12])
D) = %(@o) ® @ leo) + |e1) @ 8 le1)) (3)

n times n times

(being prepared before the start of the game). During the game, after the two players have been
randomly chosen, the remaining players first measure their subsystems with respect to the diagonal
basis {|fo),|f1)} and determine the number k of players having the measurement outcome |f1). The
parity of & is then announced to the chosen players as hint bit b, i.e., b =k (mod 2).

Depending on this hint b, each of the chosen players measures his subsystem in either the diagonal
basis {|fo),|f1)} (if b = 1) or the circular basis {|go),|g1)} (if b = 0). His output is then a bit
indicating his measurement result (e.g., 0 for |fo) or |go), and 1 otherwise).

In order to prove that, following this strategy, the players always win the game, it suffices to
verify that the measurement outcomes of the chosen players (let them again be called P; and P,) are



always different. Using the diagonal basis for the subsystems Hs,...,H,, the players’ initial state
|®) can be written as

)= 272 (jeo) @ leo) ® ([fo) + 111) @ -+ @ (|fo) + | f1))
+len) ®le) @ (Ifo) = 171) ® -+~ @ (Ifo) = |f1))) -

EHIGHs €H®-r-@Hn
Thus, obviously, the measurements performed by the remaining players Ps, ..., P,, getting outcomes
| frs)s - -+ | fm, ), respectively, project the state |®) to

1
[P, ) = 7

Note that the exponent Y ! ;m; can be replaced by the hint bit b. We are thus in one of the
following situations:

(leo) ® leo) + (—1)Z=3"ile1) @ le1)) ® |fmg) @+ @ | fim,)-

(a) The subsystem H; ® Ho of P; and P, is in the state
1

Sl

)=

and the hint bit is b = 0.

(leo) ® leo) + |e1) @ le1)) € Hi @ Ho

(b) The subsystem H; @ Hs is in the state

67) = %uem ® leo) — |e1) ® ler)) € Hr ® Ha.
and b= 1.

Rewriting these states in terms of the measurement bases of P; and P» (which according to the
described strategy depend on b) we get

6% = —=(l90) o) + lon) ® 90)
L
V2

Consequently, in both cases, the measurement outcomes of P; and P, are always different, which
concludes the proof.

lp7) = (Ifo) ®[f1) +1f1) ® | fo))-

3 Quantifying Non-Local Information

As described in Section 1.2, in order to characterize the non-local information of an m-partite quan-
tum state |¥) in terms of communication complexity, a measure to quantify the communication
between n systems is required. We will introduce a notion of communication complexity with re-
spect to certain partitionings of the systems into groups, where only the communication between
these groups is counted.

This is formalized in terms of games between n players. A game is a specification of both the
partitioning of the players into groups, and a task which has to be accomplished by the players
(Section 3.1). The group broadcast complexity of a game is then defined as the minimal amount of
inter-group communication needed for the players to win the game (Section 3.2). The comparison
of the group broadcast complexity of a game for classical and for quantum players will finally lead
to a new type of separation results (Section 3.3 and 3.4).



3.1 Games and Players

A game G, for n players is defined by a probability distribution over triples (o, q, W) where o
describes a partitioning of the players into groups, q a query to be given as input to the players, and
W a set of allowed answers. Formally, o is an m-tuple (Gy,...,G,,) (where m € N is the number of
groups) of disjoint sets Gy, C {1,...,n} such that UyGy = {1,...,n}, ¢ is an m-tuple of bitstrings,
and W is a set of m-tuples of bitstrings.

The players Py,..., P, are arbitrary, possibly probabilistic, information-processing systems hav-
ing an internal state. On each new input, a player generates an output depending on this input (and
possibly all previous inputs) and his internal state.

We will distinguish between two different settings: In the classical setting, the players are com-
pletely classical systems. In this case, the initial values of their internal states Ry, ..., R, (when the
game starts) are given by a joint probability distribution Pg,...g, (in particular, the internal states
of the players might initially be correlated). An m-tuple of players together with the probability
distribution is called classical strategy 7.

