
Player Simulation and General Adversary Structures
in Perfect Multiparty Computation �

Martin Hirt and Ueli Maurer
Department of Computer Science, ETH Zurich,

CH-8092 Zurich, Switzerland

fhirt,maurerg@inf.ethz.ch

Communicated by Oded Goldreich

Received 31 December 1997 and revised 26 February 1999

Invited to the Journal of Cryptology, 13(1):31–60, 2000.

Abstract

The goal of secure multiparty computation is to transform a given protocol involving a trusted
party into a protocol without need for the trusted party, bysimulatingthe party among the players.
Indeed, by the same means, one can simulate an arbitrary player in any given protocol. We formally
define what it means to simulate a player by a multiparty protocol among a set of (new) players, and
we derive the resilience of the new protocol as a function of the resiliences of the original protocol
and the protocol used for the simulation.

In contrast to all previous protocols that specify the tolerable adversaries by the number of cor-
ruptible players (a threshold), we consider general adversaries characterized by an adversary struc-
ture, a set of subsets of the player set, where the adversary may corrupt the players of one set in the
structure. Recursively applying the simulation technique to standard threshold multiparty protocols
results in protocols secure against general adversaries.

The classical results in unconditional multiparty computation among a set ofn players state that,
in the passive model, any adversary that corrupts less thann=2 players can be tolerated, and in the
active model, any adversary that corrupts less thann=3 players can be tolerated. Strictly generalizing
these results we prove that in the passive model, every function (more generally, every cooperation
specified by involving a trusted party) can be computed securely with respect to a given adversary
structure if and only if notwo sets in the adversary structure cover the full set of players, and in
the active model, if and only if nothreesets cover the full set of players. The complexities of the
protocols are polynomial in the number of maximal adverse player sets in the adversary structure.

Key words. Multiparty computation, Information-theoretic security, Player simulation, General ad-
versaries, Adversary structures.

�Research supported by the Swiss National Science Foundation (SNF), SPP project no. 5003-045293. Some of the results
in this paper have been published in[HM97].

1

1 Introduction

1.1 Secure Multiparty Computation

Consider a set of players who wish to cooperate in a specified manner but do not trust each other. Assume
that the cooperation could be realized if a mutually trusted party was available, but that no such trusted
party exists. In other words, the specification of the desired cooperation can be given in terms of a
protocol among the players and a trusted party, and the goal of the multiparty computation between the
players is to perform the same cooperation without the trusted party, where security is guaranteed if the
subset of players that cheat is not too large. This is achieved by a protocol that simulates the trusted
party.

One particular type of cooperation is the computation of an agreed function of the players’ inputs in
a secure way (secure function evaluation). Most papers in the literature are restricted to this scenario, but
their results often apply also to the general model discussed above. Secure function evaluation is trivial
when a trusted party� is available: every player sends his input to� who computes and announces the
result.

An example of a general secure cooperation scenario is to simulate a fair stock market among a set of
participants (investors) without need for a trusted stock exchange system. The major difference between
secure function evaluation and general secure cooperation is that in the latter, inputs may be given not
only at the beginning but also during the entire computation.1

Security of a multiparty protocol is defined with respect to a central adversary that may corrupt certain
players (corresponding to the collaborating cheating players). For secure function evaluation, security
means that the output of the computation is guaranteed to be correct (correctness) and that the players’
inputs remain private (privacy), even when the corrupted players misbehave. For a general cooperation
protocol, security means that whatever the adversary can achieve in the cooperation protocol can also be
achieved directly in the specification involving the trusted party (without corrupting the trusted party).

1.2 Classification

One generally distinguishes betweenpassiveandactiveadversaries. A passive adversary can read all
information available to the corrupted players and tries to violate the privacy, but not the correctness, of
the computation. In contrast, an active adversary controls the complete behavior of the corrupted players,
trying to violate the privacy and/or the correctness of the computation.

The communication models differ with respect to three criteria: whether or not pairwisesecure
communication channelsare available, whether or notbroadcastchannels are available, and whether the
communication channels aresynchronousor asynchronous.2 The models with secure communication
channels are also referred to assecure channels models.

Adversaries can be classified according to whether their computational resources are polynomi-
ally bounded (cryptographicsecurity), or unbounded (unconditionalor information-theoretic security).

1A general secure cooperation could also be reduced to secure function evaluation by having each player give his strategy
as input to the function. However, this approach would require that every player is totally aware of his strategy, and also that
the environment of the computation can be modeled. As an example, each time a player is required to give some input to a
general secure cooperation, he could enter the number of hits when searching some specific term with an internet search engine.
Modeling this strategy would require to model (at least) the behavior of all internet users.

2Synchronous means that the delay of messages is bounded by a constant. See [Can95] for more details.

2

Clearly, unconditional security can only be achieved in a secure channels model. In the unconditional
model one can distinguish between protocols with exponentially small or with zero failure probability.
We refer to the latter asperfectmultiparty computation. Further, one distinguishes betweenstatic and
adaptive(or dynamic) adversaries. In contrast to a static adversary that corrupts players at the beginning
of the protocol execution, an adaptive adversary is allowed to enlarge the set of corrupted players during
the protocol execution, as long as the total set of corrupted players remains admissible. Recently,mobile
adversaries were also considered (e.g., [OY91] and [CH94]). As an adaptive adversary, a mobile adver-
sary can corrupt players at any time, but he can also “release” corrupted players, regaining the capability
to corrupt further players. Security against a mobile adversary is referred to as “pro-active security.”

1.3 Previous Work

The problem of general-purpose multiparty computation was first stated by Yao [Yao82]. As a first
general solution to this problem, Goldreich, Micali, and Wigderson [GMW87] presented a passively
secure protocol that allowsn players to securely compute any given function even if a passive adversary
corrupts anyt < n players, and an actively secure protocol that tolerates an active adversary corrupting
any t < n=2 of the players. The security of the protocols is cryptographic, that is the adversary is
assumed to be polynomially bound. Chaum, Damg˚ard, and van de Graaf [CDG87] improved the bound
for the active model in the sense that the input of one player can even be information-theoretically
hidden. Galil, Haber, and Yung [GHY87] considered efficiency and several corruption types in the
cryptographic model. Ben-Or, Goldwasser and Wigderson [BGW88] proved that in the secure channels
model without broadcast, perfect security forn players can be achieved even if the adversary can corrupt
any set of less thann=2 players (passive case) or, alternatively, any set of less thann=3 players (active
case). These bounds are tight. The same results were obtained independently by Chaum, Cr´epeau and
Damgård [CCD88] in an unconditional model with exponentially small error probability. The bound
for the active model was improved by Rabin and Ben-Or [RB89] by assuming a broadcast channel and
tolerating a negligible error probability. They proposed protocols that provide unconditional security
against an active adversary that may corrupt anyt < n=2 of the players. This result was also achieved by
Beaver [Bea91b] with higher efficiency. Combining the advantages of unconditional security (against an
adversary that corrupts a certain fraction of the players) and cryptographic security (against an adversary
with limited computing power), Chaum [Cha89] presented a protocol which tolerates an active adversary
that either corrupts at mostt < n=3 players, or is polynomially bounded.

