
Router Plugins
A Software Architecture for Next Generation Routers

Dan Decasper’, Zubin Dittia2, Guru Parulkar2, Bernhard Plattner’
[danlplattner] @ tik.ee.ethz.ch, [zubinlguru] @ arl.wustl.edu

I Computer Eng ineering and Networks Laboratory, ETH Zurich, Switzerland
Phone: +41-l -632 7019 Fax: +41-l -632 1035

*Applied Research Laboratory, Washington University, St. Louis, USA
Phone: +l -314-935 4586 Fax: +l -314-935 7302

1. ABSTRACT
Present day routers typically employ monolithic
operating systems which are not easily upgradahle
and extensible. With the rapid rate of protocol
development it is becoming increasingly important
to dynamically upgrade router software in an incre-
mental fashion. We have designed and implemented
a high performance, modular, extended integrated
services router software architecture in the NetBSD
operating system kernel. This architecture allows
code modules, called plugins, to be dynamically
added and configured at run time. One of the novel
features of our design is the ability to bind different
plugins to individual flows; this allows for distinct
plugin implementations to seamlessly coexist in the
same runtime environment. High performance is
achieved through a carefully designed modular
architecture; an innovative packet classification
algorithm that is both powerful and highly efficient;
and by caching that exploits the flow-like character-
istics of Internet traffic. Compared to a monolithic
best-effort kernel, our implementation requires an
average increase in packet processing overhead of
only 8 % , or 500 cycles/2.lms per packet when run-
ning on a P61233.

1.1 Keywords
High performance integrated services routing, modular
router architecture, router plugins

2. INTRODUCTION
New network protocols and extensions to existing protocols
are being deployed on the Internet. New functionality is
being added to modern IP routers at an increasingly rapid
pace. In the past, the main task of a router was to simply
forward packets based on a destination address lookup.
Modern routers, however, incorporate several new services:

Parmlsswn tc make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies we not made or distributed for profit or commsrciel adven-
tege and that ccpws bear this notice and the full citatocn on the first page.
To copy otherwwe. tc republish. tc pest on servers or to
redwtribute to ksts. requ~ree prior specihc permission and/or a fee.
SIGCOMM ‘98 Vsncouvar. B.C.
0 ,998 ACM 1~58113.003.1/98/~8...S5.00

Figure 1. : Best Effort vs
Extended Integrated Services Router (EISR)

l Integrated/differentiated Services
l Enhanced routing functionality (level 3 and level 4 rout-

ing and switching, QoS routing, multicast)
l Security algorithms (e.g. to implement virtual private

networks (VPN))

l Enhancements to existing protocols (e.g. Random Early
Detection (RED))

l New core protocols (e.g. 1~~6 [S])
Figure 1 contrasts the software architecture of our proposed
Extended Integrated Services Router (EISR) with that of a
conventional best-effort router. A typical EISR kernel
features the following important additional components: a
packet scheduler, a packet classifier, security mechanisms,
and QoS-based routingLevel 4 switching. Various
algorithms and implementations of each component offer
specific advantages in terms of performance, feature sets,
and cost. Most of these algorithms undergo a constant
evolution and are replaced and upgraded frequently. Such
networking subsystem components are characterized by a
relatively “fluid” implementation, and should be
distinguished from the small part of the network subsystem
code that remains relatively stable. The stable part (called the
core) is mainly responsible for interacting with the network
hardware and for demultiplexing packets to specific
modules. Different implementations of the EISR components
outside of the core often need to coexist. For example, we
might want to use one kind of packet scheduling on one
interface, and a different kind on another.

In this paper, we propose a software architecture and present
an implementation which addresses these requirements. The
specific goals of our framework are:

l Modularity: Implementation of specific algorithms
come in the form of modules called plugins’.

229

Extensibility: New plugins can be dynamically loaded
at run time.
Flexibility: Instances of plugins can be created, config-
ured, and bound to specific jlows. Plugins can be all-
software modules, or they can be software drivers for
specialized custom hardware.

Performance: The system should provide for a very
efficient data path, with no data copying, no context
switching, and no additional interrupt processing. The
overhead of modularity should not seriously impact per-
formance.

Our proposed framework has been implemented in the
NetBsn UNIX kernel. This platform was selected because of
its portability (all major hardware platforms are supported),
efficiency, and extensive documentation. In addition, we
found state-of-the-art implementations on this platform for
1~~6 [13] and packet schedulers [27, 51 that could be
integrated into our framework.

We envision several applications for our framework. First,
our architecture fits very well into the operating system of
small and mid-sized routers. It is particularly well suited to
the implementation of modern edge routers that are
responsible for doing flow classification, and for enforcing
the configured profiles of differential service flows. This
kind of enforcement can be done either on a per-application
flow basis, or on a generalized class-based approach (e.g.
CBQ [ll]). Our implementation supports both models
efficiently.

Our framework is also very well suited to Application Layer
Gateways (ALGS), and to security devices like Firewalls. In
both situations, it is very important to be able to quickly and
efficiently classify packets into flows, and to apply different
policies to different flows: these are both things that our
architecture excels at doing.

Yet another application of our framework is for network
management applications, which typically need to monitor
transit traffic at routers in the network, and to gather and
report various statistics thereof. For such applications, it is
important to be able to quickly and easily change the kinds
of statistics being collected, and to do this without incurring
significant overhead on the data path.

Finally, while our proposed framework is very useful in
real-world implementations, its modularity and extensibility
also make it an invaluable tool for researchers. We plan to
release all of our code in the public domain and we will
attempt to incorporate several core portions into the
standard NetBSD distribution tree.

A note on our use of the word ‘plugin’ (instead of ‘module’) is in order.
In the web browser world, a plugin is a software module that is dynami-
cally linked wtth the browser and is responsible for processing certain
types of application streams (or flows). In a similar fashion, our router
plugins are kernel software modules that are dynamically loaded into the
kernel and are responsible for performing certain specific functions on
specified network flows.

The main contributions of our work are:

l An innovative, modular, extensible, and flexible EISK
networking subsystem architecture and implementation
that introduces only 8% more overhead than a best-effort
kernel.

l A very fast packet classifier algorithm which provides
highly competitive upper bounds for classification times.
With a very large number of filters (in the order of
50000), it classifies 1~~6 packets in 24 memory accesses,
and is much faster for smaller numbers of filters.

l Implementations of plugins for two state-of-the-art
packet schedulers: Deficit Round Robin (DRR, [23]) for
fair queuing, and the Hierarchical Fair Service Curves
(H-FSC, [27]) scheduler for class-based packet schedul-
ing; Implementation of plugins for IP security [2].