In the quantum setting, the internal state of a player P; additionally contains quantum infor-
mation specified by the state of a quantum system ;. The player’s inputs and outputs are still
classical, whereby the latter might depend on the (classical) outcomes of measurements performed
on H;. Before the start of the game, the quantum systems #; are initialized with a quantum state
|¥) € H1®---®H, (such that, in general, there is entanglement between the players’ internal states).
An n-tuple of quantum players together with an initial state |¥) (and, possibly an additional classical
probability distribution) defines a quantum strategy Tqm (based on the state |V)).

Let us now describe the rules of a game G,: First, an instance (o, g, W) is sampled according to
the probability distribution specified by G,,. The players are then subdivided into groups defined by
o, i.e., a player P; is said to belong to the group Gi if i € Gj. Let us assume that there are m such
groups.

The game consists of steps, where, in each step, each player takes some input (which is identical
for all players belonging to the same group) and generates an output.

In the first step, the players’ inputs are specified by the query ¢ = (q1,...,qm) (where the
bitstring g is given to all players in the group Gj). Then, the players communicate by generating
outputs (in step ¢) which are then (in the next step ¢ + 1) given as input to certain other players.
In our model, a player can (in each step) choose between two possibilities: his output is either sent
to all players within his group or it is broadcasted to all n players.®

The game runs until, after a certain number of steps, all n players are in a so-called halting state,
indicated by a special output, where additionally, at most one player in each group G} specifies a
final output string ar. (If there is no such player, we set ap = () where ) is the empty string.) The
game is won iff (a1,...,a,;,) € W.

As an example, consider the game GS for n players from Section 2 (where we first omit the
restriction that the hint sent by the remaining players is limited to one bit). The two chosen players
(P; and Pj, for two different indices 7 and j) each form a group, while the remaining players are
collected in a third group. Therefore, the partitioning of the n players is determined by the triple
Oij = ({eh {uh AL n ]\ {4, 5 }).

The query g describes the information which is given to the players when they are separated into
groups. In our game, each player merely learns whether he is among the chosen or the remaining
ones. This can be indicated by a bit, e.g., ¢ = (0,0,1). The game is won iff the outputs of the chosen
players are different, i.e., the set of allowed answers is W = {(0, 1,0), (1,0,0)}.

The choice of the two players P; and P; is random, while the query ¢ and the set of allowed
answers W is always the same. The game G? is thus defined as the uniform distribution over all

S5Technically, this choice can for instance be indicated by a certain bit in the player’s output.



triples (o45,q, W) where 1 <i < j <mn.

3.2 Broadcast Complexity

In order to win a game G,, the players, being separated in different groups, must generally commu-
nicate both with players within their own group and with players in other groups. According to the
model described in the previous subsection, a player can (in each step) choose whether he wants to
send information to the players in his group or broadcast information to all players. Note that, since
the players are collaborating (and thus, privacy is no issue), this includes any type of communication
among the players. For instance, to send a certain message to one specific player, the sender simply
includes the address of the receiver (and possibly his own address) into the broadcasted message.

We will be interested in the total amount of information flowing from inside each group to the
players outside the group, i.e., the information passing the “boundary” of each group (outwards).
Therefore, to quantify this information, we have to consider the messages broadcasted by each player
(to all players).

Let G, be a game and Py, ..., P, a set of players. Assume that the information being broadcasted
by player P; in step ¢ is a bitstring b;; (where by ; = () if P; does not broadcast anything in this step).
Furthermore, assume (without loss of generality) that, in the next step ¢ + 1, this information is
given as input to all players in the form of a string by = by1|| - - - ||by,, being the concatenation of the
strings b;; broadcasted in step ¢. These bitstrings b; must fulfill the requirement that any player,
reading b; bitwise, is able to detect when the string terminates.® This technical point is important
when quantifying the amount of broadcasted bits since it prevents information from being encoded
into the length of b;.”