The types of tolerable adversaries have recently been generalized in a number of directions (adaptive
adversaries, e.g., [CFGN96], uncoercibility, e.g., [CG96], combined active, passive, and fail-adversaries,
e.g., [FHM98]), and some authors have investigated multiparty computation for various minimality
and complexity criteria, e.g., [Kus89], [BB89], [Bea89], [FY92], [FKN94], [Rab94], [CGT95], and
[CKOR97].

Another line of research is concerned with protocols that are tailored to a particular function like
voting (e.g., [CFSY96]), auctioning (e.g., [FR96]), sharing of encryption or signature operations (e.g.,
[dDFY94], [GJKR96a], and [GJKR96b]), or private information retrieval (e.g., [CGKS95] and [KO97]).
The major reason for designing protocols for special functions compared with applying a general-purpose
protocol is the potential gain of efficiency.

3

1.4 Contributions of this Paper

This paper is concerned with protocol generators, which for any given function (more generally, for any
given specification) generate a protocol for securely computing it. The provided security is perfect (with
zero error probability), i.e., we consider a passive or an active adversary with unbounded computing
power, in the classical model with pairwise synchronous secure communication channels between play-
ers, but not assuming a broadcast channel (like in [BGW88] and [CCD88]). Although the proofs only
consider static adversaries, the protocols actually provide security against adaptive adversaries as well.
Formal proofs for adaptive security are beyond the scope of this paper.

All previous results in the literature specify the sets of potentially corrupted players by their cardi-
nality, i.e., by a threshold. We define more generally the security of a multiparty computation protocol
with respect to anadversary structure, a monotone set of subsets of the players, where the adversary
may corrupt the players ofoneset in this adversary structure. An adversary structure is monotone in the
sense of being closed with respect to taking subsets, and corresponds to the notion of an access structure
in the area of secret sharing (or, more precisely, the complement of it), e.g., [ISN87] and [BL88]. Note
that which particular subset is corrupted is not known in advance, and in fact may even remain unknown
after the protocol execution.

As an example of an adversary structure, consider the setP of players and the adversary structureZ,
where

P = fp1; p2; p3; p4g;

Z =
n
;; fp1g; fp2g; fp3g; fp4g; fp1; p2g; fp1; p3g; fp1; p4g

o
:

In this example, the adversary can choose either to corrupt no player, or to corrupt a single player, or to
corruptp1 and an additional player.

The contributions of this paper are twofold: First, we propose a framework for constructing new
secure multiparty computation protocols by simulating players in known protocols. In particular, we
make explicit the concepts of a specification and a protocol generator which converts a specification into
a protocol, in contrast to [GMW87] and [BGW88] where tools for constructing protocols are described
and these new concepts are only implicit. Simulating a player by a set of players means to perform all
operations of the simulated player by a multiparty protocol among the simulating players. Of course,
any of the simulating players can again be simulated. The adversary structure tolerated by the resulting
protocol is derived and proven based on the tolerated adversary structures of the basic protocol and the
simulation protocol.

Second, we introduce the notion of general adversary structures into the field of multiparty computa-
tion, and we characterize exactly which adversary structures can be tolerated in information-theoretically
secure multiparty computation. For a given setP of players and an adversary structureZ, we define
Q(2)(P;Z) to be the predicate that no two sets inZ cover the full setP of players, and we define
Q(3)(P;Z) to be the predicate that no three sets inZ cover the full setP of players. Formally

Q(2)(P;Z) () 8Z1; Z2 2 Z : Z1 [Z2 6= P;

Q(3)(P;Z) () 8Z1; Z2; Z3 2 Z : Z1 [Z2 [Z3 6= P:

The following tight bounds are proved:

4

1. In the passive model, as a strict generalization of the threshold-type result of [BGW88] and
[CCD88], perfect multiparty computation for any function (specification) is possible if and only if
no two sets in the adversary structure cover the full player set (i.e.,Q(2)(P;Z) is satisfied).

2. In the active model, as a strict generalization of the threshold-type result of [BGW88] and [CCD88],
perfect multiparty computation for any function (specification) is possible if and only if no three
sets in the adversary structure cover the full player set (i.e.,Q(3)(P;Z) is satisfied).

In general, the threshold-type structures are not maximal and hence our protocols can tolerate strictly
larger adversary structures. For example, in the active model with six players, the protocol of [BGW88]
tolerates only adversaries that corrupt at most one player (formally, it tolerates the adversary structure
Z =

�
;; fp1g; fp2g; fp3g; fp4g; fp5g; fp6g

	
). Our approach yields protocols that tolerate additional

pairs and even triples of potentially corrupted players. For example, the adversary structure

Z =
n
;; fp1g; fp2g; fp3g; fp4g; fp5g; fp6g;

fp2; p4g; fp2; p5g; fp2; p6g; fp3; p5g; fp3; p6g; fp4; p5g; fp4; p6g; fp5; p6g;

fp2; p5; p6g; fp4; p5; p6g
o

satisfiesQ(3) and can hence be tolerated. It is clear that every adversary structure is monotone, and hence
it is sufficient to enumerate only the maximal sets. The set of maximal sets of an adversary structureZ
is called thebasisZ. In the above example,

Z =
�
fp1g; fp2; p4g; fp3; p5g; fp3; p6g; fp2; p5; p6g; fp4; p5; p6g

	
:

When our results are applied to reliable broadcast (Byzantine agreement), they provide the first non-
threshold broadcast protocol, as required for example in [CDM98] (where later solutions [FM98] are
more efficient). Applying the results to verifiable secret-sharing, they provide a nonthreshold verifiable
secret-sharing scheme as first proposed in [Gen96].

The primary emphasis of this paper is on the existence of protocols. Indeed, all proposed protocols
have time and communication complexities polynomial in the number of maximal sets in the adversary
structure,3 but further efficiency considerations and tuning are suggested as future work (however, ef-
ficiency polynomial in the number of players is impossible to achieve for all adversary structures, see
Theorem 4). Also, concurrency is not addressed in this paper, and our formalism does not support the
analysis and/or the optimization of the round complexity of the protocols. The constructions in this paper
are based onobliviousprotocols [BGW88], i.e., on protocols in which the sequence of executed state-
ments is independent of the contents of the previous messages (as opposed to protocols like, e.g., [FM88]
and [BB89], in which the flow depends on the contents of the variables), and the proposed formalism is
restricted to oblivious protocols.

1.5 Motivating Examples

As a first example, consider a set of five playersP = fp1; p2; p3; p4; p5g that participate in a nine-party
protocol of [BGW88] (passive case), wherep3 and p4 each play for two players,p5 plays for three
players, andp1 andp2 each play for one player of this protocol. This protocol tolerates the adversary

3The constructions of polynomial protocols are based on joint work with Matthias Fitzi [Fit96].