There are a few commercial attempts that we are aware of
which follow similar lines. The latest versions of Cisco’s
Internet OS (IOS, [6]) claims to fulfill some of the
requirements, but since it’s a commercial operating system,
there is no easy access for the research community and these
claims are not verifiable. Microsoft’s Routing and Remote
Access Service for Windows NT (RRAS, previously referred
to as “Steelhead” [18, 191) is an attempt to implement router
functionality under Windows NT. RRAS exports an API and
allows third party modules to implement routing protocols
like OSPF and SNMP agents in user space. The API does not
provide an interface to the routing and forwarding engines,
and the platform offers no integrated services components.
A few research projects attempt to achieve some of the goals
mentioned above [12, 20, 211. Most of them are focused on
the implementation of modular end-system networking
subsystems instead of routing architectures. Scout from the
University of Arizona is a particularly interesting project
based on the x-kernel that implements an operating system
targeted at network appliances (including routers). It comes
with router components implementing simple QoS support.
Since the whole operating system is implemented from
scratch, most of the provided functionality is over-
simplified and does not provide the large feature set that is
found in mature implementations. We discuss these related
approaches in more detail in [7].

In Section 3, we describe our architecture and explain how it
achieves modularity, extensibility, and flexibility while
maintaining high-performance. In Section 4, we describe
the implementation of a module called the Plugin Control
Unit (PCU), which is responsible for all control path
interactions with plugins. Section 5 outlines the
implementation of the Association Identification Unit (AIU),
which is used by almost all other components in our design.
The AIU implements an innovative algorithm for packet
classification which efficiently maps packets to code
modules (plugins). In Section 6, we elaborate on example
plugins (packet schedulers) which we implemented or
adapted for our environment. Section 7 presents
performance results from our implementation, and Section 8
summarizes our ideas.

230

3. OVERALL ARCHITECTURE
The primary goal of our proposed architecture was to build a
modular and extensible networking subsystem that
supported the concept of flows, and the ability to select
implementations of components based upon flows (in
addition to simple static configurations). Because the
deployment of multimedia data sources and applications
(e.g. real-time audio/video) will produce longer lived packet
streams with more packets per session than is common in
today’s environment, an integrated services router
architecture should support the notion of flows and build
upon it. In particular, the locality properties of flows should
be effectively exploited to provide for a highly efficient data
path. Our plugin framework features:

l Dynamic loading and unloading of plugins at run time
into the networking subsystem. Plugins are code mod-
ules which implement a specific EISR functionality (e.g.
packet scheduling). NetBSD offers a simple yet powerful
mechanism which allows modules to be loaded into the
kernel which is used to load our plugins into the kernel.
Once a plugin is loaded, it is no different from any other
kernel code. What is required for our system is a compo-
nent which glues the individual plugins to the network-
ing subsystem, and which provides a control-path
interface used by other kernel components (possibly also
other plugins) and user space daemons to talk to the
plugin. In our system, this component is called the
Plugin Control Unit (PCU). The PCU hides some of the
implementation specific details from the individual plu-
gins and allows them to access the system in a simple yet
flexible fashion.

l Creation of individual instances of plugins for maximal
flexibility. An instance is a specific run-time configura-
tion of an individual plugin. It is often very desirable to
have multiple instances of one and the same plugin con-
currently in the kernel. For example, consider packet
scheduling. A packet scheduler can work with different
configurations on different network interfaces. State-of-
the-art packet schedulers are usually hierarchical, with
possibly different modules working on different levels of
the scheduling hierarchy. Among the nodes of the same
level, modules are specifically configured, which means
that they coexist in our framework as plugin instances.
In order to provide a simple and unified interface for the
allocation of multiple instances of one and the same
plugin, the plugins must respond to a set of standardized
messages. By standardizing this message set and imple-
menting it in all plugins, we guarantee interoperability
among different plugins and provide a simple configura-
tion interface.

l Efficient mapping of individual data packets to flows,
and the ability to bind flows to plugin instances. Sets of
flows are specified using jilters. For example, a filter
might match all TCP traffic from the network 129.0.0.0
to the host 192.94.233.10. Filters can also match individ-
ual end-to-end application flows. Filters are specified as
six-tuples:

<source address, destination address, protocol, source
port, destination port, incoming interface>

Any of the fields in the six tuple may be wildcarded.
Additionally, for network addresses, a prefix mask may
be used to partially wildcard the corresponding field. For
instance, for the above example, the filter specification
would read: <129.*.*.*, 192.94.233.10, TCe *, *, *>

Clearly, the filter for an end-to-end application flow
would have all fields (except perhaps the incoming
interface) fully specified. We will see later in this section
that a packet matching a particular filter will be passed
to the plugin instance that has been bound to that filter.
This will be shown to happen whenever the packet
reaches a “gate” in the IP stack; a gate can be thought of
as the entry point for a plugin.

l Overall high performance. High performance is guaran-
teed only in part through a fully kernel space implemen-
tation which prevents costly context switches. We
identified two other critical properties which, when com-
bined, guarantee high performance even in a highly
modular environment: the flow-like nature of most inter-
net traffic, and the ability to classify packets into flows
quickly and efficiently. As we show below, the filter
lookup to determine the right plugin instance to which a
packet should be passed happens only for the first packet
of a burst. Subsequent packets get this information from
a fast flow cache which temporarily stores the informa-
tion gathered by processing the first packet. The filter
lookup itself is efficiently implemented using a Directed
Acyclic Graph (DAG). We elaborate on these techniques
later in this section, and also in section 5.

l Easy integration with custom hardware for high perfor-
mance processing of specialized tasks. This is enabled
by plugins which are software drivers for hardware that
implements the desired functionality. For example, a
plugin could control hardware engines for tasks such as
packet classification or encryption.

In order to describe our framework, we first look at the
different components and how they interact in the control
path. In the Section 3.2, we will look at the data path, and
how individual packets are processed by our architecture.

3.1 The Control Path
Figure 2 shows the architecture of our system and the
control communication between different components. A
description of the different components follows:

. IPv4/IPv6 core: The IPv4/1pv6 core consists of a
stream-lined IPV~/IPV~ implementation which contains
the (few) components required for packet processing
which do not come in the form of dynamically loadable
modules. These are mainly functions that interact with
network devices. The core is also responsible for demul-
tiplexing individual packets to plugins as we will show
in the next section. There are no plugin related control
path interactions with the IP core.

231

involves the following steps:

Figure 2. : System Architecture and Control Path

l Plugins: Figure 2 shows four different types of plugins -
plugins implementing IPVG options, plugins for packet
scheduling, plugins to calculate the best-matching prefix
(BMP, used for packet classification and routing), and
plugins for IP security. Other plugin types are also possi-
ble: e.g., a routing plugin, a statistics gathering plugin
for network management applications, a plugin for con-
gestion control (RED), a plugin monitoring TCP conges-
tion backoff behaviour, a tirewall plugin. Note that all
plugins come in the form of dynamically loadable kernel

l Plugin Control Unit (PCU): The PCXJ manages plugins,
and is responsible for forwarding messages to individual
plugins from other kernel components, as well as from
user space programs (using library calls).

l Association Identification Unit: The Association Iden-
tification Unit (AIU) implements a packet classifier and
builds the glue between the flows and plugin instances.
The operation of the AKJ will become clear when we
describe the data path in the next subsection.

l Plugin Manager: The Plugin Manager is a user space
utility used to configure the system. It is a simple appli-
cation which takes arguments from the command line
and translates them into calls to the user-space Router
Pfugin Library which we provide with our system. This
library implements the function calls needed to config-
ure all kernel level components. In most cases, the
plugin manager is invoked from a configuration script
during system initialization, but it can also be used to
manually issue commands to various plugins. We show
an example of how the Plugin Manager is used in
Section 6.

l Daemons: The RSVP [31], SSP [I] (a simplified version
of RSVP), and route daemon are linked against the Router
Plugin Library to perform their respective tasks. We
implemented an SSP daemon for our system, and are cur-
rently in the process of porting an RSVP implementation.