Note that the strings b; generally depend on the randomness of the players as well as the ran-
domness in the choice of the instance (o,q, W) of the game G,. The (worst case) group broadcast
complezity for a given strategy 7 for n players is thus defined as

B(Gy, 1) = maXZ bs.
t

where the maximum is taken over their whole randomness.®

In the following section, we will see that the minimal amount of information which has to be
exchanged between the groups in order to win a certain game G, (for n players) depends on the
quantum state |¥) (defined on n subsystems) initially shared by the players. This motivates the
following definition.

Definition 1. The classical group broadcast complezity of a game G, for n players, BY(G,), is given
by the minimal value of B(G,, ) where the minimum is taken over all classical strategies T to win
G,, with certainty.

The quantum group broadcast complexity of G, with respect to an n-partite quantum state |¥),

Bﬁ;;(gn) is defined similarly, but the minimum is taken over all winning quantum strategies for n

players sharing the quantum state |¥).

Note that, in the special case where the only partitioning specified by the game is the trivial par-
titioning ({1},...,{n}) (consisting of n singleton sets), the group broadcast complexity corresponds
to Yao’s definition of communication complexity.

5The length of any broadcasted string b; must thus either be fixed or be encoded into the string itself.

"Similarly, the input for the players might be considered as the concatenation b¢||7 of the message b; and a random
bitstring 7.

®Note that this definition is independent of the probability distribution over the triples (0,9, W), but only depends
on the set of possible triples.



3.3 A Separation Result

Let us again consider the example game G; from Section 2. It can not be won classically if the
information a chosen player gets from the other players is restricted to one bit (see Section 2.2). On
the other hand, the quantum strategy introduced in Section 2.3 allows to always win the game with
one hint bit using a GHZ state |®).

This is summarized by the following lemma, which additionally gives a lower bound for the
classical broadcast complexity.

Lemma 2. The classical and the quantum group broadcast complexity satisfy
BY(GE) > logylogen  and  BY(|®),G2) <1,
respectively, where |®) is the GHZ state of n qubits.

Proof. The only missing part is the proof of the lower bound on the classical broadcast complexity
BY(G2), i.e., it has to be shown that for any set of classical players Py, ..., Py,

B(gfw (Pla' c . 7Pn)) Z 10g2 10g2 n.

Since the group broadcast complexity B(G*, (Py,...,P,)) is defined as a maximum taken over the
randomness of the players, it suffices to prove this inequality to hold for any set of deterministic
players (where each player’s output is completely determined by his input).

Therefore, let Py,..., P, be a fixed set of deterministic players winning the game G} with cer-
tainty. For any two indices 4,j € {1,...,n}, define m;; to be the sequence of strings (b;)en broad-
casted by all players during the game when the instance o;; = ({i}, {5}, {1,...,n}\{4,j}) has been
chosen. Note that each of the chosen players P; and P; forms a l-player group, i.e., there is no
communication within these groups. Therefore, the only inputs of a chosen player are (in the first
step) the query, which is always the bit 0, and (in the subsequent steps) the broadcasted messages
mij.

Let M be the set of sequences m;; for all possible instances of the game G, i.e.,

M :={m;;: i,5 €{1,...,n}}.

Clearly, the set M must contain at least one string m;; of length at least logy, |M]. Since the length
of the strings m;; is a lower bound for the group broadcast complexity B(G*, (P, ..., P,)), it suffices
to prove that

logy | M| > log, log, n. (4)

Note that the final output bit of any (deterministic) player P;, when he is chosen, is fully
determined by the sequence m € M of broadcasted messages. Let mi,...,m; be the [ := |M|
elements of M. Furthermore, for each i = 1,...,n, let b(*) be a bitstring of length I where the rth
bit bgl) (for r =1,...,1) is the output bit (or an arbitrary bit, if there is no such output) of P; given
that the sequence of broadcasted messages is m;.

By assumption, the players P,..., P, always win the game G;. This means that for any allowed
i,j € {1,...,n} defining an instance o;; = ({¢}, {5}, {1,...,n}\{¢,5}), there must be a sequence of
broadcasted messages m € M such that the output bits of the chosen players P; and P; are different.