5

structure that containsfp1; p2; p3g, fp1; p2; p4g, fp1; p5g, fp2; p4g, fp3; p4g (and of course all subsets
of these sets), because every set in this structure plays for at most four players in the 9-party protocol.

More generally, consider a protocol for the setP of players in which each playerpi acts forwi players
in a threshold-type protocol of [BGW88] withn =

P
i:pi2P

wi players. In the passive model, security is

guaranteed with respect to the adversary structure

Z =

8<
:Z � P :

X
i:pi2Z

wi < n=2

9=
; ;

and in the active model, security is guaranteed with respect to

Z =

8<
:Z � P :

X
i:pi2Z

wi < n=3

9=
; :

These generalized threshold-type protocols are not sufficient for capturing general scenarios of mu-
tual trust and distrust, where players (e.g., people, companies, countries) are often either in a trust rela-
tionship (related, married, mutually affiliated, allied) or in a distrust relationship (animosities, competi-
tion, hostilities).

As an example of player simulation, consider the setP = fp1; : : : ; p6g of players, and the four-party
protocol of [BGW88] (for the active case) in whichp1 andp3 play for one player each and the other two
players are simulated by four-party protocols of the same type, one among the playersp1, p2, p3, andp4,
and the other among the playersp1, p2, p5, andp6 (see Fig. 1).

p1 p3

p1 p2

p3p4

p1 p2

p5p6

p1 p3

p1 p2 p3 p4 p1 p2 p5 p6

Figure 1: Example of a player simulation.

This protocol tolerates exactly the adversary structure that was discussed in the example in Sec-
tion 1.4, namely the adversary structureZ with the basis

Z =
�
fp1g; fp2; p4g; fp3; p5g; fp3; p6g; fp2; p5; p6g; fp4; p5; p6g

	
:

For each set inZ, one can easily verify that the set is tolerated: for example, the setfp2; p5; p6g is
tolerated because only one player is corrupted in the simulating protocol amongp1, p2, p3, andp4 (thus
this protocol simulates an honest player for the main protocol), and hence three of the four players in
the main protocol play honestly. The fact that there are too many corrupted players in the subprotocol
amongp1, p2, p5, andp6 does not matter.

6

The tolerated sets can easily be derived by representing the simulation hierarchy as a tree (see the
right-hand side of Fig. 1). For a specific adversary, to every leaf the value1 is assigned if the correspond-
ing player is noncorrupted, and0 is assigned if the corresponding player is corrupted. To every inner
node,1 is assigned if and only if more than two-thirds of its children have1 associated (more than half in
the passive model). The considered adversary is tolerated exactly if this procedure assigns1 to the root
node. More formally, the tree corresponds to a circuit with threshold gates, and an adversary is tolerated
exactly if the corresponding input vector evaluates to1.

In this example we have considered a particular simulation tree, and derived the tolerated adversary
structure. Deriving and proving the tolerated adversary structure of a simulation is one major goal of this
paper. Another goal will be to find such a simulation tree for any given adversary structure.

1.6 Subsequent Work

Subsequently to [HM97], several extensions and improvements for general adversaries were suggested.
In [BW98] a more efficient protocol for the passive model is proposed, and the results are formulated in
terms of quorum systems. In [CDM98] efficient and modular protocols secure against general adversaries
are given for the active and passive model with unconditional and computational security. The efficiency
of the protocols for the active model with broadcast is improved in [SS98]. Finally, in [FHM99], a new
model with general (nonthreshold) mix-type (active and passive at the same time) adversaries is proposed
and tight bounds on the existence of such protocols are given.

1.7 Outline of the Paper

The basic technique for constructing a protocol that tolerates a given adversary structure is to begin
with a protocol among a few players and to simulate successively some players by subprotocols among
appropriate sets of players. In Section 2 we formalize protocols and adversaries and describe the passive
and the active models. In Section 3 we show what it means to simulate a player by a subprotocol and
we derive the exact tolerated adversary structures for protocols in which players are simulated by other
multiparty protocols. The exact characterization of tolerable adversary sets for both models are presented
in Section 4. This is achieved by deriving an appropriate sequence of player simulations from any given
admissible adversary structure. In contrast to Section 3, which is concerned with the security of protocols
with simulated players, the arguments of Section 4 are purely combinatorial. In Section 5 we show that
for some adversary structures, no secure protocols with polynomial efficiency (in the number of players)
can exist. Finally, some open problems are mentioned in Section 6.

2 Definitions and Models

Defining and proving the security of multiparty computation protocols is known to be very delicate. In
order to be on safe grounds, it is unavoidable to be rather formal in the definitions and proofs. Our
definitions are based on Canetti’s recent natural and general definitions of security in multiparty compu-
tation [Can98b].

7

2.1 Players, Processors, and Communication

In the literature and also in the previous section, players are assumed to perform two entirely different
tasks: On one hand, they provide input and receive output, and on the other hand, they are supposed to
perform the operations of the actual protocol. It is necessary to distinguish clearly between these two
tasks. Therefore, in the sequel, we refer to aplayer only as the entity that provides input and receives
output, and to the associatedprocessoras the entity that performs the operations of the protocol. This
distinction is important for taking into account the fact that in a general multiparty specification with
several input stages, the players’ inputs can depend on information obtained during the execution of, but
outside of, the protocol (e.g., insider information in a stock-market protocol). The players’ computational
resources need not be restricted.

A processor can perform operations in a fixed finite field(F ;+; �), can select elements from this field
at random, and can communicate with other processors over perfectly authenticated and confidential syn-
chronous channels. The processors are polynomially bounded. In addition to processors associated with
players, we also introduce the abstract concept of avirtual processor, which offers the same functional-
ity as a processor but only appears in the construction of a protocol. In particular, the trusted party of a
specification (or other simulated processors) are virtual processors. Processors are denoted bypi, where
positive indices refer to real processors and negative indices refer to virtual processors.

Formally, a processor can be modeled as a probabilistic Turing Machine, with a (read-only) input
tape, a (write-only) output tape, and a (read–write) working tape. The player associated with a processor
can write its input tape and can read its output tape. The input and output tapes of virtual processors
are not used. Every pair of processors can communicate via a pair of tapes, where one tape is read-only
for the first and write-only for the second processor, and the other tape is write-only for the first and
read-only for the second processor. All tapes (in particular the communication tapes) are private and
authentic, i.e., only the involved processors can read from (or obtain any information about) or write to a
tape.

2.2 Variables and Views

We assume a globalvariable spaceX . A variable x 2 X can take on a value from the given finite
field (F ;+; �). Every quantity ever generated during a protocol execution, including inputs, local data
(e.g., shares), and outputs, is assigned to a variable. For a particular protocol execution each variable
takes on only one particular value, i.e., variables are not to be understood in the sense of an imperative
programming language but rather as labels for values or, more precisely, as a fixed binding between a
name and a value.

