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1. ABSTRACT 
Present day routers typically employ monolithic 
operating systems which are not easily upgradahle 
and extensible. With the rapid rate of protocol 
development it is becoming increasingly important 
to dynamically upgrade router software in an incre- 
mental fashion. We have designed and implemented 
a high performance, modular, extended integrated 
services router software architecture in the NetBSD 
operating system kernel. This architecture allows 
code modules, called plugins, to be dynamically 
added and configured at run time. One of the novel 
features of our design is the ability to bind different 
plugins to individual flows; this allows for distinct 
plugin implementations to seamlessly coexist in the 
same runtime environment. High performance is 
achieved through a carefully designed modular 
architecture; an innovative packet classification 
algorithm that is both powerful and highly efficient; 
and by caching that exploits the flow-like character- 
istics of Internet traffic. Compared to a monolithic 
best-effort kernel, our implementation requires an 
average increase in packet processing overhead of 
only 8 % , or 500 cycles/2.lms per packet when run- 
ning on a P61233. 

1.1 Keywords 
High performance integrated services routing, modular 
router architecture, router plugins 

2. INTRODUCTION 
New network protocols and extensions to existing protocols 
are being deployed on the Internet. New functionality is 
being added to modern IP routers at an increasingly rapid 
pace. In the past, the main task of a router was to simply 
forward packets based on a destination address lookup. 
Modern routers, however, incorporate several new services: 
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Figure 1. : Best Effort vs 
Extended Integrated Services Router (EISR) 

l Integrated/differentiated Services 
l Enhanced routing functionality (level 3 and level 4 rout- 

ing and switching, QoS routing, multicast) 
l Security algorithms (e.g. to implement virtual private 

networks (VPN)) 

l Enhancements to existing protocols (e.g. Random Early 
Detection (RED)) 

l New core protocols (e.g. 1~~6 [S]) 
Figure 1 contrasts the software architecture of our proposed 
Extended Integrated Services Router (EISR) with that of a 
conventional best-effort router. A typical EISR kernel 
features the following important additional components: a 
packet scheduler, a packet classifier, security mechanisms, 
and QoS-based routingLevel 4 switching. Various 
algorithms and implementations of each component offer 
specific advantages in terms of performance, feature sets, 
and cost. Most of these algorithms undergo a constant 
evolution and are replaced and upgraded frequently. Such 
networking subsystem components are characterized by a 
relatively “fluid” implementation, and should be 
distinguished from the small part of the network subsystem 
code that remains relatively stable. The stable part (called the 
core) is mainly responsible for interacting with the network 
hardware and for demultiplexing packets to specific 
modules. Different implementations of the EISR components 
outside of the core often need to coexist. For example, we 
might want to use one kind of packet scheduling on one 
interface, and a different kind on another. 

In this paper, we propose a software architecture and present 
an implementation which addresses these requirements. The 
specific goals of our framework are: 

l Modularity: Implementation of specific algorithms 
come in the form of modules called plugins’. 
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Extensibility: New plugins can be dynamically loaded 
at run time. 
Flexibility: Instances of plugins can be created, config- 
ured, and bound to specific jlows. Plugins can be all- 
software modules, or they can be software drivers for 
specialized custom hardware. 

Performance: The system should provide for a very 
efficient data path, with no data copying, no context 
switching, and no additional interrupt processing. The 
overhead of modularity should not seriously impact per- 
formance. 

Our proposed framework has been implemented in the 
NetBsn UNIX kernel. This platform was selected because of 
its portability (all major hardware platforms are supported), 
efficiency, and extensive documentation. In addition, we 
found state-of-the-art implementations on this platform for 
1~~6 [13] and packet schedulers [27, 51 that could be 
integrated into our framework. 

We envision several applications for our framework. First, 
our architecture fits very well into the operating system of 
small and mid-sized routers. It is particularly well suited to 
the implementation of modern edge routers that are 
responsible for doing flow classification, and for enforcing 
the configured profiles of differential service flows. This 
kind of enforcement can be done either on a per-application 
flow basis, or on a generalized class-based approach (e.g. 
CBQ [ll]). Our implementation supports both models 
efficiently. 

Our framework is also very well suited to Application Layer 
Gateways (ALGS), and to security devices like Firewalls. In 
both situations, it is very important to be able to quickly and 
efficiently classify packets into flows, and to apply different 
policies to different flows: these are both things that our 
architecture excels at doing. 

Yet another application of our framework is for network 
management applications, which typically need to monitor 
transit traffic at routers in the network, and to gather and 
report various statistics thereof. For such applications, it is 
important to be able to quickly and easily change the kinds 
of statistics being collected, and to do this without incurring 
significant overhead on the data path. 

Finally, while our proposed framework is very useful in 
real-world implementations, its modularity and extensibility 
also make it an invaluable tool for researchers. We plan to 
release all of our code in the public domain and we will 
attempt to incorporate several core portions into the 
standard NetBSD distribution tree. 

A note on our use of the word ‘plugin’ (instead of ‘module’) is in order. 
In the web browser world, a plugin is a software module that is dynami- 
cally linked wtth the browser and is responsible for processing certain 
types of application streams (or flows). In a similar fashion, our router 
plugins are kernel software modules that are dynamically loaded into the 
kernel and are responsible for performing certain specific functions on 
specified network flows. 

The main contributions of our work are: 

l An innovative, modular, extensible, and flexible EISK 
networking subsystem architecture and implementation 
that introduces only 8% more overhead than a best-effort 
kernel. 

l A very fast packet classifier algorithm which provides 
highly competitive upper bounds for classification times. 
With a very large number of filters (in the order of 
50000), it classifies 1~~6 packets in 24 memory accesses, 
and is much faster for smaller numbers of filters. 

l Implementations of plugins for two state-of-the-art 
packet schedulers: Deficit Round Robin (DRR, [23]) for 
fair queuing, and the Hierarchical Fair Service Curves 
(H-FSC, [27]) scheduler for class-based packet schedul- 
ing; Implementation of plugins for IP security [2]. 

There are a few commercial attempts that we are aware of 
which follow similar lines. The latest versions of Cisco’s 
Internet OS (IOS, [6]) claims to fulfill some of the 
requirements, but since it’s a commercial operating system, 
there is no easy access for the research community and these 
claims are not verifiable. Microsoft’s Routing and Remote 
Access Service for Windows NT (RRAS, previously referred 
to as “Steelhead” [ 18, 191) is an attempt to implement router 
functionality under Windows NT. RRAS exports an API and 
allows third party modules to implement routing protocols 
like OSPF and SNMP agents in user space. The API does not 
provide an interface to the routing and forwarding engines, 
and the platform offers no integrated services components. 
A few research projects attempt to achieve some of the goals 
mentioned above [12, 20, 211. Most of them are focused on 
the implementation of modular end-system networking 
subsystems instead of routing architectures. Scout from the 
University of Arizona is a particularly interesting project 
based on the x-kernel that implements an operating system 
targeted at network appliances (including routers). It comes 
with router components implementing simple QoS support. 
Since the whole operating system is implemented from 
scratch, most of the provided functionality is over- 
simplified and does not provide the large feature set that is 
found in mature implementations. We discuss these related 
approaches in more detail in [7]. 