This is equivalent to say that the bitstrings bW, ... 6™ must all be different. Their length
[ = |M]| is thus lower bounded by log, n, from which inequality (4) immediately follows. O



3.4 A Generalized Pseudo-Telepathy Game and a Stronger Separation Result

We will now consider a game GY for which the gap between the classical and the quantum broadcast
complexity is even larger.

For any subset C' C {1,...,n}, C = {c1,...,cx} (where k = |C|), let o¢ be the k + 1-tuple
({er}, - {ek}, {1,...,n}\C}). Furthermore, set

qk:(O,...,O,l) and Wk:{(bl,...,bk,(b): biE{O,l}; b1®---@bk:1}.
k ti k ti
times imes

The n-player game Gj, (for n € N) is then defined by the uniform distribution over all triples
(00, qic), Wiep) with C C {1,...,n} and |C| =2 (mod 4).

Note that this game is very similar to the game G from Section 2: First, k = 4¢ + 2 players (for
some random integer t) are randomly chosen. (The query bit is used to indicate whether the player
belongs to the chosen or the remaining ones.) Each of the chosen players must then generate an
output bit b; such that the parity of all these bits is odd (in particular, for k = 2, the two bits must
be different).

The k chosen players each form a 1-player group, while another group consists of the n — &
remaining players. Therefore, if for instance the remaining players send a hint string b to the
chosen players, this is inter-group communication which has to be included in the group broadcast
complexity. We will show that for players sharing a GHZ state, a hint string of length 1 always suffices
to win G5, while, in the classical setting, the group broadcast complexity is at least % logyn — 2 bits
for any winning strategy.

3.4.1 Classical Analysis

The game G, can always be won classically with [log, n] bits of inter-group communication. To see
this, consider the following strategy: A unique labeling bitstring m; of length [log, n] is assigned to
each player P; (for i = 1,...,n). During the game, the remaining players first communicate within
their group in order to find out the label m, of an arbitrary player P; not belonging to their group
(mg is thus the label of a chosen player), and then broadcast ms. Each of the chosen players P;
compares this message m, with his label m; and then generates his final output bit b; such that
b; = 1 iff m; = m,.” Then, obviously, only player Py outputs 1, i.e., the game is won.

The classical broadcast complexity of Gj, is thus at most [log, n] bits. It turns out that, with any
classical strategy using less than (roughly) one half of this amount of inter-group communication,
there is a nonzero probability to lose the game.

Lemma 3. In order to win the game Gj classically with certainty, at least %loan — 2 bits of
information have to be exchanged between the groups, i.e., BY(Gh) > %loan —2.

Proof. The proof is analog to the proof of Lemma 3. The instances of the game Gj, are parameterized
by subsets C C {1,...,n} with |C| =2 (mod 4). For a fixed set of deterministic players Py, ..., P,,
the set of possible sequences of messages is thus given by

M:={m(C):C C{l,...,n}; |[C|=2 (mod4)},

where m(C) is the sequence of strings (b;);en broadcasted by the players given that the instance
(0¢, qic)» W|c|) has been chosen. Since log, [M| is a lower bound for the group broadcast complexity,
it remains to be proven that

1
log, |M| > 3 logon — 2. (5)

°If k = n, there are no remaining players sending a bitstring to the chosen players. One possibility to overcome this
problem is to consider a slightly different variant of the game, where an additional player is introduced, who always
belongs to the group of remaining players. His only task is to broadcast ms.



Let my,...,m; be the [ := |M| elements of M. Furthermore, define the I-bit strings b(*) (for
i=1,...,n) as in the proof of Lemma 3: The jth bit bg.z) (for j =1,...,1) is the output bit of player
P; given that the sequence of broadcasted messages is m;.

If the players Py, ..., P, win the game Gj with certainty, then, for any allowed set C' defining an
instance (ac,qm, W|C‘), there must be a sequence m € M of broadcasted messages such that the
xor of the output bits of the chosen players P; (i € C) equals 1.