After a reboot, the system has to be configured before it is
ready to receive and forward data packets. Configuration
involves the selection of a set of plugins. Since a selection
does not necessarily apply to all packets traversing the
router, a definition of the set of packets which should be
processed by each individual plugin instance is required.
This configuration can be done either by a system
administrator, or by executing a script. Configuration

Loading a plugin: Using the modload command, which
is part of the NetBSD distribution, plugins are loaded into
the kernel. On loading, they register themselves with the
PCU by providing a callback function. This function is
used to send messages to the plugin. There are messages
for creating and freeing instances of the plugin and for
binding plugin instances to flows. Also, plugin develop-
ers can define an arbitrary number of plugin specific
messages. Once the callback function for a plugin has
been registered, the PCU can forward these configuration
messages to the plugin.

Creating an instance of a plugin: Using the Plugin
Manager application, configuration messages can be
sent to specified plugins. Typically, these messages ask
the plugin to create an instance of itself. In case of a
packet scheduling plugin for example, the configuration
information could include the network interface the
plugin should work on.
Creating filters: Once a plugin has been configured and
an instance has been created, it is ready to be used. What
has to be defined next is the set of datagrams which
should be passed to the instance for processing. This is
done by binding one or more flows to the plugin
instance. To specify the set of flows that are supposed to
be handled by a particular plugin instance, the Plugin
Manager or one of the user space daemons (RSVP or SSP)
can create filters through calls to the AIU. Recall (from
earlier in this section) that a filter is a specification for
the set of flows it matches.
Binding flows to instances: Next, the binding between
filters and plugin instances must be established. Each fil-
ter in the AIU is associated with a pointer to a plugin
instance; this pointer is set by making another call to the
AIU to do the binding.

Now the system is ready to process data packets. We will
show in the next subsection how data packets are matched
against filters and how they get passed to the appropriate
instances.

3.2 The Data Path
Data packets in our system are passed to instances of
plugins which implement the specific functions for
processing the packets. Since data path mechanisms are
applied to every single packet, it is very important to
optimize their performance. Given a packet, our architecture
should be able to quickly and efficiently discover the set of
instances that will act on the packet.

The data path interactions are shown in Figure 3.Before we
can explain the sequence of actions, we have to introduce
the notion of a gate.

A gate is a point in the IP core where the flow of execution
branches off to an instance of a plugin. From an
implementation point of view, gates are simple macros
which encapsulate function calls to the AIU that will return

232

Figure 3. : System Architecture and Data Path

the correct plugin instance which is to be used for
processing the packet. In many cases, these macros can
avoid a function call to the AIU altogether, thereby
permitting a more efficient implementation. Gates are
placed wherever interactions with plugins need to take
place. For example, sometimes after a packet is received by
the hardware, IP security processing has to be done if the
system is configured as entry point into a virtual private
network. In our system, IP security functions are
modularized and come in the form of plugins. A gate is
inserted into the IP core code in place of the traditional call
to the kernel function responsible for 1~~6 security
processing. In our current implementation, we use gates for
1~~6 option processing, IP security, packet scheduling, and
for the packet filter’s best-matching prefix algorithm.

To follow the various data path interactions, it is important
to get a basic understanding of the operation of the AIU. The
AIU is responsible for maintaining the binding between
flows and plugin instances. It makes use of a special data
structure called a flow table to cache flows. Flow tables
allow for very fast lookup times for arriving packets that
belong to cached flows.

In the AIU, all flows start out being uncached (i.e., they do
not have an entry in the flow table). If an incoming packet
belongs to an uncached flow, its lookup in the flow table
data structure will fail (i.e., there is a cache miss). In this
case, the packet needs to be looked up in a different data
structure that we call a filter table. Filter tables store the
bindings between filters and plugins for each gate. The filter
table lookup algorithm finds the most specific matching
filter (described later) that has been installed in the table,
and returns the corresponding plugin instance. Usually, filter
table lookups are much slower than flow table lookups. An
entry for a flow in the flow table serves as a fast cache for
future lookups of packets belonging to that flow. Each flow
table entry stores pointers to the appropriate plugins for all
gates that can be encountered by packets belonging to the
corresponding flow. The processing of the first packet of a
new flow with II gates involves II filter table lookups to
create a single entry in the flow table for the new flow.

If a cached flow remains idle (i.e., no new packets are
received) for an extended period, its cached entry in the flow
table data structure may be removed (or replaced by a
different flow). In this case, if the flow becomes active

again, the first packet that is received would again result in a
cache miss, which would again cause a new cache entry to
be created in the flow table so that subsequent packets can
benefit from faster lookup times.

Section 5.1 describes a very fast filter table lookup
implementation based on directed acyclic graphs (DAB).
Section 5.2 describes our flow table implementation, which
is based on hashing.

As an example, consider the steps involved in processing an
IPV~ packet (see numbers l-6 in Figure 3). Uncached flow
processing involves the following sequence of events and
actions:

0. Packet arrival: When a packet arrives, it gets passed to
the IP core by the network hardware. As it makes its
way through the core, it may encounter multiple gates.

1. Encountering a gate: Assume that the packet has
reached the gate where IP security processing will be
handled. The task of this gate is to find the plugin
instance which is responsible for applying security pro-
cessing (authentication and/or encryption) to the packet.

2. Discovering the right instance: The gate makes a call
to the AIU. The parameters of the call are a pointer to the
packet and an identification of the gate issuing the call.
In our case, we would identify the IP security gate as the
caller.

3. Packet classification: The AIU first does a lookup in the
flow table, and finds that there is no cached entry avail-
able for the flow. Consequently, it performs a lookup in
the filter table corresponding to the IP security gate. The
resulting plugin instance pointer is returned to the call-
ing gate (“SEC2” in Figure 3). Note that since this
packet classification step performed by the AIU is the
most expensive step in the whole cycle, an efficient
packet classification scheme and implementation is
important.

4. Caching of the instance pointer: Before the AIU
returns the instance pointer to the gate, it stores the
pointer in the flow table. Note that entries in the flow
table are identified by the same six tuple used to specify
filters, but without masks or wildcards (all fields have
fully specified values). In other words, a flow table
entry unambiguously identifies a particular flow. In our
example, the pointer to the SEC2 plugin is stored in the
row of the flow table which corresponds to our packet’s
flow.

5. Returning the instance pointer: The instance pointer
found is returned to the gate.

6. Calling the instance: The gate calls the plugin
instance, passing the packet as an argument.

7. Repeating the cycle: When the call returns, the IP stack
continues processing the packet, until it encounters
another gate, in which case the same cycle repeats.