The locality or confidentiality of the value assigned to a variable, i.e., the fact that certain variables
are seen only by certain processors or sets of processors, is modeled by associating aview�(p) � X with
every processorp, capturing the set of variables known top. The view�(B) of a setB of processors is
the union of the views of the processors inB. Note that a processor may have full or partial knowledge
about a variable although the variable is not in its view. A local variable of a processor is in the global
variable space but is only in the view of this processor. Transmitting the value of a variable from one
processor to another processor means to include the variable in the latter’s view.

8

2.3 Protocols, Specifications, and Protocol Generators

A protocol� among a setP of processors that involves variables from a variable spaceX is a sequence
d1; : : : ; dl of statements. There are four types ofstatements: An input statementinput(pi; x) instructs
the processorpi 2 P to read a value from its input tape (i.e., from its associated player) and to assign
the value to the variablex 2 X . A transmit statementtransmit(p1; p2; x) instructs the processorp1 2 P
to send the value of the variablex 2 X to the processorp2 2 P .4 An output statementoutput(p; x) in-
structs the processorp 2 P to output the value of the variablex to its associated player. Finally,compu-
tation statementsare of one of three forms: Acomp(p;+; x; x1; x2)-statement (acomp(p; �; x; x1; x2)-
statement) instructs the processorp to add (multiply) the values of the variablesx1 andx2 and to assign
the result to the variablex. A comp(p; ran; x)-statement instructs the processorp to select an element
from the field at random and to assign the value to the variablex.

Assigning a value to a variable (in an input or computation statement) means to define its (global)
value and to include it in the processor’s view, and is only admissible if no value has previously been
assigned. A processor can only use (in a computation, transmit, or output statement) the values of
variables that are globally defined and are included in the processor’s view.

A multiparty computation specification(or simply called specification) formally describes the coop-
eration to be performed and the processors that give input to, or receive output from, the computation.
Intuitively, a specification specifies the cooperation in an ideal environment involving a trusted party.
Formally, a specification is a pair(�0; �) consisting of a protocol�0 among a setP0 of processors, and
the name of a virtual processor� 2 P0. The protocol�0 of the specification is also called theideal
protocol.

In the special case of secure function evaluation, the protocol of the specification first instructs each
processor to receive the input from the associated player and to send this value to� . Then it instructs
� to compute the agreed function and to send the output to every processor. Finally, it instructs each
processor to send the output value to its associated player.

A multiparty protocol generatorG for the setPG of processors is a function that takes as input a
multiparty computation specification(�0; �) involving processors from a setP0 and returns a protocol�
for the processors

�
P0nf�g

�
[PG. A statement index functionfor a specification(�0; �) and protocol�

is a strictly monotone functionf ,

f : f1; : : : ; j�0j+ 1g ! f1; : : : ; j�j+ 1g;

wheref(1) = 1 andf(j�0j+ 1) = j�j+ 1.
The intuition is that a protocol generatorG simulates the virtual trusted processor� by a multiparty

computation protocol among the processors inPG. Each statement of the ideal protocol�0 is expanded
into a sequence of statements, and all these sequences are concatenated to the resulting protocol�. In
order to keep track of which subsequence of� resulted from a given statementdi of the ideal protocol
�0, the statement index function maps the indexi of each statementdi in �0 to the indexf(i) of the
first statement in the corresponding expansion in�, i.e., theith statement of�0 “is computed” by the
sequencef(i) to f(i + 1) � 1 of statements of� (sincei = j�0j is possible the domain off includes
j�0j+ 1).

4In order to guarantee that every variable has a unique value in a protocol, one could more formally, but equivalently, define
a transmit statement astransmit(p1; p2; x1; “x2”), which instructs the processorp1 to send the value of the variablex1, andp2
to assign the received value to the variablex2.

9

A BGW multiparty protocol generatorG is a multiparty protocol generator that is constructed using
the tools of [BGW88] (see Section 2.7 for more details).

2.4 Structures

A structureZ for the setP of processors is a monotone set of subsets ofP , i.e.,Z � 2P , where all
subsets ofZ are inZ if Z 2 Z. For a structureZ,Z denotes thebasisof the structure, i.e., the set of the
maximal sets inZ:

Z =
�
Z 2 Z :6 9Z 0 2 Z : Z � Z 0

	
:

To restrict a structureZ to the setP 0 of processors means that all sets inZ are intersected withP 0, i.e.,

Z
P 0 =

�
Z \ P 0 : Z 2 Z

	
:

Note that a restricted monotone structure is still monotone but a restricted basis is not necessarily a basis.
(However, we haveZ

P 0 � Z
P 0). We also use this operator to restrict elements of a structure to a set of

processors (i.e.,Z
P 0 stands forZ \ P 0).

2.5 Adversaries and Definition of Security

Let � be a protocol for the setP of processors. A (static)passive adversaryA for the protocol� that
corrupts the processors inZA � P is a (probabilistic) program (or strategy). After each statement of the
protocol�, the passive adversary may read the variables in the views of the corrupted processors (i.e.,
the variables in�(ZA)), and extend its current view by these values.5 Then it can perform an arbitrary
computation on the values in its view and extend its view by the computed values.6 We do not give a more
precise definition of the adversary’s view but it is understood that it consists of random variables with a
well-defined range. For instance, if the adversary is modeled as a Turing machine, the view consists of
the content of all tapes. The complexity of an adversary is not assumed to be polynomial.

A (static)active adversaryA for the protocol� that corrupts the processors inZA � P is a passive
adversary which in addition may stop the corrupted processors and take complete control over their
communication tapes. This means that the adversary can read the complete internal state of the corrupted
processors and impersonate them in the remaining protocol.

The following definitions of security apply to both passive and active adversaries. For an adversary
A, a protocolA-securely computesa specification if, whateverA does in the protocol, the same effect
could be achieved by an adversary (with a modified strategy, but with similar costs) in the ideal protocol
of the specification.

Formally, for an adversaryA and a specification(�0; �) for the setP0 of processors, the protocol� A-
securely computes the specification(�0; �) if there exists a statement index functionf� : f1; : : : ; j�0j+

5It may at first appear to be sufficient to assume that the adversary reads the variables of all corrupted processors only at the
end of the protocol. However, in our construction a protocol may consist of several intertwined protocols and values appearing
in one of them could be of use in selecting inputs corresponding to another protocol; therefore it must be tolerated that the
adversary reads the variables after every statement. This corresponds to the notion of “on-line security” in [Can98b].

6The values in the adversary’s view need neither be elements of the finite field nor be assigned to variables of the global
variable space. However, such a restriction could be made without loss of generality.