In Section 3, we describe our architecture and explain how it 
achieves modularity, extensibility, and flexibility while 
maintaining high-performance. In Section 4, we describe 
the implementation of a module called the Plugin Control 
Unit (PCU), which is responsible for all control path 
interactions with plugins. Section 5 outlines the 
implementation of the Association Identification Unit (AIU), 
which is used by almost all other components in our design. 
The AIU implements an innovative algorithm for packet 
classification which efficiently maps packets to code 
modules (plugins). In Section 6, we elaborate on example 
plugins (packet schedulers) which we implemented or 
adapted for our environment. Section 7 presents 
performance results from our implementation, and Section 8 
summarizes our ideas. 
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3. OVERALL ARCHITECTURE 
The primary goal of our proposed architecture was to build a 
modular and extensible networking subsystem that 
supported the concept of flows, and the ability to select 
implementations of components based upon flows (in 
addition to simple static configurations). Because the 
deployment of multimedia data sources and applications 
(e.g. real-time audio/video) will produce longer lived packet 
streams with more packets per session than is common in 
today’s environment, an integrated services router 
architecture should support the notion of flows and build 
upon it. In particular, the locality properties of flows should 
be effectively exploited to provide for a highly efficient data 
path. Our plugin framework features: 

l Dynamic loading and unloading of plugins at run time 
into the networking subsystem. Plugins are code mod- 
ules which implement a specific EISR functionality (e.g. 
packet scheduling). NetBSD offers a simple yet powerful 
mechanism which allows modules to be loaded into the 
kernel which is used to load our plugins into the kernel. 
Once a plugin is loaded, it is no different from any other 
kernel code. What is required for our system is a compo- 
nent which glues the individual plugins to the network- 
ing subsystem, and which provides a control-path 
interface used by other kernel components (possibly also 
other plugins) and user space daemons to talk to the 
plugin. In our system, this component is called the 
Plugin Control Unit (PCU). The PCU hides some of the 
implementation specific details from the individual plu- 
gins and allows them to access the system in a simple yet 
flexible fashion. 

l Creation of individual instances of plugins for maximal 
flexibility. An instance is a specific run-time configura- 
tion of an individual plugin. It is often very desirable to 
have multiple instances of one and the same plugin con- 
currently in the kernel. For example, consider packet 
scheduling. A packet scheduler can work with different 
configurations on different network interfaces. State-of- 
the-art packet schedulers are usually hierarchical, with 
possibly different modules working on different levels of 
the scheduling hierarchy. Among the nodes of the same 
level, modules are specifically configured, which means 
that they coexist in our framework as plugin instances. 
In order to provide a simple and unified interface for the 
allocation of multiple instances of one and the same 
plugin, the plugins must respond to a set of standardized 
messages. By standardizing this message set and imple- 
menting it in all plugins, we guarantee interoperability 
among different plugins and provide a simple configura- 
tion interface. 

l Efficient mapping of individual data packets to flows, 
and the ability to bind flows to plugin instances. Sets of 
flows are specified using jilters. For example, a filter 
might match all TCP traffic from the network 129.0.0.0 
to the host 192.94.233.10. Filters can also match individ- 
ual end-to-end application flows. Filters are specified as 
six-tuples: 

<source address, destination address, protocol, source 
port, destination port, incoming interface> 

Any of the fields in the six tuple may be wildcarded. 
Additionally, for network addresses, a prefix mask may 
be used to partially wildcard the corresponding field. For 
instance, for the above example, the filter specification 
would read: <129.*.*.*, 192.94.233.10, TCe *, *, *> 

Clearly, the filter for an end-to-end application flow 
would have all fields (except perhaps the incoming 
interface) fully specified. We will see later in this section 
that a packet matching a particular filter will be passed 
to the plugin instance that has been bound to that filter. 
This will be shown to happen whenever the packet 
reaches a “gate” in the IP stack; a gate can be thought of 
as the entry point for a plugin. 

l Overall high performance. High performance is guaran- 
teed only in part through a fully kernel space implemen- 
tation which prevents costly context switches. We 
identified two other critical properties which, when com- 
bined, guarantee high performance even in a highly 
modular environment: the flow-like nature of most inter- 
net traffic, and the ability to classify packets into flows 
quickly and efficiently. As we show below, the filter 
lookup to determine the right plugin instance to which a 
packet should be passed happens only for the first packet 
of a burst. Subsequent packets get this information from 
a fast flow cache which temporarily stores the informa- 
tion gathered by processing the first packet. The filter 
lookup itself is efficiently implemented using a Directed 
Acyclic Graph (DAG). We elaborate on these techniques 
later in this section, and also in section 5. 

l Easy integration with custom hardware for high perfor- 
mance processing of specialized tasks. This is enabled 
by plugins which are software drivers for hardware that 
implements the desired functionality. For example, a 
plugin could control hardware engines for tasks such as 
packet classification or encryption. 

In order to describe our framework, we first look at the 
different components and how they interact in the control 
path. In the Section 3.2, we will look at the data path, and 
how individual packets are processed by our architecture. 