This cycle is executed only for the first packet arriving on an

233

uncached flow. Subsequent packets follow a faster path
because of the cached entry in the flow table. Note that in
our system, we have created optimized implementations of
both the flow and filter tables, allowing for high
performance on both the cached and uncached paths. These
implementations are described in Section 5.

Cached flow processing involves the following sequence:

l Processing at the first gate: When a packet from a
cached flow encounters the first gate, the AIU is called to
request the plugin instance. This time, the pointer to the
instance requested is already in the flow table. The flow
table is looked up efficiently, and the plugin instance
pointer corresponding to the calling gate is returned. No
filter table lookups are required.

l Associating the packet with a flow index: Together
with the instance requested, the AIU returns a pointer to
the row in the flow table where the information associ-
ated with the flow is stored. This pointer is called the
flow index (HX), and is stored in the packet’s mbuf’. The
instance is then called to process the packet, following
which the IP stack passes the packet on to the next gate.

l Processing at subsequent gates: Once the packet has
made its way past the first gate, the AIU does not have to
be called upon to classify the packets at the remaining
gates. Macros implementing a gate can retrieve the
instance pointers cached in the flow table by accessing
the FIX stored in the packet. This allows us to pass pack-
ets to the appropriate instances in a very efficient manner
using an indirect function call instead of a “hardwired”
function call. We show in section 7 that this does not
imply significant performance penalties.

Our architecture implements a highly modular system with
minimal performance overhead. Our architecture is scalable
to a very large number of gates since the number of gates
matters only for the first packet arriving on a (uncached)
flow. But even for the first packet, fast retrieval of the
instance is possible with the DAG based packet classification
algorithm that is used to implement the filter tables in our
system (see Section 5).

4. PLUGINS AND THE PLUGIN CONTROL
UNIT (PCU)
Depending on the type of network software component that
is implemented by a plugin, it can be very simple (e.g., a
dozen lines of code for an IP option plugin) or very complex
(e.g., a state-of-the-art packet scheduler). Each plugin in our
framework is identified by a 32 bit plugin code. The upper
16 bits of the code identify the plugin type. The plugin type
refers to the specific network software component it
implements; thus, there is a direct correspondence between
a gate in our architecture and the plugin type. Whenever a
packet enters a gate, it will be passed to a registered plugin
of the appropriate type. There can potentially be multiple

’ The mbuf is a data structure that is used to store packets and packet related
information efficiently in BSD derived operating system kernels.

plugins of the same type that have been registered identified
by the lower 16 bits of the plugin code; in this case, flow
filters that have been installed for the corresponding plugin
type are used to pick the right plugin to which the packet
should be passed.

Our implementation currently supports four types of
plugins, corresponding to different network functions: IP
options, IP security, Packet Scheduling, and Longest-prefix
Matching (used as part of the packet classifier that is present
in the AIU). In the future, we plan to also add support for a
Routing plugin, which would allow routing table lookups to
be based on the flow classification that is performed by the
AIU. Other plugins that are envisioned include a plugin for
statistics gathering (useful for network monitoring/
management), a plugin for congestion control mechanisms
(e.g., RED), a plugin monitoring TCP congestion backoff
behaviour, and a plugin for firewall functions. Doubtless,
additional plugin types will be introduced by third parties
once we have released our code into the public domain. We
will discuss the implementation of two example plugins in
Section 6.

Plugins must fulfill two important requirements: they have
to register a callback function with the PCU when they are
loaded into the kernel, and that callback function must reply
to a set of messages. As mentioned earlier, these messages
fall into two categories: standardized messages, and plugin-
specific messages. The set of standardized messages
include:

create-instance: Creates an instance of a plugin. This
results in the allocation of a data structure that will be
used to store configuration and run-time information for
that instance. A function to handle a data packet (the
main packet processing function which is called at the
gate) must be specified and functions which are called
by the AIU on removal of an entry in the flow or filter
table can optionally be specified.
free-instance: Removes all instance specific data struc-
tures. A freed instance can no longer be used by the ker-
nel and all references to it are removed from the flow
table and the filter table.
register-instance: Registers a plugin instance with the
AIU, and binds that instance to a filter that has to be sup-
plied as a parameter. The same instance may be regis-
tered multiple times with the AIU with different filter
specifications. This message would result in a call to a
registration function that is published by the AIU.

deregister-instance: Removes the binding between a
specified filter in the AIU and the plugin instance.

The PCU itself is a very simple component (200 lines of C
code) managing a table for each plugin type to store the
plugin’s names and callback functions. Once loaded into the
kernel, plugins register their callback function through a
function call to the PCU. All control path communication to
the plugins goes through the PCU. Usually, such messages
come from user space, either from the Plugin Manager or
from one of the daemons using a library call. The PCU is

234

responsible for dispatching these messages to the target
plugin, and for handling exceptions. We implemented a
dedicated socket type for all plugin related user space
communication with the kernel, which is similar to the
routing socket that is used by routed to communicate with
the routing engine in a BSD-based kernel.

5. THE ASSOCIATION IDENTIFICATION
UNIT (AIU)
The Association Identification Unit (AIU) is the most
important component in our proposed framework. It
implements a packet classifier, fast flow detection, and
provides the binding between plugin instances and filters.
To do so, it manages two main data structures: filter tables
and a flow table. In Section 3.2, we described how flow and
filter tables are used; in this section, we will describe their
implementations.

5.1 Filter Table Implementation Using DAGs
Filter tables are used to classify packets belonging to
uncached flows. They are usually invoked only for the first
packet of a flow. Nonetheless, many flows may be very
short-lived (just one or a few packets), so it is important to
have an efficient filter table implementation.

Several generic packet filtering algorithms have been
proposed in the literature 12, 10, 201. These algorithms are
very powerful and flexible when they are used to look into
arbitrary packet fields. They usually come with a ‘language’
which allows for the specification of filters in terms of
individual bytes in the packet header, and the values they
should be checked against. They are complex both in terms
of theoretical background as well as in terms of code size
(typically several 1000 lines of C code). To specify a simple
filter to match a given TCP connection, half a page of filter
specification written in the filter’s language might be
required (see [2] for an example of a TCP filter
specification). Besides complexity, all except DPF [lo]
typically provide performance which is worse than that of
tailor-made packet classifiers optimized for a certain fixed
pattern of packet header.

Furthermore, these existing packet filtering algorithms
either do not support or cannot efficiently match on partially
(arbitrary number of bits) wildcarded fields, and therefore
cannot be used for efficient detection of best matching
prefixes on addresses. This was an important requirement in
our EISR framework.

Unlike generic packet filters that are optimized to search
based on arbitrary bytes (specified by the user) in a packet,
our filter table implementation targets only the Internet
protocol stack, and requires packets to be classified based
upon the same five packet header fields and the interface on
which the packet was received. Our goal was therefore to
find a fast lookup algorithm for matching the six-tuple
<source address, destination address, protocol, source port,
destination port, incoming interface> in a packet against a
possibly large set of filters (several of which may include
address fields that are partially wildcarded, requiring a

longest prefix match).