10

1g ! f1; : : : ; j�j + 1g and an adversaryA0 for the ideal protocol�0 with7 ZA0 = ZA P0nf�g
such that

for all inputs and for everyi = 1; : : : ; j�0j + 1 the joint distribution ofA0’s view and the views�i(p)
of all noncorrupted processorsp 2

�
P0 nf�gnZA0

�
before theith statement of the ideal protocol�0

(with the adversaryA0 present) is equal to the joint distribution ofA’s view and the views�f(i)(p) of all
noncorrupted processorsp 2

�
P0nf�gnZA0

�
before thef(i)th statement of the real protocol� (with the

adversaryA present). Moreover, the complexity ofA0 must be polynomial in the complexity ofA. This
corresponds to the definition of on-line security of [Can98b]. The adversaryA0 can be seen as a kind of
simulator and is called theideal adversaryof A.

For the special case of secure function evaluation, the only effect that an adversaryA can achieve in
a protocol thatA-securely computes this specification corresponds to a modification of the inputs and
outputs of the corrupted processors in the ideal protocol (which of course cannot be prevented).

For a structureZ and a specification(�0; �), a protocol� Z-securely computesthe specification
(�0; �) if, for every adversaryA with ZA 2 Z, the protocol� A-securely computes the specification
(�0; �). Whenever the specification is clear from the context, we also say that a protocoltoleratesan
adversaryA (a structureZ) instead of saying that the protocolA-securely (Z-securely) computes the
specification.

A protocol generatorG for the setP of processors isA-secure(or toleratesA) for a given adversary
A if, for every specification, the protocol that results by applying the generator to this specificationA-
securely computes the specification. For a structureZ � 2P , a protocol generatorG for the setP of
processors isZ-secure(or toleratesZ) if, for every adversaryA with ZA P

2 Z, the protocol generator
isA-secure.8

2.6 Models

We consider the same two models as in [BGW88]. In thepassive model, only a passive adversary may be
present. In theactive model, only an active adversary may be present. In both models, we assume reliable
synchronous secure channels between every pair of processors but we do not assume a broadcast channel.
The basic protocols of [BGW88] can be realized without broadcast or, more precisely, by simulating it
with a protocol among the sender and the receivers of the broadcast (e.g., [LSP82], [FM88], [BDDS92],
and [FM97]).

In both models, we only consider a static adversary, but the protocols are also secure against an
adaptive adversary. For the sake of simplicity, the proofs are not extended to capture the additional
power of adaptive adversaries.

2.7 BGW Protocol Generators

We use a particular BGW protocol generator for each model:Gp3 denotes the three-party BGW protocol
generator of [BGW88] for the setP

Gp3 = fp1; p2; p3g of processors for the passive model, tolerating all

passive adversaries that may corrupt one single processor, andGa4 denotes the four-party BGW protocol

7It is necessary to explicitly exclude� because it is possible that� occurs in�, and even ifA may corrupt� (which thus is
a simulating processor), it cannot be tolerated thatA0 corrupts� (which is the trusted party of the specification). At this point,
this technicality appears to be pedantic, but in later recursive constructions it will be necessary. Note that if� does not occur in
�, thenZA P0nf�g

= ZA P0
.

8The intuitive conditionZA 2 Z is too restrictive, because this would not include adversaries that corrupt processors of the
specification.

11

generator for the setP
Ga4 = fp1; p2; p3; p4g of processors of [BGW88] in the active model, tolerating

all active adversaries that may corrupt one single processor.
The protocol generatorsGp3 andGa4 are realized as follows: For a given specification(�0; �), they

scan�0 statement by statement and generate a new protocol in which each statement involving� is
replaced by a statement sequence.

In the passive model,Gp3 for the setP
Gp3 = fp1; p2; p3g of processors is defined as follows: All

statements of�0 that do not involve� are left unchanged. Every statementtransmit(p; �; x) is replaced
by a secret sharing protocol in whichp is the dealer who shares the variablex among the processors
p1, p2, andp3 such that any two of them can reconstruct the secret. Every statementtransmit(�; p; x) is
replaced by the subprotocol to reconstruct the secret, in which the processorsp1, p2, andp3 send their
shares top who then interpolates the secret. Every statementcomp(�;+; x; x1; x2) is replaced by the
three statements that instruct the processorsp1, p2, andp3 to add their shares ofx1 and ofx2 and to
assign the result to the variable of their share ofx. Every statementcomp(�; �; x; x1; x2) is replaced by
the multiplication protocol of [BGW88] (improved by [GRR98]) that multiplies the shared variablesx1
andx2 and assigns the resulting shares to the variables of the shares ofx.

A statementcomp(�; ran; x) is first replaced by a short sequence of statements, still involving� ,
but not involving a statement of the formcomp(�; ran; : : :), and then, this sequence is replaced by a
sequence without need for the trusted party� by using the techniques described above. In the first step,
each processorp1, p2, andp3 selects a random number (i.e.,comp(pi; ran; xi) for i = 1; 2; 3), then each
one sends his number to the trusted party� (i.e., transmit(pi; �; xi)), who then computes the random
valuex as the sum ofx1, x2, andx3 (i.e.,comp(�;+; x0; x1; x2), comp(�;+; x; x0; x3)). It is clear that if
at least one of the playersp1, p2, or p3 is honest, thenx is a uniformly selected secure random number.

In the active model,Ga4 is constructed similarly. Instead of the secret sharing protocol, the verifiable
secret sharing protocol of [BGW88] is used. Moreover, reconstruction involves error correction. As
multiplication protocol we use the protocol that robustly multiplies two shared values, as described in
[BGW88] and [GRR98]. The protocol to select jointly a random field element (as described above) uses
verifiable secret sharing.

The protocol generatorsGp3 andGa4 are indeedZ-secure forZ =
�
fp1g; fp2g; fp3g

	
(passive

model,Gp3) orZ =
�
fp1g; fp2g; fp3g; fp4g

	
(active model,Ga4), respectively. The security is claimed

in [BGW88], but is not formally proven. It is outside the scope of this paper to fill this gap, but such a
proof is in preparation [Can98a]. In the sequel, we assume thatGp3 andGa4 are secure.

3 Processor Simulation

In this section we introduce the technique of simulating (virtual) processors by other processors.9 In
a first step (Section 3.2), virtual processors are simplyrenamedusing aprocessor mapping, i.e., one
(virtual) processor plays for one or several virtual processors. In a second step (Section 3.3), virtual
processors aresimulatedby a set of (virtual) processors, i.e., the simulating processors perform all oper-
ations of the simulated virtual processor by a multiparty computation.

9The idea of simulating a single processor by a subprotocol was used in [Cha89] for a different purpose.

12

3.1 Definitions

Let P andP 0 be sets of processors. Aprocessor mapping�,

� : P ! P 0;

is a surjective function fromP onto P 0.10 The definition of a processor mapping� is extended to
the following domains: For a protocol�, the mapped protocol�(�) (or, equivalently,��) is the same
protocol, where in each statement all involved processors are replaced by the corresponding mapped
processors (if processors that are not inP are involved in a statement, then these processors are not
replaced). For a specification(�0; �) with � =2 P , the mapped specification is the specification with the
mapped protocol, i.e.,�(�0; �) = (��0; �). Note that�(�0; �) stands for�

�
(�0; �)

�
.