3.1 The Control Path 
Figure 2 shows the architecture of our system and the 
control communication between different components. A 
description of the different components follows: 

. IPv4/IPv6 core: The IPv4/1pv6 core consists of a 
stream-lined IPV~/IPV~ implementation which contains 
the (few) components required for packet processing 
which do not come in the form of dynamically loadable 
modules. These are mainly functions that interact with 
network devices. The core is also responsible for demul- 
tiplexing individual packets to plugins as we will show 
in the next section. There are no plugin related control 
path interactions with the IP core. 
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involves the following steps: 

Figure 2. : System Architecture and Control Path 

l Plugins: Figure 2 shows four different types of plugins - 
plugins implementing IPVG options, plugins for packet 
scheduling, plugins to calculate the best-matching prefix 
(BMP, used for packet classification and routing), and 
plugins for IP security. Other plugin types are also possi- 
ble: e.g., a routing plugin, a statistics gathering plugin 
for network management applications, a plugin for con- 
gestion control (RED), a plugin monitoring TCP conges- 
tion backoff behaviour, a tirewall plugin. Note that all 
plugins come in the form of dynamically loadable kernel 

l Plugin Control Unit (PCU): The PCXJ manages plugins, 
and is responsible for forwarding messages to individual 
plugins from other kernel components, as well as from 
user space programs (using library calls). 

l Association Identification Unit: The Association Iden- 
tification Unit (AIU) implements a packet classifier and 
builds the glue between the flows and plugin instances. 
The operation of the AKJ will become clear when we 
describe the data path in the next subsection. 

l Plugin Manager: The Plugin Manager is a user space 
utility used to configure the system. It is a simple appli- 
cation which takes arguments from the command line 
and translates them into calls to the user-space Router 
Pfugin Library which we provide with our system. This 
library implements the function calls needed to config- 
ure all kernel level components. In most cases, the 
plugin manager is invoked from a configuration script 
during system initialization, but it can also be used to 
manually issue commands to various plugins. We show 
an example of how the Plugin Manager is used in 
Section 6. 

l Daemons: The RSVP [31], SSP [I] (a simplified version 
of RSVP), and route daemon are linked against the Router 
Plugin Library to perform their respective tasks. We 
implemented an SSP daemon for our system, and are cur- 
rently in the process of porting an RSVP implementation. 

After a reboot, the system has to be configured before it is 
ready to receive and forward data packets. Configuration 
involves the selection of a set of plugins. Since a selection 
does not necessarily apply to all packets traversing the 
router, a definition of the set of packets which should be 
processed by each individual plugin instance is required. 
This configuration can be done either by a system 
administrator, or by executing a script. Configuration 

Loading a plugin: Using the modload command, which 
is part of the NetBSD distribution, plugins are loaded into 
the kernel. On loading, they register themselves with the 
PCU by providing a callback function. This function is 
used to send messages to the plugin. There are messages 
for creating and freeing instances of the plugin and for 
binding plugin instances to flows. Also, plugin develop- 
ers can define an arbitrary number of plugin specific 
messages. Once the callback function for a plugin has 
been registered, the PCU can forward these configuration 
messages to the plugin. 

Creating an instance of a plugin: Using the Plugin 
Manager application, configuration messages can be 
sent to specified plugins. Typically, these messages ask 
the plugin to create an instance of itself. In case of a 
packet scheduling plugin for example, the configuration 
information could include the network interface the 
plugin should work on. 
Creating filters: Once a plugin has been configured and 
an instance has been created, it is ready to be used. What 
has to be defined next is the set of datagrams which 
should be passed to the instance for processing. This is 
done by binding one or more flows to the plugin 
instance. To specify the set of flows that are supposed to 
be handled by a particular plugin instance, the Plugin 
Manager or one of the user space daemons (RSVP or SSP) 
can create filters through calls to the AIU. Recall (from 
earlier in this section) that a filter is a specification for 
the set of flows it matches. 
Binding flows to instances: Next, the binding between 
filters and plugin instances must be established. Each fil- 
ter in the AIU is associated with a pointer to a plugin 
instance; this pointer is set by making another call to the 
AIU to do the binding. 

Now the system is ready to process data packets. We will 
show in the next subsection how data packets are matched 
against filters and how they get passed to the appropriate 
instances. 

3.2 The Data Path 
Data packets in our system are passed to instances of 
plugins which implement the specific functions for 
processing the packets. Since data path mechanisms are 
applied to every single packet, it is very important to 
optimize their performance. Given a packet, our architecture 
should be able to quickly and efficiently discover the set of 
instances that will act on the packet. 

The data path interactions are shown in Figure 3.Before we 
can explain the sequence of actions, we have to introduce 
the notion of a gate. 

A gate is a point in the IP core where the flow of execution 
branches off to an instance of a plugin. From an 
implementation point of view, gates are simple macros 
which encapsulate function calls to the AIU that will return 
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Figure 3. : System Architecture and Data Path 

the correct plugin instance which is to be used for 
processing the packet. In many cases, these macros can 
avoid a function call to the AIU altogether, thereby 
permitting a more efficient implementation. Gates are 
placed wherever interactions with plugins need to take 
place. For example, sometimes after a packet is received by 
the hardware, IP security processing has to be done if the 
system is configured as entry point into a virtual private 
network. In our system, IP security functions are 
modularized and come in the form of plugins. A gate is 
inserted into the IP core code in place of the traditional call 
to the kernel function responsible for 1~~6 security 
processing. In our current implementation, we use gates for 
1~~6 option processing, IP security, packet scheduling, and 
for the packet filter’s best-matching prefix algorithm. 

To follow the various data path interactions, it is important 
to get a basic understanding of the operation of the AIU. The 
AIU is responsible for maintaining the binding between 
flows and plugin instances. It makes use of a special data 
structure called a flow table to cache flows. Flow tables 
allow for very fast lookup times for arriving packets that 
belong to cached flows. 

In the AIU, all flows start out being uncached (i.e., they do 
not have an entry in the flow table). If an incoming packet 
belongs to an uncached flow, its lookup in the flow table 
data structure will fail (i.e., there is a cache miss). In this 
case, the packet needs to be looked up in a different data 
structure that we call a filter table. Filter tables store the 
bindings between filters and plugins for each gate. The filter 
table lookup algorithm finds the most specific matching 
filter (described later) that has been installed in the table, 
and returns the corresponding plugin instance. Usually, filter 
table lookups are much slower than flow table lookups. An 
entry for a flow in the flow table serves as a fast cache for 
future lookups of packets belonging to that flow. Each flow 
table entry stores pointers to the appropriate plugins for all 
gates that can be encountered by packets belonging to the 
corresponding flow. The processing of the first packet of a 
new flow with II gates involves II filter table lookups to 
create a single entry in the flow table for the new flow. 

If a cached flow remains idle (i.e., no new packets are 
received) for an extended period, its cached entry in the flow 
table data structure may be removed (or replaced by a 
different flow). In this case, if the flow becomes active 

again, the first packet that is received would again result in a 
cache miss, which would again cause a new cache entry to 
be created in the flow table so that subsequent packets can 
benefit from faster lookup times. 

Section 5.1 describes a very fast filter table lookup 
implementation based on directed acyclic graphs (DAB). 
Section 5.2 describes our flow table implementation, which 
is based on hashing. 

As an example, consider the steps involved in processing an 
IPV~ packet (see numbers l-6 in Figure 3). Uncached flow 
processing involves the following sequence of events and 
actions: 

0. Packet arrival: When a packet arrives, it gets passed to 
the IP core by the network hardware. As it makes its 
way through the core, it may encounter multiple gates. 