Note that since there is one filter table for every gate in our
system, usually multiple lookups (in different filter tables)
are necessary for each packet that is received on an
uncached flow. Why is it that we don’t have a single filter
table that applies for all network functions? The answer is
that the router administrator may have very different sets of
policies for different networking components. For example,
the set of filters that are specified for one function (e.g.
packet scheduling for QoS) will usually be quite different
from the set of filters that are installed for security
applications (e.g., firewalls). While it is theoretically
possible to merge all filter tables into a single global filter
table (by merging the different filter specifications and
creating new filters whenever there is an overlap), such an
implementation is practically infeasible because the space
requirements for the global table can, even with very few
installed filters, increase very quickly (exponentially) to
unacceptable levels.

Note that the property of requiring multiple packet
classification steps (filter table lookups) is not unique to our
system. Every common integrated services router does at
least two filter lookups: one for packet scheduling, and one
for routing. Routing in that sense is packet classification
with only one field (destination address) in the six-tuple for
a filter specified, and all the other fields set to wildcards. A
more generalized approach to routing would involve looking
not just at the destination address, but also at other fields in
the packet; this kind of extended routing functionality has
come to be known as L4 switching.

5.1.1 Directed Acyclic Graph (DAG) Implementation
Our implementation of filter tables makes use of a directed
acyclic graph (DAG) to find the best matching filter. The
easiest way to explain the algorithm is to use an example.
For simplicity, our example assumes filters with only three
header fields in place of six. It should be noted that this
scheme can work with an arbitrary (but constant) number of
filter fields.

Source Address Destination Protocol
Address

1 129.* 192.94.233.10 TCP
2 128.252.153.1 128.252.153.7 UDP
3 128.252.153.1 128.252.153.7 TCP
4 128.252.153.* * UDP

Table 1: Sample Filters

We consider a filter table containing four filters (see Table
1); the first field in each filter corresponds to the source
address, the second field to the destination address, and the
third field to the protocol. The first filter matches all TCP
traffic from the network 129.0.0.0 to the host 192.94.233.10.
The second and the third filters match all UDP/TCP traffic
from host 128.252.153.1 to host 128.252.153.7. And the
fourth filter matches all UDP traffic from network
128.252.153.0. It is easy to see that filter 2 is a proper subset

235

of filter 4; we say that filter 2 is more specific than
Also note that filters 1 and 4 are disjoint.

Figure 4. : DAG

Figure 4 shows the corresponding DAG. To match a triple

filter 4.

~128.252.153.1, 128.252.154.7, UDP> corresponding to an
incoming packet, the triple’s first field, the source address of
the packet (128.252.153.1) is subjected to a longest prefix
match against the three prefixes present at level 1 of the DAG
(i.e., 129.*, 128.252.153.1, and 128.252.153.*). The most
specific match is clearly (128.252.153.1) and therefore the
edge to node ‘c’ of the DAG is followed. Next, the second
field, the packet’s destination address, undergoes a similar
longest prefix match against prefixes present at level 2 of the
DAG on edges leading out of node ‘c’. Since there is only
one such prefix (128.252.154.7), and it matches our input
value, the search continues to node ‘f’. On the next level, the
match function is a simple equality check on the protocol
field from the packet. Since there is a matching outgoing
edge for ‘UDP', the filter lookup procedure terminates,
returning filter 2 as the best matching filter.

Note that the matching function used at each level of the
DAG can be different, and is based on the desired lookup
method for the corresponding field type. For example, for IP
address fields, a match based on the longest prefix match is
appropriate. For port numbers, matching can be done on
ranges, with the possibility of having the single wildcard
‘*‘. For the protocol and incoming interface fields, an
appropriate matching function would be a simple exact
match (equality) with the possibility of a wildcard match
(‘*‘). The matching function itself can be independently
configured for each level of the DAG, and is implemented as
a plugin in our framework. For IP address matching, we
implemented two such plugins: one is based on the slower
but freely available PATRICIA algorithm, and the second is
based on the patented binary search on prefix length [30]
algorithm. For the other levels, we use a default plugin
provided as part of our kernel, which performs the simple
equality checks mentioned above.

Note that the leaf nodes of a DAG correspond to the installed
filters, and therefore contain all information associated with
filters. These filter records contain, in addition to a pointer
to the correct plugin instance, an opaque pointer that can be
tilled in by the plugin to point to some private data. This can
be used by plugins to store plugin specific (hard) state that is
associated with installed filters.

5.1.2 Optimizations
Serveral optimizations can be applied to the DAG scheme.

So far, we showed only one DAG, which implements a single
filter table. As mentioned earlier, several filter table lookups
may be necessary for each packet, one at each gate that is
encountered by the packet along its data path. Often, it may
be the case that the same or similar filters are installed in
two or more filter tables. In such cases, it is possible to
exploit the information that has been gleaned from a lookup
in one filter table to speed up the lookup for the same packet
in the next and subsequent filter tables. This can be
implemented by having inter-DAG pointers that lead from
leaf nodes of one DAG to intermediate or leaf nodes in the
next DAG. Another optimization to the DAG scheme is to
collapse multiple nodes into a single node; this can be done
when multiple wildcarded edges succeed each other without
any branching at intermediate nodes. Due to space
limitations, descriptions of these and other optimizations are
not included here. We have also omitted a discussion of
filter ambiguities and their resolution. The interested reader
is referred to [7] for more details.

Our DAG-based lookup data structure is an example of a
more general data structure which we call set-pruning tries.
Cecilia Tries [29] are another example of set-pruning tries.

The DA&based algorithm is simple and easy to implement
(our implementation requires approximately 800 lines of C
code), and it is much faster than the ‘typical’ filter
algorithms used in existing implementations [17, 221. While
most of these existing techniques require O(n) time, n being
the number of filters, our solution when used with a state-of-
the-art best matching prefix algorithm (e.g., controlled
prefix expansion [25]), is more or less independent of the
number of filters. If we were to characterize the
performance of our DAG approach, it would be O(f>, where f
is the number of fields in a filter specification. Since any
packet classifier has to look at least once at each field in the
packet (except when the set of filters is trivial, e.g. all
wildcards), we argue that our scheme is theoretically
optimal in speed. From a practical standpoint, our current
implementation does not exploit hardware properties such
as the machine’s cache subsystem architecture or main
memory quirks to improve performance. Also, if there are
many ambiguous filters (see [7]), the memory requirements
of our algorithm can be excessive. More advanced
techniques such as grid-of-tries [26] can provide better
memory utilization without sacrificing performance, but
work only in the special case of two-dimensional filters. It is
important to note that because of the modular character of
our implementation, we can easily replace our DAG-based
classifier with a new classifier plugin when better
approaches become available.

In this section, we have attempted to provide an overview of
the DAG based packet classification algorithm. A description
of the implementation details are beyond the scope of this
paper. Section 7 provides some performance results from
our current implementation of the DA&based packet
classifier.