The inverse processor mapping��1 of a processor mapping� is defined by

��1 : P 0 ! 2P ; p0 7!
�
p 2 P : �(p) = p0

	
:

If the processor mapping� is bijective, then the function value of the inverse processor mapping��1 is
sometimes interpreted as a single processor (instead of a set that contains a single processor).11 Also, we
define the mapping of a set of processors to be the set of the mapped processors, and the inverse mapping
of a setB of processors to be the union of the sets of the inverse mappings applied to the processors in
B (i.e.,�(B) =

S
p2B

�
�(p)

	
and��1(B) =

S
p2B �

�1(p)).
In the following we give definitions for applying processor mappings to adversary structures and to

protocol generators. These definitions are appropriate in the sense that if a protocol (generator) tolerates
an adversary structure, then the mapped protocol (generator) will tolerate the mapped adversary structure.
This will be proven in the next section.

For a structureZ for the setP of processors and a processor mapping� : P ! P 0, the mapped
structure is

�(Z) =
�
Z � P 0 : ��1(Z) 2 Z

	
;

i.e., a setZ is in �(Z) if the set of all processors mapped to a processor inZ is in Z. For a protocol
generatorG for the setP of processors and a processor mapping� : P ! P 0, the mapped protocol
generator�(G) is a protocol generator that, applied to a specification(�0; �), simulates the trusted party
� by the processors inP 0 (instead ofP). In order to prevent syntactical collisions with the names of the
processors inP and of those appearing in�0, we first rename the processors appearing in�0 to some
new processor names,12 then apply the original protocol generatorG, then apply the processor mapping
�, and finally rename the previously renamed processors back to their original names. More formally,
when given(�0; �) where�0 involves the setP0 of processors,�(G) first applies an arbitrary bijective

10In the application of processor mappings, parentheses may be omitted whenever the precedence rules allow it. As usual,
function application (in particular a processor mapping) is right-associative and has higher precedence than any two-adic op-
erator. For any two processor mappings�1 and�2, for an arbitrary two-adic operator�, and for anyx1 andx2 we have
�1�2x1 � x2 = �1(�2(x1)) � x2.

11Generally, the inverse of a processor mapping is not a processor mapping. However, the inverse of abijectiveprocessor
mapping can be considered (and will be considered) as a processor mapping.

12That is, processor names that did not yet appear anywhere, neither in the protocol nor in the protocol generator nor in the
mapping.

13

processor mapping13 � :
�
P0n�

�
! P , whereP is a set of new processor names, to the specification,

then applies the protocol generatorG to this modified protocol specification, further applies the original
processor mapping� and finally applies the inverse processor mapping��1 to the resulting protocol.
Formally,

�G = �(G) =
��
�0; �

�
7! ��1

�
�(G(��0; �))

��
for an appropriate bijective processor mapping�. Note that�G does not depend on the choice of�.

Consider a multiparty protocol� among the setP of processors and a protocol generatorG for the set
PG of processors. Tosimulatea virtual processorp 2 P in � applying the protocol generatorG means
to consider this processorp as a trusted party and to have this party simulated by a subprotocol among
the processors inPG, according toG. More precisely, the specification(�; p) is used as input for the
protocol generatorG. To simultaneously simulatethe processorspr1 ; : : : ; prk 2 P in � using the pro-
tocol generatorsG1; : : : ; Gk for the processor setsP1; : : : ; Pk, respectively, is defined as follows: First
considerk arbitrary bijective processor mappings�i : Pi ! P i (for i = 1; : : : ; k), whereP 1; : : : ; P k

are pairwise disjoint sets of new processor names. Then the resulting protocol is

��1
k � � � ��1

1

��
�kGk

��
� � �
�
�2G2

��
(�1G1)(�; pr1); pr2

�
� � � ; prk

��
;

and does not depend on the choices for�1, : : : , �k.

3.2 Renaming Processors

It is trivial that by renaming processors in a protocol, the tolerated adversary structure is the same with
the identically renamed processors. More precisely, security of a protocol is defined with respect to
a specification, and the security of the renamed protocol is with respect to the renamed specification.
Furthermore, when several processors are renamed to the same processorp (i.e., p “plays” the role of
several processors), then a subsetZ of the processors that containsp is tolerated in the renamed protocol
if and only if the set of all the renamed processors and all the processors inZ nfpg is tolerated in the
original protocol. A subsetZ with p =2 Z is tolerated ifZ is tolerated in the original protocol. This
naturally extends the “partition lemma” of [CK89].

Lemma 1 Given a protocol� for the setP of processors thatZ-securely computes the specification
(�0; �), and some processor mapping�, then�(�) is a protocol for the set�(P) of processors that
�(Z)-securely computes the specification�(�0; �).

Proof. We have to show that for every adversaryA0 for the mapped protocol�(�), withZA0 2 �(Z), the
protocol�(�)A0-securely computes the mapped specification�(�0; �). Figure 2 illustrates the procedure
for constructing an ideal adversaryA0

0 for the mapped specification�(�0; �) from a given adversaryA0

for ��. We begin with the adversaryA0 for the mapped protocol��, construct an adversaryA for the
original protocol�, and show thatA is tolerated in the protocol�. Thus, by the definition of security of
a protocol, there exists an ideal adversaryA0 for the protocol�0 of the specification. Then we useA0 to
construct an adversaryA0

0 for the mapped specification�(�0; �), and we prove that this adversary is an
ideal adversary of the original adversaryA0.

13This corresponds to alpha renaming in the context of lambda calculus and is a purely technical step. Note that the name of
the trusted party must not be mapped.

14

A0 for ��

A for �A0 for �0

A0

0
for ��0

?
�

6
��1�

ideal real

mapped

unmapped

Figure 2: Construction of the ideal adversaryA0
0 for a given adversaryA0.