1. Encountering a gate: Assume that the packet has 
reached the gate where IP security processing will be 
handled. The task of this gate is to find the plugin 
instance which is responsible for applying security pro- 
cessing (authentication and/or encryption) to the packet. 

2. Discovering the right instance: The gate makes a call 
to the AIU. The parameters of the call are a pointer to the 
packet and an identification of the gate issuing the call. 
In our case, we would identify the IP security gate as the 
caller. 

3. Packet classification: The AIU first does a lookup in the 
flow table, and finds that there is no cached entry avail- 
able for the flow. Consequently, it performs a lookup in 
the filter table corresponding to the IP security gate. The 
resulting plugin instance pointer is returned to the call- 
ing gate (“SEC2” in Figure 3). Note that since this 
packet classification step performed by the AIU is the 
most expensive step in the whole cycle, an efficient 
packet classification scheme and implementation is 
important. 

4. Caching of the instance pointer: Before the AIU 
returns the instance pointer to the gate, it stores the 
pointer in the flow table. Note that entries in the flow 
table are identified by the same six tuple used to specify 
filters, but without masks or wildcards (all fields have 
fully specified values). In other words, a flow table 
entry unambiguously identifies a particular flow. In our 
example, the pointer to the SEC2 plugin is stored in the 
row of the flow table which corresponds to our packet’s 
flow. 

5. Returning the instance pointer: The instance pointer 
found is returned to the gate. 

6. Calling the instance: The gate calls the plugin 
instance, passing the packet as an argument. 

7. Repeating the cycle: When the call returns, the IP stack 
continues processing the packet, until it encounters 
another gate, in which case the same cycle repeats. 

This cycle is executed only for the first packet arriving on an 
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uncached flow. Subsequent packets follow a faster path 
because of the cached entry in the flow table. Note that in 
our system, we have created optimized implementations of 
both the flow and filter tables, allowing for high 
performance on both the cached and uncached paths. These 
implementations are described in Section 5. 

Cached flow processing involves the following sequence: 

l Processing at the first gate: When a packet from a 
cached flow encounters the first gate, the AIU is called to 
request the plugin instance. This time, the pointer to the 
instance requested is already in the flow table. The flow 
table is looked up efficiently, and the plugin instance 
pointer corresponding to the calling gate is returned. No 
filter table lookups are required. 

l Associating the packet with a flow index: Together 
with the instance requested, the AIU returns a pointer to 
the row in the flow table where the information associ- 
ated with the flow is stored. This pointer is called the 
flow index (HX), and is stored in the packet’s mbuf’. The 
instance is then called to process the packet, following 
which the IP stack passes the packet on to the next gate. 

l Processing at subsequent gates: Once the packet has 
made its way past the first gate, the AIU does not have to 
be called upon to classify the packets at the remaining 
gates. Macros implementing a gate can retrieve the 
instance pointers cached in the flow table by accessing 
the FIX stored in the packet. This allows us to pass pack- 
ets to the appropriate instances in a very efficient manner 
using an indirect function call instead of a “hardwired” 
function call. We show in section 7 that this does not 
imply significant performance penalties. 

Our architecture implements a highly modular system with 
minimal performance overhead. Our architecture is scalable 
to a very large number of gates since the number of gates 
matters only for the first packet arriving on a (uncached) 
flow. But even for the first packet, fast retrieval of the 
instance is possible with the DAG based packet classification 
algorithm that is used to implement the filter tables in our 
system (see Section 5). 

4. PLUGINS AND THE PLUGIN CONTROL 
UNIT (PCU) 
Depending on the type of network software component that 
is implemented by a plugin, it can be very simple (e.g., a 
dozen lines of code for an IP option plugin) or very complex 
(e.g., a state-of-the-art packet scheduler). Each plugin in our 
framework is identified by a 32 bit plugin code. The upper 
16 bits of the code identify the plugin type. The plugin type 
refers to the specific network software component it 
implements; thus, there is a direct correspondence between 
a gate in our architecture and the plugin type. Whenever a 
packet enters a gate, it will be passed to a registered plugin 
of the appropriate type. There can potentially be multiple 

’ The mbuf is a data structure that is used to store packets and packet related 
information efficiently in BSD derived operating system kernels. 

plugins of the same type that have been registered identified 
by the lower 16 bits of the plugin code; in this case, flow 
filters that have been installed for the corresponding plugin 
type are used to pick the right plugin to which the packet 
should be passed. 

Our implementation currently supports four types of 
plugins, corresponding to different network functions: IP 
options, IP security, Packet Scheduling, and Longest-prefix 
Matching (used as part of the packet classifier that is present 
in the AIU). In the future, we plan to also add support for a 
Routing plugin, which would allow routing table lookups to 
be based on the flow classification that is performed by the 
AIU. Other plugins that are envisioned include a plugin for 
statistics gathering (useful for network monitoring/ 
management), a plugin for congestion control mechanisms 
(e.g., RED), a plugin monitoring TCP congestion backoff 
behaviour, and a plugin for firewall functions. Doubtless, 
additional plugin types will be introduced by third parties 
once we have released our code into the public domain. We 
will discuss the implementation of two example plugins in 
Section 6. 

Plugins must fulfill two important requirements: they have 
to register a callback function with the PCU when they are 
loaded into the kernel, and that callback function must reply 
to a set of messages. As mentioned earlier, these messages 
fall into two categories: standardized messages, and plugin- 
specific messages. The set of standardized messages 
include: 

create-instance: Creates an instance of a plugin. This 
results in the allocation of a data structure that will be 
used to store configuration and run-time information for 
that instance. A function to handle a data packet (the 
main packet processing function which is called at the 
gate) must be specified and functions which are called 
by the AIU on removal of an entry in the flow or filter 
table can optionally be specified. 
free-instance: Removes all instance specific data struc- 
tures. A freed instance can no longer be used by the ker- 
nel and all references to it are removed from the flow 
table and the filter table. 
register-instance: Registers a plugin instance with the 
AIU, and binds that instance to a filter that has to be sup- 
plied as a parameter. The same instance may be regis- 
tered multiple times with the AIU with different filter 
specifications. This message would result in a call to a 
registration function that is published by the AIU. 

deregister-instance: Removes the binding between a 
specified filter in the AIU and the plugin instance. 

The PCU itself is a very simple component (200 lines of C 
code) managing a table for each plugin type to store the 
plugin’s names and callback functions. Once loaded into the 
kernel, plugins register their callback function through a 
function call to the PCU. All control path communication to 
the plugins goes through the PCU. Usually, such messages 
come from user space, either from the Plugin Manager or 
from one of the daemons using a library call. The PCU is 
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responsible for dispatching these messages to the target 
plugin, and for handling exceptions. We implemented a 
dedicated socket type for all plugin related user space 
communication with the kernel, which is similar to the 
routing socket that is used by routed to communicate with 
the routing engine in a BSD-based kernel. 