This requirement can again be formulated as a condition on the bitstrings b1, ... b(™): For all
sets C C {1,...,n} with |C] = 2 (mod 4) there must be a r € {1,...,[} such that ), B =1
(mod 2).

Lemma 5 (see appendix) states that the length | = |M| of these bitstrings, which can be con-
sidered as elements of a [-dimensional vector space over GF(2), is lower bounded by /n — 2. Since
[ > 1, this implies inequality (5), which concludes the proof. O

3.4.2 Quantum Analysis

There is a quantum strategy to win Gj which exactly corresponds to the winning strategy for the
game from Section 2. However, the game Gj, allows for more possibilities on how players might be
chosen. Therefore, for the proof of the following lemma, a more general analysis than the one given
in Subsection 2.3 is needed.

Lemma 4. To win the game G, with certainty using a GHZ state |®), only one (classical) bit has
to be exchanged between the groups, i.e., Bg;(g%) <1.

Proof. Let Py,..., P, be n players, each of them controlling a two-dimensional quantum system
Hi,...,Hn, respectively. Furthermore, let {|eg),|e1)} be an orthonormal basis of H; (for all i =
1,...,n) and define the diagonal basis {|fo),|f1)} and the circular basis {|go),|g1)} as in Subsec-
tion 2.3. The GHZ state initially shared by the players is then given by (3).

Each player P; follows the same strategy: If he is among the remaining players (i.e., if he gets
a bit 1 as query input in the first step), he measures his quantum system H; with respect to the
diagonal basis {|fo),|f1)} and sends the result of this measurement to the other players within his
group (i.e., to the other remaining players). One of the remaining players then broadcasts a bit b
depending on whether an even (b = 0) or an odd (b = 1) number of them got the measurement
outcome |f).

On the other hand, if a player P; is among the chosen players (i.e., his first input is 0), he reads
the bit b broadcasted by the group of chosen players and then measures his system H;, depending
on this bit, using either the diagonal basis {|fo), |f1)} (if b = 1) or the circular basis {|go),|g1)} (if
b =0). He then simply outputs the bit indicating the outcome of this measurement.

It has to be shown that for all instances (o, ¢, W) of G, the players Py,..., P, win with certainty.
By the symmetry of the game and the described strategy, the analysis is exactly the same for all
instances. We can thus, without loss of generality, restrict to one instance (for each possible k),
namely (o¢, qp, W) for C = {1,...,k}, i.e., Pp,..., P are the chosen players while Py,1,..., P, are
the remaining ones.

It can easily be verified that the vectors

|fb1>®"'®|fbk>®|fbk+1>®'”®|fbn> ifbk+1®"'@bn =1

Uy, b ) = . B (6)
|gb1> Q- ® |gbk> ® |fbk+1> X & |fbn> ifbp1 @ Db, =0

(for all (by,...,b,) € {0,1}") build an orthonormal basis of H; ® - - - ® H,,. Note that these vectors
are the products of the measurement bases used by the players when following the described strategy,
where by, ..., by are the final output bits of the chosen players and by, ..., b, are the measurement

10



outcomes of the remaining players. The probability that the chosen players P, ..., P, have output
bi, ..., bk, respectively, is thus given by

Dby,...by, = E Dby,....bn

(bk+1 ,,bn)E{O,l}"*k

where
Pby,... by 1= |<‘I’|Ub1,...,bn>|2-

It thus remains to be shown that the probability for the output of the chosen players not being
contained in Wy is zero, i.e.,

bhh®---®b, =0 — Dby, = 0. (7)

Let us first assume that by @& --- ® b, = 1. We then have

n+1

(@lvp,,...0,) =272 ((eol ® - @ (eo] + (1| ® -+ ® (e1])
. (|60> + (_1)b1|61>) R ® (|60) + (_1)b"|61>)
and thus
pbl:'--ybn = 27(,'7"}»1)|]~ + (_1)21:1 b1|2