236

5.2 Flow Table Implementation Using Hashing
The flow table is used to cache flow information for
individual end-to-end flows. In other words, each entry in
the flow table corresponds to a flow with a fully specified
filter (one that contains no wildcards). Since there is no
wildcarding, hashing can be used to implement flow table
Iookups eft%ziently.

Out implementation of the flow table uses the five tuple of
header fields <source address, destination address,
protocol, source port, destination port> from the packet to
calculate the hash index. The code that is used for this
calculation has been kept very simple to improve
performance. It is executed in 17 processor cycles on a
Pentium, and is described in Section 5. Hash collisions are
resolved by storing all entries in the same hash bucket on a
singly linked list.

The array for the hash table is allocated at system boot time.
Its size is dependent upon the environment in which the
router is used (LAN vs. regional vs. backbone router); the
default value used in our kernel is 32768.

Each flow record in the hash table includes space for:

0. The six tuple of the corresponding filter
1. A pair of pointers for each gate that is implemented in

the core. One pointer points to the plugin instance that
has been bound to the flow. The second points to pri-
vate data for that plugin instance; it is used by the plu-
gins to store per-flow “soft” state. This is used, for
example, by the DRR plugin (Section 6.1) to store a
pointer to a queue of packets for each active flow.

2. A pointer to the filter record from which this flow was
derived.

3. A pointer which is used to link the record onto either a
free list or onto the linked list for a hash bucket.

4. A small number of flow records is allocated at system
boot time and linked into a free list (default is 1024).
More records are added as the need arises, with the
number of allocated records increasing exponentially
(e.g. 1024, 2048, 4096, . ..> to adapt to the environment
as fast as possible. The system can be configured to stop
allocating new flow records after a given maximum
number of records have been allocated. Once this point
has been reached, the oldest flow records are recycled
(i.e., the old entries in the cache are replaced with new
ones).

Performance results from our flow table implementation are
presented in Section 7.

6. EXAMPLE OF A PLUGIN
In this section we will look at an example plugin for packet
scheduling, in order to give the reader a better feel for how
plugins interact with our architecture and how they are
implemented.

We implemented two packet scheduling plugins: the first is
a port of Carnegie Mellon University’s (CMU) Hierarchical

Fair Service Curve (H-FSC, [27]) algorithm, and the second
is our own implementation of a simple weighted Deficit
Round Robin (DRR, [23]) plugin. These two plugins are
complementary in the sense that DRR is particularly useful
to implement fair queuing among best-effort flows, whereas
H-FSC implements hierarchical scheduling similar to Class
Based Queuing (CBQ, [ll]) with several advantages over
CBQ. We believe that H-FSC represents the state-of-the-art in
packet scheduling. One of its main advantages is the
decoupling of delay and bandwidth allocation, which is very
useful if both real-time and hierarchical link-sharing
services are required concurrently. In the current
implementation, packet scheduling plugin instances are
chosen per interface. We plan to implement a Hierarchical
Scheduling Framework (HSF) which will allow different
instances of packet scheduling plugins to be placed at
individual nodes in the scheduling hierarchy. For example,
this will allow us to combine both the H-FSC and the DRR
scheduling schemes, where DRR could be used to do fair
queuing for all flows ending in the same H-FSC leaf node.
Note that in its current implementation, H-FSC uses FIFO
queueing for all flows matching the same leaf node, which
may result in unfair service to different flows. The H-FSC
algorithm is well documented in [27] and our results are
consistent with that paper. We will not discuss our port in
more detail in this paper.

6.1 The Weighted DRR Plugin
The Deficit Round Robin (DRR, [23]) algorithm is a very
simple yet powerful packet scheduling scheme which
provides fair link bandwidth distribution among different
flows. The original implementation comes from the WFQ
module found in the ALTQ [5] software distribution. The
ALTQ WFQ modules implement fair queueing for a limited
number of flows, which it distributes over a fixed number of
queues. ALTQ came with a basic packet classifier which
mapped flows to these queues by hashing on fields in the
packet header. Since our architecture already offers
mechanisms to store per-flow information in the flow table
records, it was straightforward to add a queue per flow
which guarantees perfectly fair queuing for all flows. In
order to allow bandwidth reservations, we have
implemented a weighted form of DRR which assigns weights
to queues. These weights are fixed for all best effort flows
and dynamically recalculated for reserved flows if a new
reserved flow is added to the system. Since packet
classification is already done very efficiently by the AIU, the
actual scheduler plugin is very simple (less than 600 lines of
C code). It turned out to be extremely useful for
demonstrations of the link-sharing capabilities of our
architecture.

Shown below are the commands necessary to load and
configure the DRR plugin; this will give the reader a feel for
the simplicity and elegance with which plugins can be put
into operation. Note that these commands can be executed at
any time, even when network traffic is transiting through the
system. pmgr is our Plugin Manager program, and modload
is the NetBsD command that is used to load kernel modules.

5.2 Flow Table Implementation Using Hashing
The flow table is used to cache flow information for
individual end-to-end flows. In other words, each entry in
the flow table corresponds to a flow with a fully specified
filter (one that contains no wildcards). Since there is no
wildcarding, hashing can be used to implement flow table
lookups efficiently.

Out implementation of the flow table uses the five tuple of
header fields <source address, destination address,
protocol, source port, destination port> from the packet to
calculate the hash index. The code that is used for this
calculation has been kept very simple to improve
performance. It is executed in 17 processor cycles on a
Pentium, and is described in Section 5. Hash collisions are
resolved by storing all entries in the same hash bucket on a
singly linked list.

The array for the hash table is allocated at system boot time.
Its size is dependent upon the environment in which the
router is used (LAN vs. regional vs. backbone router); the
default value used in our kernel is 32768.

Each flow record in the hash table includes space for:

0. The six tuple of the corresponding filter
1. A pair of pointers for each gate that is implemented in

the core. One pointer points to the plugin instance that
has been bound to the flow. The second points to pri-
vate data for that plugin instance; it is used by the plu-
gins to store per-flow “soft” state. This is used, for
example, by the DRR plugin (Section 6.1) to store a
pointer to a queue of packets for each active flow.

2. A pointer to the filter record from which this flow was
derived.

3. A pointer which is used to link the record onto either a
free list or onto the linked list for a hash bucket.

4. A small number of flow records is allocated at system
boot time and linked into a free list (default is 1024).
More records are added as the need arises, with the
number of allocated records increasing exponentially
(e.g. 1024, 2048, 4096, ..,) to adapt to the environment
as fast as possible. The system can be configured to stop
allocating new flow records after a given maximum
number of records have been allocated. Once this point
has been reached, the oldest flow records are recycled
(i.e., the old entries in the cache are replaced with new
ones).

Performance results from our flow table implementation are
presented in Section 7.

6. EXAMPLE OF A PLUGIN
In this section we will look at an example plugin for packet
scheduling, in order to give the reader a better feel for how
plugins interact with our architecture and how they are
implemented.