5. THE ASSOCIATION IDENTIFICATION 
UNIT (AIU) 
The Association Identification Unit (AIU) is the most 
important component in our proposed framework. It 
implements a packet classifier, fast flow detection, and 
provides the binding between plugin instances and filters. 
To do so, it manages two main data structures: filter tables 
and a flow table. In Section 3.2, we described how flow and 
filter tables are used; in this section, we will describe their 
implementations. 

5.1 Filter Table Implementation Using DAGs 
Filter tables are used to classify packets belonging to 
uncached flows. They are usually invoked only for the first 
packet of a flow. Nonetheless, many flows may be very 
short-lived (just one or a few packets), so it is important to 
have an efficient filter table implementation. 

Several generic packet filtering algorithms have been 
proposed in the literature 12, 10, 201. These algorithms are 
very powerful and flexible when they are used to look into 
arbitrary packet fields. They usually come with a ‘language’ 
which allows for the specification of filters in terms of 
individual bytes in the packet header, and the values they 
should be checked against. They are complex both in terms 
of theoretical background as well as in terms of code size 
(typically several 1000 lines of C code). To specify a simple 
filter to match a given TCP connection, half a page of filter 
specification written in the filter’s language might be 
required (see [2] for an example of a TCP filter 
specification). Besides complexity, all except DPF [lo] 
typically provide performance which is worse than that of 
tailor-made packet classifiers optimized for a certain fixed 
pattern of packet header. 

Furthermore, these existing packet filtering algorithms 
either do not support or cannot efficiently match on partially 
(arbitrary number of bits) wildcarded fields, and therefore 
cannot be used for efficient detection of best matching 
prefixes on addresses. This was an important requirement in 
our EISR framework. 

Unlike generic packet filters that are optimized to search 
based on arbitrary bytes (specified by the user) in a packet, 
our filter table implementation targets only the Internet 
protocol stack, and requires packets to be classified based 
upon the same five packet header fields and the interface on 
which the packet was received. Our goal was therefore to 
find a fast lookup algorithm for matching the six-tuple 
<source address, destination address, protocol, source port, 
destination port, incoming interface> in a packet against a 
possibly large set of filters (several of which may include 
address fields that are partially wildcarded, requiring a 

longest prefix match). 

Note that since there is one filter table for every gate in our 
system, usually multiple lookups (in different filter tables) 
are necessary for each packet that is received on an 
uncached flow. Why is it that we don’t have a single filter 
table that applies for all network functions? The answer is 
that the router administrator may have very different sets of 
policies for different networking components. For example, 
the set of filters that are specified for one function (e.g. 
packet scheduling for QoS) will usually be quite different 
from the set of filters that are installed for security 
applications (e.g., firewalls). While it is theoretically 
possible to merge all filter tables into a single global filter 
table (by merging the different filter specifications and 
creating new filters whenever there is an overlap), such an 
implementation is practically infeasible because the space 
requirements for the global table can, even with very few 
installed filters, increase very quickly (exponentially) to 
unacceptable levels. 

Note that the property of requiring multiple packet 
classification steps (filter table lookups) is not unique to our 
system. Every common integrated services router does at 
least two filter lookups: one for packet scheduling, and one 
for routing. Routing in that sense is packet classification 
with only one field (destination address) in the six-tuple for 
a filter specified, and all the other fields set to wildcards. A 
more generalized approach to routing would involve looking 
not just at the destination address, but also at other fields in 
the packet; this kind of extended routing functionality has 
come to be known as L4 switching. 

5.1.1 Directed Acyclic Graph (DAG) Implementation 
Our implementation of filter tables makes use of a directed 
acyclic graph (DAG) to find the best matching filter. The 
easiest way to explain the algorithm is to use an example. 
For simplicity, our example assumes filters with only three 
header fields in place of six. It should be noted that this 
scheme can work with an arbitrary (but constant) number of 
filter fields. 

# Source Address Destination Protocol 
Address 

1 129.* 192.94.233.10 TCP 
2 128.252.153.1 128.252.153.7 UDP 
3 128.252.153.1 128.252.153.7 TCP 
4 128.252.153.* * UDP 

Table 1: Sample Filters 

We consider a filter table containing four filters (see Table 
1); the first field in each filter corresponds to the source 
address, the second field to the destination address, and the 
third field to the protocol. The first filter matches all TCP 
traffic from the network 129.0.0.0 to the host 192.94.233.10. 
The second and the third filters match all UDP/TCP traffic 
from host 128.252.153.1 to host 128.252.153.7. And the 
fourth filter matches all UDP traffic from network 
128.252.153.0. It is easy to see that filter 2 is a proper subset 
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of filter 4; we say that filter 2 is more specific than 
Also note that filters 1 and 4 are disjoint. 

Figure 4. : DAG 

Figure 4 shows the corresponding DAG. To match a triple 

filter 4. 

~128.252.153.1, 128.252.154.7, UDP> corresponding to an 
incoming packet, the triple’s first field, the source address of 
the packet (128.252.153.1) is subjected to a longest prefix 
match against the three prefixes present at level 1 of the DAG 
(i.e., 129.*, 128.252.153.1, and 128.252.153.*). The most 
specific match is clearly (128.252.153.1) and therefore the 
edge to node ‘c’ of the DAG is followed. Next, the second 
field, the packet’s destination address, undergoes a similar 
longest prefix match against prefixes present at level 2 of the 
DAG on edges leading out of node ‘c’. Since there is only 
one such prefix (128.252.154.7), and it matches our input 
value, the search continues to node ‘f’. On the next level, the 
match function is a simple equality check on the protocol 
field from the packet. Since there is a matching outgoing 
edge for ‘UDP', the filter lookup procedure terminates, 
returning filter 2 as the best matching filter. 

Note that the matching function used at each level of the 
DAG can be different, and is based on the desired lookup 
method for the corresponding field type. For example, for IP 
address fields, a match based on the longest prefix match is 
appropriate. For port numbers, matching can be done on 
ranges, with the possibility of having the single wildcard 
‘*‘. For the protocol and incoming interface fields, an 
appropriate matching function would be a simple exact 
match (equality) with the possibility of a wildcard match 
(‘*‘). The matching function itself can be independently 
configured for each level of the DAG, and is implemented as 
a plugin in our framework. For IP address matching, we 
implemented two such plugins: one is based on the slower 
but freely available PATRICIA algorithm, and the second is 
based on the patented binary search on prefix length [30] 
algorithm. For the other levels, we use a default plugin 
provided as part of our kernel, which performs the simple 
equality checks mentioned above. 