From the assumption on bg41, ..., by, it follows immediately that for by, ..., by satisfying the left side
of implication (7), the sum in the exponent becomes odd, i.e., the probability py,, 5, is zero.
Assume now that by ®--- ® b, = 0. Then

n+1

(@vpy,...pn) =272 ({0 ® - ® (eo] +(e1] ® - @ (e1])
(leo) + (=1)"ile1)) ® -+ ® (|eo) + (—1)*iler))
® (leo) + (1) +]er)) ® -+ @ (|eo) + (—1)"[e1))

and hence

T I L [
where the second equality follows from k£ = 2 (mod 4). Again from the assumption on bgy1,...,b,
we can conclude that the implication (7) is satisfied. O

4 Conclusion

The classical outcomes of measurements performed on an entangled quantum state can generally
not be explained by local classical randomness. This non-local property of quantum mechanics is
demonstrated by the pseudo-telepathy game proposed in Section 2: A simple task, which obviously
can not be accomplished by separated classical players, is solvable by players sharing quantum
entanglement.

A characterization of the nonlocality of an n-paritite quantum state is given by the amount
of communication needed by n separated classical systems for simulating the outcomes of local
measurements performed on the respective parts of the state. There are clearly several ways to
quantify this communication, each revealing a different aspect of the non-local information contained
in the state. Contrary to the approach of Cleve and Buhrman [8], we consider the information
exchanged between certain groups of systems instead of counting the overall communication. This
leads to an alternative quantification of non-local information and, consequently, to new separation
results. They can not directly be compared with the results based on Yao’s model (as for instance [7]),
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but rather reveal another aspect of the nature of entanglement as well as the gap between quantum
and classical correlation.

The results obtained in Section 3 are formulated in terms of communication complexity with
respect to a certain game. The difference between the amount of communication needed for classical
and quantum players, respectively, to win certain games, directly lead to lower bounds for the
communication needed to simulate quantum states. For instance, the separation stated by Lemma 2
implies that for the classical simulation of two separated quantum systems, sharing a GHZ state
with n — 2 other systems, at least ©(loglogn) bits of additional information is necessary.

It is one of the goals of this paper to shed some light on the nature of quantum entanglement, a
phenomenon which is not yet completely understood. While separation results, as the ones presented
here, can be seen as lower bounds for the amount of non-local information contained in entangled
quantum states, some work has been done to determine the maximal communication being necessary
for an exact simulation of such states by classical systems (see, e.g., [3]). It is however still an open
problem to find the most accurate way to characterize entanglement between quantum systems in
terms of classical communication.
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Appendix

Lemma 5. Let bV, . b be n vectors of a I-dimensional vector space over GF(2). If for all
C C{1,...,1} with |C| =2 (mod 4)
> b0 (8)
ieC

then

1> -2 (9)

Proof. Each element of a d-dimensional vector space over GF(2) can naturally be identified with a
bitstring of length d, and vice versa. In the following, we will thus alternately speak of vectors and
bitstrings, always meaning the same object.

The idea is to append additional bits to the bitstrings b (for s = 1,...,n) in order to obtain
longer bitstrings () and b(). These bits are chosen in such a way that the resulting bitstrings b or
IA)(i), considered as vectors, are linearly independent. This will lead to a lower bound on their length
which finally allows to derive a lower bound on /.

Defining (for alli =1,...,n)

b = 1(]p®
(where || is the concatenation of strings) we have, for any set I C {1,...,n},
Yoo =0 = [I[=0 (mod4). (10)

el

This can be seen as follows: If |I] is odd, the bits in the first position of the strings b() (which are
all equal to 1) will sum up to 1. On the other hand, if |I| = 2 (mod 4), then, by the assumption of
the lemma, the sum ), ; b is again nonzero.

For a given family A of disjoint nonempty subsets of {1,...,n}, let A be the set of elements not
contained in any of these subsets, A := {1,...,n}\ Uaca 4, and set A := AU {A}. Tt is easy to see
that it is always possible to choose a family A in such a way that the following condition is satisfied:
For any nonempty set B with B C A for some A € A

Yol =0 « BedA, (11)

1€B

i.e., the sets A € A contain a minimal number of indices such that the vectors b(*) for i € A are
linearly dependent. Note that, from (10), we have

|A| =0 (mod 4) (12)

for all A € A.