We implemented two packet scheduling plugins: the first is
a port of Carnegie Mellon University’s (CMU) Hierarchical

Fair Service Curve (H-FSC, [27]) algorithm, and the second
is our own implementation of a simple weighted Deficit
Round Robin (DRR, [23]) plugin. These two plugins are
complementary in the sense that DRR is particularly useful
to implement fair queuing among best-effort f-lows, whereas
H-FSC implements hierarchical scheduling similar to Class
Based Queuing (CBQ, [ll]) with several advantages over
CBQ. We believe that H-FSC represents the state-of-the-art in
packet scheduling. One of its main advantages is the
decoupling of delay and bandwidth allocation, which is very
useful if both real-time and hierarchical link-sharing
services are required concurrently. In the current
implementation, packet scheduling plugin instances are
chosen per interface. We plan to implement a Hierarchical
Scheduling Framework (HSF) which will allow different
instances of packet scheduling plugins to be placed at
individual nodes in the scheduling hierarchy. For example,
this will allow us to combine both the H-FSC and the DRR
scheduling schemes, where DRR could be used to do fair
queuing for all flows ending in the same H-FSC leaf node.
Note that in its current implementation, H-FSC uses FIFO
queueing for all flows matching the same leaf node, which
may result in unfair service to different flows. The H-FSC
algorithm is well documented in [27] and our results are
consistent with that paper. We will not discuss our port in
more detail in this paper.

6.1 The Weighted DRR Plugin
The Deficit Round Robin (DRR, [23]) algorithm is a very
simple yet powerful packet scheduling scheme which
provides fair link bandwidth distribution among different
flows. The original implementation comes from the WFQ
module found in the ALTQ [5] software distribution. The
ALTQ WFQ modules implement fair queueing for a limited
number of flows, which it distributes over a fixed number of
queues. ALTQ came with a basic packet classifier which
mapped flows to these queues by hashing on fields in the
packet header. Since our architecture already offers
mechanisms to store per-flow information in the flow table
records, it was straightforward to add a queue per flow
which guarantees perfectly fair queuing for all flows. In
order to allow bandwidth reservations, we have
implemented a weighted form of DRR which assigns weights
to queues. These weights are fixed for all best effort flows
and dynamically recalculated for reserved flows if a new
reserved flow is added to the system. Since packet
classification is already done very efficiently by the AIU, the
actual scheduler plugin is very simple (less than 600 lines of
C code). It turned out to be extremely useful for
demonstrations of the link-sharing capabilities of our
architecture.

Shown below are the commands necessary to load and
configure the DRR plugin; this will give the reader a feel for
the simplicity and elegance with which plugins can be put
into operation. Note that these commands can be executed at
any time, even when network traffic is transiting through the
system. pmgr is our Plugin Manager program, and modload
is the NetBsD command that is usedtoload kernel modules.

238

data set. Such trace-driven simulation cannot be applied to
our framework because appropriate data sets of real-world
filter patterns are not available. However, the metric for the
worst case number of memory accesses of the BMP
algorithms is an interesting measure since it would allow us
to give a good worst case estimate of how the classification
algorithm performs. Using BSPL, which provides
performance typical of most of the modern BMP schemes
when used with large prefix databases, the number of worst
case memory accesses for a full filter lookup calculation are
shown in Table 2. Since the operations to calculate the hash
values are inexpensive compared to memory accesses, a
reasonably good estimate of the worst case filter lookup
time can be calculated by multiplying the number of
memory accesses with the memory access delay (60 ns).
This leads to a worst case filter lookup time of 1.4 us and
has to be multiplied by the total number of gates in use to
get a worst case estimate of the total lookup time of the
packet. Again, since this is a worst case number, we expect

Access to function pointer for BMP function 1

Access to function pointer for index hash 1

IP address lookup (2*log,(32)/2*logz(128)) 10/14

Port number lookup 2
Access to DAG edges 6
Total 20/24

Table 2: Memory Accesses for a Filter Lookup

much better results in real world scenarios where the
number of filters is typically much smaller, and we could
benefit from various optimizations to the DAG data
structures (see Section 5.1.2). In any case it is important to
note that this number is independent of the number of filters
in use and how they are organized.

7.3 Overall Packet Processing Time
Overall throughput was measured using the Pentium’s cycle
counter. We added a time stamp function into the ATM
device driver which timestamped every incoming packet

Kernel Avg
Cycles

Avg

Unmodified
NetBsD 1.2.1

6460

Time
[USI

27.73

NetBSD with
our Plugin
Architecture

6970 29.91

NetBSD with
ALTQ and
DRR

8160 35.0

NetBsD with
our Plugin
Architecture
and a DRR
plugin

8110 34.8

Relative Through-
Over- Put I head packets/s

36800

Table 3: Overall Packet Processing Time

just after the data was received from the network card. This
value was compared to the CPU cycle counter right before
the packet was output to the hardware of the ATM card
again. We sent 8 KByte UDP/IPV~ datagrams (1~~6 flow label
NOT used) belonging to three different flows concurrently
through our router. The ATM MTU was 9180, so there was no
fragmentation. We sent a total of 100 packets per flow, and
calculated the average processing time. This was repeated
1000 times. The system had 16 filters installed. We installed
three gates which called empty plugins for the first test and
only one gate for packet scheduling in case DRR was turned
on. The results are shown in Table 3 .The first row shows the
processing time of the unmodified NetBsD 1.2.1 kernel. A
packet is received, forwarded and sent back to the ATM
hardware within 6460 cycles or 28 ps. With our framework
turned on, flow detection and the three function calls caused
an overhead of roughly 500 cycles or 2.2 PLS as expected.
Note that filtering has a minor impact on the overall
throughput since it happens only for the first packet of each
flow. With our DRR plugin installed and guaranteeing fair
queueing among the three flows, we measured similar
performance as an ALTQ system running the same
algorithm. Since the packet scheduling code is similar in
both implementations (our implementation of DRR is
derived from ALTQ), we benefit only from faster hashing in
terms of performance. Packet scheduling introduces an
overhead of 20% compared to a best-effort kernel. While
20% overhead may sound excessive, it corresponds to the
numbers reported by others. Although H-FSC has very
different scheduling characteristics from DRR, thereby
making any direct comparison difficult, [27] reports
between 6.8 and 10.3 ps’ for packet queueing overhead,
which would correspond to about 25% to 37% overhead.

It is important to see that every integrated services platform
requires some sort of packet classification. By carefully
implementing packet classification, we achieve faster
lookups for 1~~6 than other integrated services platforms for
1~~4 (e.g, [27] states that they require 2.6 ps for packet
classification for 1~~4 packets), even though 1~~6 addresses
are larger. Once the flow a packet belongs to is detected,
picking the right instance of a plugin to which the packet
should be passed does not cost more than an indirect
function call. Thus we showed that on integrated services
platforms, a very flexible and modular architecture can be
introduced with almost no additional processing cost.

8. CONCLUSIONS AND FUTURE WORK
We presented an extensible and modular software
architecture for high-performance extended integrated
services routers. This architecture allows code modules
called plugins to be dynamically loaded into the kernel and
configured at run time. Instances of plugins can be bound to
individual flows. Our implementation of this architecture in
the NetBSD kernel relies on fast packet classification
technology that is based on the combination of flow caching

’ Stoica, Zhang, and Ng’s measurements on a Pentium 200 were scaled to
our 233 MHz Pentium.