Note that the leaf nodes of a DAG correspond to the installed 
filters, and therefore contain all information associated with 
filters. These filter records contain, in addition to a pointer 
to the correct plugin instance, an opaque pointer that can be 
tilled in by the plugin to point to some private data. This can 
be used by plugins to store plugin specific (hard) state that is 
associated with installed filters. 

5.1.2 Optimizations 
Serveral optimizations can be applied to the DAG scheme. 

So far, we showed only one DAG, which implements a single 
filter table. As mentioned earlier, several filter table lookups 
may be necessary for each packet, one at each gate that is 
encountered by the packet along its data path. Often, it may 
be the case that the same or similar filters are installed in 
two or more filter tables. In such cases, it is possible to 
exploit the information that has been gleaned from a lookup 
in one filter table to speed up the lookup for the same packet 
in the next and subsequent filter tables. This can be 
implemented by having inter-DAG pointers that lead from 
leaf nodes of one DAG to intermediate or leaf nodes in the 
next DAG. Another optimization to the DAG scheme is to 
collapse multiple nodes into a single node; this can be done 
when multiple wildcarded edges succeed each other without 
any branching at intermediate nodes. Due to space 
limitations, descriptions of these and other optimizations are 
not included here. We have also omitted a discussion of 
filter ambiguities and their resolution. The interested reader 
is referred to [7] for more details. 

Our DAG-based lookup data structure is an example of a 
more general data structure which we call set-pruning tries. 
Cecilia Tries [29] are another example of set-pruning tries. 

The DA&based algorithm is simple and easy to implement 
(our implementation requires approximately 800 lines of C 
code), and it is much faster than the ‘typical’ filter 
algorithms used in existing implementations [ 17, 221. While 
most of these existing techniques require O(n) time, n being 
the number of filters, our solution when used with a state-of- 
the-art best matching prefix algorithm (e.g., controlled 
prefix expansion [25]), is more or less independent of the 
number of filters. If we were to characterize the 
performance of our DAG approach, it would be O(f>, where f 
is the number of fields in a filter specification. Since any 
packet classifier has to look at least once at each field in the 
packet (except when the set of filters is trivial, e.g. all 
wildcards), we argue that our scheme is theoretically 
optimal in speed. From a practical standpoint, our current 
implementation does not exploit hardware properties such 
as the machine’s cache subsystem architecture or main 
memory quirks to improve performance. Also, if there are 
many ambiguous filters (see [7]), the memory requirements 
of our algorithm can be excessive. More advanced 
techniques such as grid-of-tries [26] can provide better 
memory utilization without sacrificing performance, but 
work only in the special case of two-dimensional filters. It is 
important to note that because of the modular character of 
our implementation, we can easily replace our DAG-based 
classifier with a new classifier plugin when better 
approaches become available. 

In this section, we have attempted to provide an overview of 
the DAG based packet classification algorithm. A description 
of the implementation details are beyond the scope of this 
paper. Section 7 provides some performance results from 
our current implementation of the DA&based packet 
classifier. 
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5.2 Flow Table Implementation Using Hashing 
The flow table is used to cache flow information for 
individual end-to-end flows. In other words, each entry in 
the flow table corresponds to a flow with a fully specified 
filter (one that contains no wildcards). Since there is no 
wildcarding, hashing can be used to implement flow table 
Iookups eft%ziently. 

Out implementation of the flow table uses the five tuple of 
header fields <source address, destination address, 
protocol, source port, destination port> from the packet to 
calculate the hash index. The code that is used for this 
calculation has been kept very simple to improve 
performance. It is executed in 17 processor cycles on a 
Pentium, and is described in Section 5. Hash collisions are 
resolved by storing all entries in the same hash bucket on a 
singly linked list. 

The array for the hash table is allocated at system boot time. 
Its size is dependent upon the environment in which the 
router is used (LAN vs. regional vs. backbone router); the 
default value used in our kernel is 32768. 

Each flow record in the hash table includes space for: 

0. The six tuple of the corresponding filter 
1. A pair of pointers for each gate that is implemented in 

the core. One pointer points to the plugin instance that 
has been bound to the flow. The second points to pri- 
vate data for that plugin instance; it is used by the plu- 
gins to store per-flow “soft” state. This is used, for 
example, by the DRR plugin (Section 6.1) to store a 
pointer to a queue of packets for each active flow. 

2. A pointer to the filter record from which this flow was 
derived. 

3. A pointer which is used to link the record onto either a 
free list or onto the linked list for a hash bucket. 

4. A small number of flow records is allocated at system 
boot time and linked into a free list (default is 1024). 
More records are added as the need arises, with the 
number of allocated records increasing exponentially 
(e.g. 1024, 2048, 4096, . ..> to adapt to the environment 
as fast as possible. The system can be configured to stop 
allocating new flow records after a given maximum 
number of records have been allocated. Once this point 
has been reached, the oldest flow records are recycled 
(i.e., the old entries in the cache are replaced with new 
ones). 

Performance results from our flow table implementation are 
presented in Section 7. 

6. EXAMPLE OF A PLUGIN 
In this section we will look at an example plugin for packet 
scheduling, in order to give the reader a better feel for how 
plugins interact with our architecture and how they are 
implemented. 

We implemented two packet scheduling plugins: the first is 
a port of Carnegie Mellon University’s (CMU) Hierarchical 

Fair Service Curve (H-FSC, [27]) algorithm, and the second 
is our own implementation of a simple weighted Deficit 
Round Robin (DRR, [23]) plugin. These two plugins are 
complementary in the sense that DRR is particularly useful 
to implement fair queuing among best-effort flows, whereas 
H-FSC implements hierarchical scheduling similar to Class 
Based Queuing (CBQ, [ll]) with several advantages over 
CBQ. We believe that H-FSC represents the state-of-the-art in 
packet scheduling. One of its main advantages is the 
decoupling of delay and bandwidth allocation, which is very 
useful if both real-time and hierarchical link-sharing 
services are required concurrently. In the current 
implementation, packet scheduling plugin instances are 
chosen per interface. We plan to implement a Hierarchical 
Scheduling Framework (HSF) which will allow different 
instances of packet scheduling plugins to be placed at 
individual nodes in the scheduling hierarchy. For example, 
this will allow us to combine both the H-FSC and the DRR 
scheduling schemes, where DRR could be used to do fair 
queuing for all flows ending in the same H-FSC leaf node. 
Note that in its current implementation, H-FSC uses FIFO 
queueing for all flows matching the same leaf node, which 
may result in unfair service to different flows. The H-FSC 
algorithm is well documented in [27] and our results are 
consistent with that paper. We will not discuss our port in 
more detail in this paper. 