Let A be a family of sets satisfying condition (11). We will distinguish two cases.

First, assume that there is a set A € A such that |A| > /n. Let V be an arbitrary subset of A
with [V| = |A| — 1. Tt follows directly from condition (11) that the vectors b(®) for i € V form a set
of |A| — 1 linearly independent vectors. Consequently, their length [ + 1 must satisfy [ +1 > |A| — 1
which immediately implies (9).

Assume now that A < y/n for all A € A. This immediately implies that |A] > \/n — 1. Set, for
alli € {1,...,n},

b = ¢;]|p®

where ¢; is the bitstring of length n which has a bit 1 at the ith position and zeros at all other
positions. Furthermore, for all A € A, let r4 be an arbitrary element of A. Define (") (for i =
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1,...,n) as the bitstring which is identical to b(®) except that the bits at positions r 4 (for all A € A)
are omitted. Since the strings b have length » + 1 + [, the strings b obviously have length
'=n+1+1—JA<n+l—-yn+2.

If the strings b (for s = 1,...,n) form a set of n linearly independent vectors, then I’ > n, i.e.,

n<n+24+10—+vn

which again implies (9).
It thus remains to be shown that the bitstrings b, ..., b are indeed linearly independent.
Assume by contradiction that there is a nonempty set I C {1,...,n} such that

Y b0 =0, (13)
el
To show that this leads to a contradiction, we will distinguish three cases.

(a) |I| #0 (mod 4): From condition (10) the sum Zze[ b() is nonzero. Since the last n + 1 bits of

b correspond to b, this obviously contradicts equation (13).

(b) |I] =0 (mod 4) and INA # : Let r be an element of the intersection 1N A. By definition, there
is exactly one bitstring b() with ¢ € I having a bit 1 at the rth position, namely b("). Note that
the bit of b at position r corresponds to a bit of b at some position 7’ (in the construction
of b from b(® only bits with an index in sets A with A € A are omitted). Consequently, the
r'th bit of the sum in (13) is 1

(¢c) |I| = 0 (mod 4) and IN A = (): Since I is nonempty, there exists a set A € A such that
INA#0. Assume that [I N A > 1, ie. there are at least two different indices ri and ry in
INA. Consequently, the sum ), ; b has a bit 1 at position 1 and r. By the construction of

the strings b, at least one of these bits corresponds to a bit in the sum in (13) which can thus
not be zero.

It remains to be shown that [T N A| > 1. Using the fact that b(*) 4 5() = 0 (over GF(2)) we have

SR = 3R £ 350 =

1€A/IUI/A i€A i€l

where the last equality follows from A € A and condition (11) as well as from assumption (13).
With condition (10) this implies that

|JA/TUIJ/A| =0 (mod 4). (14)
On the other hand, using (12) and |I| =0 (mod 4),
|A/JTUIJA| = |A|+ |I| -2/ANnI|=-2/ANI| (mod 4).

Together with (14) we conclude that |A N I| must be even and thus, since the set AN is
nonempty, we have |[ANI| > 1.

O
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Abstract — We propose a so called pseudo-telepathy
game for n players demonstrating the non-locality
of quantum information. The simplicity of the
classical analysis of our game contrasts the often
quite involved analysis of previously proposed pseudo-
telepathy games [1]. Moreover, our game allows for
a quantitative characterization of entanglement in
terms of communication complexity.

I. THE GAME

Consider the following game G, involving n > 5 collaborat-
ing players Py, ..., P,. First, two players P; and P; are chosen
randomly in such a way that neither of them knows who the
other one is. (The non-chosen, remaining, n — 2 players can
be allowed to know which pair of players was chosen.)