Consider an arbitrary adversaryA0 for �� with ZA0 2 �(Z). We defineA to be the adversary
for � with ZA = ��1(ZA0) and with the same strategy asA0, except that wheneverA0 reads from, or
writes to, the tape of a corrupted processorp0 2 ZA0 , thenA accesses the tape of the corresponding14

processorp 2 ��1(p0) in the same manner asA0. By the definition of processor mappings for structures,
ZA0 2 �(Z) implies thatZA 2 Z. Hence, by what it means for a protocol to beA-secure, there
exists a statement index functionf� : f1; : : : ; j�0j+ 1g ! f1; : : : ; j�j + 1g and an adversaryA0 for �0
with ZA0 = ZA P0nf�g

(whereP0 is the set of processors of the ideal protocol�0) such that for every

i = 1; : : : ; j�0j + 1 the joint distribution of the view of the adversaryA0 and the views�i(p) of all
noncorrupted processorsp 2

�
P0nf�gnZA0

�
before theith statement of the ideal protocol�0 (with the

adversaryA0 present) is equal to the joint distribution of the view of the adversaryA and the views�i(p)
of all noncorrupted processorsp 2

�
P0nf�gnZA0

�
before thef�(i)th statement of the real protocol�

(with the adversaryA present). Let the statement index functionf�� for the mapped protocol be equal to
that of the unmapped protocol, i.e.,f�� = f�, and letA0

0 be the adversary for the mapped ideal protocol
��0 with ZA0

0
= �(ZA0) = �

�
ZA P0nf�g

�
= �

�
��1(ZA0)

P0nf�g

�
= ZA0

�(P0)nf�g
. The strategy ofA0

0 is
the same as the strategy of the adversaryA0, except that wheneverA0 reads from, or writes to, the tape
of a corrupted processorp 2 ZA0 , thenA0

0 accesses the tape of the processor�(p).
Clearly, for eachi = 1; : : : ; j��0j+ 1, the joint distribution of the view of the adversaryA0

0 and the
views�i(p) of all noncorrupted processorsp 2

�
�(P0)nf�gnZA0

0

�
before theith statement of the mapped

ideal protocol��0 (with the adversaryA0
0 present) is equal to the joint distribution of the view of the

adversaryA0 and the views�f��(i)(p) of all noncorrupted processorsp 2
�
�(P0)nf�gnZA0

0

�
before the

f��(i)th statement of the mapped real protocol�� (with the adversaryA0 present).

If the structureZ is maximal for the protocol� (i.e., for everyZ � P with Z =2 Z there exists a
specification(�0; �) and an adversaryAwithZA � Z, such that� does notA-securely compute(�0; �)),
then�(Z) is also maximal for�(�).

The corollary below follows immediately from Lemma 1 and from the definition of processor map-
pings for protocol generators.

Corollary 1 Given aZ-secure protocol generatorG for the setPG of processors, and given some pro-
cessor mapping�, then�(G) is a�(Z)-secure protocol generator for the set�(PG) of processors.

14If the mapping is not bijective, then for constructing the adversaryA one must consult the unmapped protocol� to deter-
mine which processor’s tape needs to be accessed.

15

3.3 Simulating a Single Processor

Consider a protocol� for the setP of processors, a processorp 2 P , and a protocol generatorG0 for
the setP 0 of processors, and assume that� isZ-secure for an adversary structureZ andG0 isZ 0-secure
for an appropriate adversary structureZ 0. Let p be simulated in� byG0, and let�� denote the resulting
protocol. A setZ of processors is tolerated in�� if the setZ is tolerated in� (i.e.,Z

P
2 Z) andZ

is tolerated byG0 (i.e Z
P 0 2 Z 0). Even ifZ is not tolerated byG0, but instead� tolerates thatp is

corrupted in addition to the processors inZ (i.e.,
�
Z

P
[fpg

�
2 Z), thenZ is nevertheless tolerated in

the resulting protocol��. This is formally stated and proved below.

Lemma 2 Consider a specification(�0; �) for the setP0 of processors, a protocol� for the setP of
processors thatZ-securely computes(�0; �) for some adversary structureZ � 2P , and a BGW protocol
generatorG0 for the setP 0 of processors (whereP 0 \ P = ;) that isZ 0-secure for some adversary
structureZ 0 � 2P

0
. Simulating a processorp 2

�
Pnf�gnP0

�
in � by applying the protocol generatorG0

results in a protocol�� for the setP � of processors thatZ�-securely computes the specification(�0; �)
where

P � =
�
P nfpg

�
[P 0

Z� =
n
Z � P � :

��
Z

P
[fpg

�
2 Z

�
_
�
Z

P
2 Z ^ Z

P 0 2 Z 0
�o

:

Proof. Consider an arbitrary adversaryA� for the protocol�� with ZA� 2 Z�, and a statement index
function f 0 : f1; : : : ; j�j + 1g ! f1; : : : ; j��j + 1g. We construct a statement index functionf� :
f1; : : : ; j�0j + 1g ! f1; : : : ; j��j + 1g and an ideal adversaryA0 of the adversaryA� whereZA0 =
ZA�

P0nf�g
. We distinguish between two cases: in the first case, we assume that

�
ZA�

P
[fpg

�
2 Z,

and in the second case we assume thatZA�
P
2 Z ^ ZA�

P 0 2 Z 0.
First, assume that

�
ZA�

P
[fpg

�
2 Z. We defineA to be the adversary for the protocol� with

ZA = ZA�
P
[fpgwith the following strategy: Without loss of generality, letP 0 = fp1; : : : ; pmg. First,

A locally initializes jP 0j virtual processorsep1; : : : ; epm, one for each processor inP 0, and an additional
virtual processorep0 for simulating the behavior of a noncorrupted sender or receiver in the protocol
�� (ep0 is re-initialized after every such use), and assigns an empty view to each of them. For every
i = 1; : : : ; j�j+ 1, A performs the following steps for theith statementdi of �:

� If the statementdi does not involvep, A performs the same steps thatA� would perform.

� If di is acomp-statement forp, thenA executes the sequencef 0(i); : : : ;
�
f 0(i+ 1) � 1

�
of state-

ments of��, where each processorpi 2 P 0 is relabeled to the virtual processorepi.15 After each
statement of this sequence,A performs the same steps thatA� would perform (modified such that
it accesses the tapes ofepi instead ofpi).

� If di is a transmit(p; pj ; x)-statement, thenA executes the sequencef 0(i); : : : ; f 0(i + 1) � 1 of
statements of��, where each processorpi 2 P 0 is relabeled to the virtual processorepi, and the
receiving processorpj is renamed toep0. After each statement of this sequence,A performs the
same steps thatA� would perform (whereA accesses the tapes ofepi instead ofpi, and of ep0
instead ofpj). At the end of the sequence,A reads the value of the variablex in the view ofep0
and sends this value topj . If the adversaryA� is passive (and henceA also is passive), then this
value corresponds to the value thatp would send topj.

15More precisely, a processor mapping� that mapspi 7! epi �1 � i � m
�

is applied to the sequence of statements.

16

� If di is atransmit(pj ; p; x)-statement, thenA first reads the value ofx and puts this value into the
view of ep0, then executes the sequencef 0(i); : : : ; f 0(i + 1) � 1 of statements of��, where each
processorpi 2 P 0 is first relabeled to the virtual processorepi, and the sending processorpj is
renamed toep0.16 After each statement of this sequence,A performs the same steps thatA� would
perform (modified as above).

The described adversaryA is tolerated in� becauseZA 2 Z. Thus there exists an ideal adversaryA0 of
A with ZA0 = ZA P0nf�g

. Clearly, this is also an ideal adversary forA0.