6.1 The Weighted DRR Plugin 
The Deficit Round Robin (DRR, [23]) algorithm is a very 
simple yet powerful packet scheduling scheme which 
provides fair link bandwidth distribution among different 
flows. The original implementation comes from the WFQ 
module found in the ALTQ [5] software distribution. The 
ALTQ WFQ modules implement fair queueing for a limited 
number of flows, which it distributes over a fixed number of 
queues. ALTQ came with a basic packet classifier which 
mapped flows to these queues by hashing on fields in the 
packet header. Since our architecture already offers 
mechanisms to store per-flow information in the flow table 
records, it was straightforward to add a queue per flow 
which guarantees perfectly fair queuing for all flows. In 
order to allow bandwidth reservations, we have 
implemented a weighted form of DRR which assigns weights 
to queues. These weights are fixed for all best effort flows 
and dynamically recalculated for reserved flows if a new 
reserved flow is added to the system. Since packet 
classification is already done very efficiently by the AIU, the 
actual scheduler plugin is very simple (less than 600 lines of 
C code). It turned out to be extremely useful for 
demonstrations of the link-sharing capabilities of our 
architecture. 

Shown below are the commands necessary to load and 
configure the DRR plugin; this will give the reader a feel for 
the simplicity and elegance with which plugins can be put 
into operation. Note that these commands can be executed at 
any time, even when network traffic is transiting through the 
system. pmgr is our Plugin Manager program, and modload 
is the NetBsD command that is used to load kernel modules. 



5.2 Flow Table Implementation Using Hashing 
The flow table is used to cache flow information for 
individual end-to-end flows. In other words, each entry in 
the flow table corresponds to a flow with a fully specified 
filter (one that contains no wildcards). Since there is no 
wildcarding, hashing can be used to implement flow table 
lookups efficiently. 

Out implementation of the flow table uses the five tuple of 
header fields <source address, destination address, 
protocol, source port, destination port> from the packet to 
calculate the hash index. The code that is used for this 
calculation has been kept very simple to improve 
performance. It is executed in 17 processor cycles on a 
Pentium, and is described in Section 5. Hash collisions are 
resolved by storing all entries in the same hash bucket on a 
singly linked list. 

The array for the hash table is allocated at system boot time. 
Its size is dependent upon the environment in which the 
router is used (LAN vs. regional vs. backbone router); the 
default value used in our kernel is 32768. 

Each flow record in the hash table includes space for: 

0. The six tuple of the corresponding filter 
1. A pair of pointers for each gate that is implemented in 

the core. One pointer points to the plugin instance that 
has been bound to the flow. The second points to pri- 
vate data for that plugin instance; it is used by the plu- 
gins to store per-flow “soft” state. This is used, for 
example, by the DRR plugin (Section 6.1) to store a 
pointer to a queue of packets for each active flow. 

2. A pointer to the filter record from which this flow was 
derived. 

3. A pointer which is used to link the record onto either a 
free list or onto the linked list for a hash bucket. 

4. A small number of flow records is allocated at system 
boot time and linked into a free list (default is 1024). 
More records are added as the need arises, with the 
number of allocated records increasing exponentially 
(e.g. 1024, 2048, 4096, ..,) to adapt to the environment 
as fast as possible. The system can be configured to stop 
allocating new flow records after a given maximum 
number of records have been allocated. Once this point 
has been reached, the oldest flow records are recycled 
(i.e., the old entries in the cache are replaced with new 
ones). 

Performance results from our flow table implementation are 
presented in Section 7. 

6. EXAMPLE OF A PLUGIN 
In this section we will look at an example plugin for packet 
scheduling, in order to give the reader a better feel for how 
plugins interact with our architecture and how they are 
implemented. 

We implemented two packet scheduling plugins: the first is 
a port of Carnegie Mellon University’s (CMU) Hierarchical 

Fair Service Curve (H-FSC, [27]) algorithm, and the second 
is our own implementation of a simple weighted Deficit 
Round Robin (DRR, [23]) plugin. These two plugins are 
complementary in the sense that DRR is particularly useful 
to implement fair queuing among best-effort f-lows, whereas 
H-FSC implements hierarchical scheduling similar to Class 
Based Queuing (CBQ, [ll]) with several advantages over 
CBQ. We believe that H-FSC represents the state-of-the-art in 
packet scheduling. One of its main advantages is the 
decoupling of delay and bandwidth allocation, which is very 
useful if both real-time and hierarchical link-sharing 
services are required concurrently. In the current 
implementation, packet scheduling plugin instances are 
chosen per interface. We plan to implement a Hierarchical 
Scheduling Framework (HSF) which will allow different 
instances of packet scheduling plugins to be placed at 
individual nodes in the scheduling hierarchy. For example, 
this will allow us to combine both the H-FSC and the DRR 
scheduling schemes, where DRR could be used to do fair 
queuing for all flows ending in the same H-FSC leaf node. 
Note that in its current implementation, H-FSC uses FIFO 
queueing for all flows matching the same leaf node, which 
may result in unfair service to different flows. The H-FSC 
algorithm is well documented in [27] and our results are 
consistent with that paper. We will not discuss our port in 
more detail in this paper. 

6.1 The Weighted DRR Plugin 
The Deficit Round Robin (DRR, [23]) algorithm is a very 
simple yet powerful packet scheduling scheme which 
provides fair link bandwidth distribution among different 
flows. The original implementation comes from the WFQ 
module found in the ALTQ [5] software distribution. The 
ALTQ WFQ modules implement fair queueing for a limited 
number of flows, which it distributes over a fixed number of 
queues. ALTQ came with a basic packet classifier which 
mapped flows to these queues by hashing on fields in the 
packet header. Since our architecture already offers 
mechanisms to store per-flow information in the flow table 
records, it was straightforward to add a queue per flow 
which guarantees perfectly fair queuing for all flows. In 
order to allow bandwidth reservations, we have 
implemented a weighted form of DRR which assigns weights 
to queues. These weights are fixed for all best effort flows 
and dynamically recalculated for reserved flows if a new 
reserved flow is added to the system. Since packet 
classification is already done very efficiently by the AIU, the 
actual scheduler plugin is very simple (less than 600 lines of 
C code). It turned out to be extremely useful for 
demonstrations of the link-sharing capabilities of our 
architecture. 