The remaining players are now allowed to communicate in
order to generate one “hint” bit b which they say out loud (in
particular, P; and P; can hear the bit). The chosen players P;
and P; must then independently (i.e., no communication be-
tween them is allowed) generate a bit b; and b;, respectively.
The game is won simply if b; # b;.

We will show that this game can be won with probability
at most (roughly) 75% classically (if n is large enough), but
with probability 1 (for any value of n) if the players can share
quantum information.

II. CLASSICAL ANALYSIS

Let us first consider a classical setting where the players rely
on arbitrary classical (but no quantum) information which
might have been shared before the start of the game.

Each player has a fixed strategy defining his behavior for
the case he is chosen. While this strategy might in general
be probabilistic, i.e., depend on some randomness, we can,
without loss of generality, assume that this randomness is fixed
before the game starts. This means that by the time the player
is chosen, his strategy is deterministic.

Once a player is chosen, the only information he gets is the
hint bit b. For any given (deterministic) strategy, this bit b
thus completely determines his output. Obviously, there exist
exactly four possible strategies, namely to output 0, 1, b, or b
(where b denotes the complement of b).

If the strategies of the chosen players are the same, they will
clearly output the same bit and the game is lost. (Otherwise, if
their strategies are different and if the remaining players know
these strategies, they can always win.) Finding the minimal
probability of losing the game thus amounts to determining
the minimal probability of the event that two players with the
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Stefan Wolf?
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Université de Montréal
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Canada H3C 3J7
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same strategy (where four strategies are possible) are picked
(out of the set of n players).
For n = 4k + r players (where k, r are integers, 0 < k, and
0 < r < 4), the probability of this event is at least
k k-1 k+1 Kk
n n—1 " n

p(n) = (4—r)

We have for instance p(5) = 1/10, p(8) = 1/7, and p(n) — 1/4
for n — oo.

n—1"

IIT. A WINNING STRATEGY FOR QUANTUM PLAYERS

If the players can not only share classical information, but
are additionally allowed to store a quantum state being gen-
erated and shared before the game starts, they can win the
game with certainty. (Note that, during the game, the players
are only allowed to process the quantum information locally,
i.e., an external observer would not be able to detect that the
players follow a quantum strategy.)

Assume that the n players initially share a so called GHZ
state, %(|0) -++]0) +|1) - -+ |1)) where each of them controls
one qubit. Then, the winning quantum strategy is as follows:
After the two players have been chosen, the remaining players
first measure their qubits with respect to the diagonal basis

{%QO) + 1)), %QO) —|1))}, and determine the number k of
players having the measurement outcome %(|0) —|1). The
parity of k is then announced to the chosen players as hint bit
b,ie, b=k (mod2).

Depending on this hint b, each of the chosen players mea-
sures his subsystem in either the diagonal basis (if b = 1) or
the circular basis { 5 (|0)+i |1)), 75(|0)—i[1))} (if b = 0). His
output is then a bit indicating his measurement result (e.g., 0
for %(|0) + 1)) or %QO) +14]1)), and 1 otherwise).

A straightforward calculation (which is omitted in this ex-
tended abstract) then shows that the probability of the event
that the two chosen players both have the same measurement
outcome is zero, i.e., they will always have different outputs
and thus win the game.

IV. QUANTITATIVE RESULTS
While, for quantum players, communicating only one hint
bit to the chosen players suffices to win the game G, the
number of bits C,, (G2) to be communicated in order to win
C%..(G2) can be shown to be bounded by

C3in(G5) > log,log,n .

This automatically gives a bound for the amount of commu-
nication necessary to classically simulate the classical out-
comes of local measurements on two (arbitrarily chosen) 2-
dimensional subsystems, being in a GHZ state with n — 2
other subsystems (cf. [2]).



An even stronger result is obtained when considering a
slight generalization GJ of the game G, , where not only 2,
but an arbitrary number k of players might be arbitrarily
chosen. It can be shown that in order to win GJ, at least
ce.(G2) > 1log,n — 2 bits have to be communicated by
classical players, while, for quantum players sharing a GHZ
state, one bit still suffices.
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