239

with a novel DAG-based flow classification algorithm. We
plan to freely distribute our source code, with the objective
of providing the research community with a state-of-the-art
integrated services platform to build upon.

Our architecture enables a very modular design at very low
cost: we add only 8% overhead compared to a best-effort
kernel. Our flow classification implementation provides for
extremely fast lookups: in the best case, the IPV~ flow entry
for a packet can be found in 1.3 ys (when the flow is cached
in the flow table). The DAG-based filter lookup algorithm
also has a worst case lookup time of only 24 memory
accesses for 1~~6.

Our future plans include implementing the Hierarchical
Scheduling Framework (HSF) to provide a more
sophisticated environment for packet scheduling than what
we’ve presented so far. Further, we believe that the
integration of routing into the packet classifier makes a lot
of sense. While this is conceptually very simple, it requires
some amount of work to do this in a standard BSD Unix
kernel, since the routing functions are not very well isolated.
By unifying routing and packet classification, we get QoS-
based routing/Level 4 switching for free. We believe that
these enhanced routing technologies have interesting
properties and a lot of potential. The integration of routing
will make fast packet classification schemes even more
important. While we believe that our DAG algorithm is a
valid contribution to the state-of-the-art, we plan to pursue
research in packet classification algorithms, and incorporate
enhanced implementations and algorithms (such as those in
[26]) into our framework.

9. ACKNOWLEDGMENTS
We would like to acknowledge the help of Marcel
Waldvogel (ETH Zurich) for his invaluable contributions to
our design effort. Our thanks also go to Ron Cytron
(Washington University, St. Louis), whom we approached
(as a compiler expert) for insight into possible solutions to
the packet classification problem. We would also like to
acknowledge the help of Fred Kuhns, Hari Adiseshu, and
John Dehart (all from Washington University, St. Louis);
they were all involved in the project at various stages of its
development, and their comments and criticisms were
important to success of this project. In particular, we would
like to thank Fred, who was involved in writing portions of
the code for the Plugin Manager; and Hari, who contributed
the code for the SSP daemon. We also acknowledge the help
of Ken Wong for reviewing this paper and providing very
useful feedback. Finally, we would like to thank George
Varghese and V. Srinivasan for the many helpful discussions
we had with them regarding packet classification.

10. REFERENCES
111

121

[31

[41

[51

161

[71

181

[91

[101

[Ill

[=I

1161

[I71

1181

[191

1201

1211

WI
P31

~241

1251

U.61

[271

1281

[291

[301

[311

Adiseshu, H., and Parulkar, G., “SSP: A State Setup Protocol”, to be
published
Atkinson, R., “Security Architecture for the Internet Protocol”, RFC
1825, August 1995
Bennett, J.C.R. and Zhang, H., “Hierarchical Packet Fair Queueing
Algorithms”, In Proceedings of SIGCOMM’96, August 1996.
Bennett, J.C.R., and Zhang, H., “WF2Q: Worst-case Fair Weighted
Fair Queueing”, In Proceedings oflNFOCOM’96, March 1996
Cho, K., “A Framework for Alternate Queueing”, In Proceedings of
USENIX 1998. June 1998
Cisco Corporation, web pages on IOS, http://www.cisco.compublic/
sw-center/SW-iosshtml
Decasper, D., et. al., “Router Plugins”, Washington University Tech
Report WUCS-98-08, February 1998
Deering, S., Hinden, R., “Internet Protocol, Version 6 (IPV~), Specifi-
cation”, RFC 1883, December 1995
Demers, Keshav, Shenker, “Analysis and Simulation of a Fair Queue-
ing Algorithm”, In Proceedings of SZGCOMM’89, August 1989
Englery D., Kaashoek, M., “DPF: Fast, Flexible Message Demulti-
plexing using Dynamic Code Generation”, In Proceedings of SIG-
COMM’96, August 1996
Floyd, S., Jacobson, V., “Link-sharing and Resource Management
Models for Packet Networks”, In IEEE/ACM Transactions on Net-
working, Vol. 3 No. 4, August 1995
Hutchinson, C., Peterson, P., “The x-Kernel: An architecture for
implementing network protocols”, IEEE Trunsactions on Sofhvare
Engineering, January 1991
INRIA ftp site for 1~~6 source code. ftp://ftp.inria.fr/network/ipvG
Intel Corporation, web pages on VTUNE, http://developer.intel.com/
design/perftool/vtune/index.htm, 1997
Lampson, B., Srinivasan, V., Varghese, G., “IP Lookups using Multi-
way and Multicolumn Search’, In Proreedings of INFOCOM’98,
April 1998
Lin, S., McKeown, N., “A Simulation Study of IP Switching”, In Pm-
ceedings of SIGCOMM’97, September 1997
Linux kernel packet filter implementation, http://wafu.netgate.net/
linux/index.html
Microsoft Corporation, “Update to Routing and Remote Access Ser-
vice for Windows NT Server 4.0”, Review and Evaluation Guide,
March 1997
Microsoft Corporation, web pages on RRAS SDK,
http:Npremium.microsoft.com/msdn/library/sdkdoc/pdnds/
remacces-8085.htm
Mogul, J.C., Rashid, R.F., Accetta, M.J., “The packet filter: An effr-
cient mechanism for user-level network code”, In Proceedings ofthe
Eleventh ACM Symposium on Operating Systems Principles, Novem-
ber 1987
Mosberger, D., “Scout: A Path-based Operating System”, PhD Dis-
sertution, Department of Computer Science, University of Arizona,
July 1997
Reed, D., “1~ Filter”, http:Nwww.cyber.com.au/users/darrenr/
Shreedar, M., Varghese,G. “Efficient Fair Queueing using Deticit
Round Robin”, In Proceed&s of SIGCOMM ‘95, August 1995
Sklower, K., “A tree-based routing table for Berkeley Unix”, Techni-
cal report, University of California, Berkley, 1993
Srinivasan, V., Varghese, G., “Faster IP Lookups using Controlled Pre-
fix Expansion”, In Proceedings of SZGMETRICS’98, June 1998
Srinivasan, V., et al., “Fast Scalable Algorithms for Level Four
Switching”, In Proceedings qf SIGCOMM’98, September 1998
Stoica. I.. Zhane. H.. Nu. T.S.E.. “A Hierarchical Fair Service Curve
Algorithm for l%k-Sha%ng, Real-Time and Priority Services”, In
Proceedings of SIGCOMM’97, September 1991
Suri, S., Varghese, G., Chandranmenon, G., “Leap Forward Virtual
Clock”, In Proceedings of INFOCOM’97, April 1997
Tsuchiya, P., ‘A Search Algorithm for Table Entries with Non-contig-
uous Wildcarding”. unpublished paper, 1992

I . . .

Waldvogel, M., et al., “Scalable High Speed IP Routing Lookups”, In
Proceedings of SIGCOMM’97, September 1997
Zhang, L, et al., “RSVP: A New Resource Reservation Protocol”, In
IEEE Network Magazine, Vol. 7, No. 5., September 1993

240