Shown below are the commands necessary to load and 
configure the DRR plugin; this will give the reader a feel for 
the simplicity and elegance with which plugins can be put 
into operation. Note that these commands can be executed at 
any time, even when network traffic is transiting through the 
system. pmgr is our Plugin Manager program, and modload 
is the NetBsD command that is usedtoload kernel modules. 
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data set. Such trace-driven simulation cannot be applied to 
our framework because appropriate data sets of real-world 
filter patterns are not available. However, the metric for the 
worst case number of memory accesses of the BMP 
algorithms is an interesting measure since it would allow us 
to give a good worst case estimate of how the classification 
algorithm performs. Using BSPL, which provides 
performance typical of most of the modern BMP schemes 
when used with large prefix databases, the number of worst 
case memory accesses for a full filter lookup calculation are 
shown in Table 2. Since the operations to calculate the hash 
values are inexpensive compared to memory accesses, a 
reasonably good estimate of the worst case filter lookup 
time can be calculated by multiplying the number of 
memory accesses with the memory access delay (60 ns). 
This leads to a worst case filter lookup time of 1.4 us and 
has to be multiplied by the total number of gates in use to 
get a worst case estimate of the total lookup time of the 
packet. Again, since this is a worst case number, we expect 

Access to function pointer for BMP function 1 

Access to function pointer for index hash 1 

IP address lookup (2*log,(32)/2*logz(128)) 10/14 

Port number lookup 2 
Access to DAG edges 6 
Total 20/24 

Table 2: Memory Accesses for a Filter Lookup 

much better results in real world scenarios where the 
number of filters is typically much smaller, and we could 
benefit from various optimizations to the DAG data 
structures (see Section 5.1.2). In any case it is important to 
note that this number is independent of the number of filters 
in use and how they are organized. 

7.3 Overall Packet Processing Time 
Overall throughput was measured using the Pentium’s cycle 
counter. We added a time stamp function into the ATM 
device driver which timestamped every incoming packet 

Kernel Avg 
Cycles 

Avg 

Unmodified 
NetBsD 1.2.1 

6460 

Time 
[USI 

27.73 

NetBSD with 
our Plugin 
Architecture 

6970 29.91 

NetBSD with 
ALTQ and 
DRR 

8160 35.0 

NetBsD with 
our Plugin 
Architecture 
and a DRR 
plugin 

8110 34.8 

Relative Through- 
Over- Put I head packets/s 

36800 

Table 3: Overall Packet Processing Time 

just after the data was received from the network card. This 
value was compared to the CPU cycle counter right before 
the packet was output to the hardware of the ATM card 
again. We sent 8 KByte UDP/IPV~ datagrams (1~~6 flow label 
NOT used) belonging to three different flows concurrently 
through our router. The ATM MTU was 9180, so there was no 
fragmentation. We sent a total of 100 packets per flow, and 
calculated the average processing time. This was repeated 
1000 times. The system had 16 filters installed. We installed 
three gates which called empty plugins for the first test and 
only one gate for packet scheduling in case DRR was turned 
on. The results are shown in Table 3 .The first row shows the 
processing time of the unmodified NetBsD 1.2.1 kernel. A 
packet is received, forwarded and sent back to the ATM 
hardware within 6460 cycles or 28 ps. With our framework 
turned on, flow detection and the three function calls caused 
an overhead of roughly 500 cycles or 2.2 PLS as expected. 
Note that filtering has a minor impact on the overall 
throughput since it happens only for the first packet of each 
flow. With our DRR plugin installed and guaranteeing fair 
queueing among the three flows, we measured similar 
performance as an ALTQ system running the same 
algorithm. Since the packet scheduling code is similar in 
both implementations (our implementation of DRR is 
derived from ALTQ), we benefit only from faster hashing in 
terms of performance. Packet scheduling introduces an 
overhead of 20% compared to a best-effort kernel. While 
20% overhead may sound excessive, it corresponds to the 
numbers reported by others. Although H-FSC has very 
different scheduling characteristics from DRR, thereby 
making any direct comparison difficult, [27] reports 
between 6.8 and 10.3 ps’ for packet queueing overhead, 
which would correspond to about 25% to 37% overhead. 

It is important to see that every integrated services platform 
requires some sort of packet classification. By carefully 
implementing packet classification, we achieve faster 
lookups for 1~~6 than other integrated services platforms for 
1~~4 (e.g, [27] states that they require 2.6 ps for packet 
classification for 1~~4 packets), even though 1~~6 addresses 
are larger. Once the flow a packet belongs to is detected, 
picking the right instance of a plugin to which the packet 
should be passed does not cost more than an indirect 
function call. Thus we showed that on integrated services 
platforms, a very flexible and modular architecture can be 
introduced with almost no additional processing cost. 

8. CONCLUSIONS AND FUTURE WORK 
We presented an extensible and modular software 
architecture for high-performance extended integrated 
services routers. This architecture allows code modules 
called plugins to be dynamically loaded into the kernel and 
configured at run time. Instances of plugins can be bound to 
individual flows. Our implementation of this architecture in 
the NetBSD kernel relies on fast packet classification 
technology that is based on the combination of flow caching 

’ Stoica, Zhang, and Ng’s measurements on a Pentium 200 were scaled to 
our 233 MHz Pentium. 
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with a novel DAG-based flow classification algorithm. We 
plan to freely distribute our source code, with the objective 
of providing the research community with a state-of-the-art 
integrated services platform to build upon. 

Our architecture enables a very modular design at very low 
cost: we add only 8% overhead compared to a best-effort 
kernel. Our flow classification implementation provides for 
extremely fast lookups: in the best case, the IPV~ flow entry 
for a packet can be found in 1.3 ys (when the flow is cached 
in the flow table). The DAG-based filter lookup algorithm 
also has a worst case lookup time of only 24 memory 
accesses for 1~~6. 

Our future plans include implementing the Hierarchical 
Scheduling Framework (HSF) to provide a more 
sophisticated environment for packet scheduling than what 
we’ve presented so far. Further, we believe that the 
integration of routing into the packet classifier makes a lot 
of sense. While this is conceptually very simple, it requires 
some amount of work to do this in a standard BSD Unix 
kernel, since the routing functions are not very well isolated. 
By unifying routing and packet classification, we get QoS- 
based routing/Level 4 switching for free. We believe that 
these enhanced routing technologies have interesting 
properties and a lot of potential. The integration of routing 
will make fast packet classification schemes even more 
important. While we believe that our DAG algorithm is a 
valid contribution to the state-of-the-art, we plan to pursue 
research in packet classification algorithms, and incorporate 
enhanced implementations and algorithms (such as those in 
[26]) into our framework. 
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