Second, assume thatZA�
P
2 Z ^ ZA�

P 0 2 Z 0. A� is tolerated by the protocol generatorG0

(becauseZA�
P 0 2 Z 0); thus by considering(�; p) as the specification of��, there exists an ideal

adversaryA of A� for the protocol� with ZA = ZA�
P

. BecauseZA 2 Z there exists an ideal adversary
A0 of A for the ideal protocol�0 with ZA0 = ZA P0nf�g

. One can easily verify thatA0 is also an ideal

adversary ofA�.

3.4 General Simulation of Processors

In this section we consider the simultaneous simulation of several processors with completely general
(possibly overlapping) sets of simulating processors. In a protocol resulting from such a simulation,
an adversary is tolerated if every corrupted nonsimulated processor is tolerated in the original protocol
and, in addition, for every simulated processor, either the adversary is tolerated in the corresponding
subprotocol (more precisely, by the corresponding protocol generator), or this processor is tolerated to
be (additionally) corrupted in the original protocol. This is formally stated and proved below.

Theorem 1 Let� be a protocol among the setP of processors thatZ-securely compute a specification
(�0; �), and letG1; : : : ; Gk be Z1-, : : : ,Zk-secure BGW protocol generators for the processor sets
P1; : : : ; Pk, respectively.17 Assume that in� the k processorspr1 ; : : : ; prk 2 P are simultaneously
simulated by subprotocols applying the protocol generatorsG1; : : : ; Gk, respectively. Then the resulting
multiparty protocol�� is for the setP � of processors andZ�-securely computes the specification (�0; �),
where

P � =
�
P nR

�
[

k[
i=1

Pi;

Z� =
n
Z � P � :

�
Z

PnR
[
n
pri 2 R : Z

Pi
=2 Zi

o�
2 Z

o
;

andR = fpr1 ; : : : ; prkg is the set of replaced processors.

16Here we assume that the statements in the sequencef(i); : : : ; f(i+1)� 1 of �� requirepj to know only the value of the
variablex but of no other variables. This is the case for example for BGW protocol generators. For most other protocol gen-
erators (e.g., [RB89]), the proof can be adapted such that additional information (e.g., check vectors) are associated with each
variable. However, one can construct artificial protocol generators for which this lemma does not hold. For example, consider
the protocol generator that is almost identical to the BGW protocol generators with the only exception that atransmit(pj ; p; x)
is translated into a secret sharing protocol forall variables in the view�(pj) of pj (and not only forx). This protocol generator
is still secure, but an untolerated adversaryA� learns the whole view ofpj , which cannot be simulated in the protocol�.

17Note thatG1; : : : ; Gk are generally mapped versions ofGp3 orGa4.

17

Proof. According to the definition of simultaneous simulation,

�� = ��1
k � � � ��1

1

��
�kGk

��
� � � (�2G2)((�1G1)(�; pr1); pr2) � � � ; prk

��
for some bijective processor mappings�1 : P1 ! P 1; : : : ; �k : Pk ! P k, whereP 1; : : : ; P k are pair-
wise disjoint sets of new processor names. According to Corollary 1,�1G1, : : : ,�kGk are BGW protocol
generators for the sets�1P1; : : : ; �kPk of processors that are�1Z1; : : : ; �kZk secure, respectively.

These protocol generators are applied subsequently, where after applying theith generator the set of
processors is denoted byP (i) and the tolerated adversary structure is denoted byZ(i). In the following,
some technical transformations ofZ(i) may at first glance appear to be unmotivated.

Applying Lemma 2,(�1G1)(�; pr1) is a protocol for the setP (1) of processors toleratingZ(1), where

P (1) =
�
P nfpr1g

�
[�1P1

Z(1) =

8<
:Z � P (1) :

��
Z

P
[fpr1g

�
2 Z

�
W �

Z
P
2 Z ^ Z

�1P1
2 �1Z1

�
9=
;

=
n
Z � P (1) :

�
Z

P
[
n
pri 2 fpr1g : Z �iPi

62 �iZi

o�
2 Z

o
: (1)

Furthermore,
�
�2G2

��
(�1G1)(�; pr1); pr2

�
is a protocol for the setP (2) of processors toleratingZ(2),

where

P (2) =
�
P (1)nfpr2g

�
[�2P2 =

�
P nfpr1 [pr2g

�
[�1P1 [�2P2

Z(2) =

8<
:Z � P (2) :

��
Z

P (1)
[fpr2g

�
2 Z(1)

�
W �

Z
P (1)

2 Z(1) ^ Z
�2P2

2 �2Z2

�
9=
;

=
n
Z � P (2) :

�
Z

P (1)
[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o�
| {z }

T

2 Z(1)
o
:

We now replaceZ(1) in the above equation by using (1). LetT be the underbraced term.

Z(2) =
n
Z � P (2) :

�
T

P
[
n
pri 2 fpr1g : T �iPi

62 �iZi

o�
2 Z

o
:

We have

T
P

=
�
Z

P (1)
[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o�
P

=
�
Z

P (1)

�
P
[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o
P

= Z
P
[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o
and

T
�iPi

=
�
Z

P (1)
[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o�
�iPi

=
�
Z

P (1)

�
�iPi

[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o
�iPi

= Z
�iPi

[; = Z
�iPi

:

18

This gives

Z(2) =

8<
:Z � P (2) :

0
@
�
Z

P
[
n
pri 2 fpr2g : Z �iPi

62 �iZi

o�
[
n
pri 2 fpr1g : Z �iPi

62 �iZi

o
1
A 2 Z

9=
;

=
n
Z � P (2) :

�
Z

P
[
n
pri 2 fpr1 ; pr2g : Z �iPi

62 �iZi

o�
2 Z

o
:

Repeating this stepk times yields the setP (k) of processors and the tolerated structureZ(k) of the
protocol(�kGk)(� � � (�2G2)((�1G1)(�; pr1); pr2) � � � ; prk):

P (k) =
�
P nR

�
[�1P1 [� � � [�kPk

Z(k) =
n
Z � P (k) :

�
Z

P
[
n
pri 2 R : Z

�iPi
62 �iZi

o�
2 Z

o
:

Finally, we apply the inverse processor mappings��1
1 , : : : , ��1

k . Let # = ��1
k � � � ��1

1 . Because
��1
1 ; : : : ; ��1

k are bijective and have pairwise disjoint domains, all function values of# are sets with
a single processor and are considered as those processors (rather than as sets). Also,# must be extended
to be the identity function for the processors inPnR, since it will be applied to the previously constructed
protocol among the setP (k) of processors. The resulting protocol�� for the setP � of processors tolerates
the structureZ�, where

P � = #P (k)

= #
��
P nR

�
[�1P1 [� � � [�kPk

�
=
�
P nR

�
[��1

1 �1P1 [� � � [��1
k �kPk

=
�
P nR

�
[P1 [� � � [Pk

=
�
P nR

�
[

k[
i=1

Pi

Z� = #Z(k)

=
n
Z � #P (k) : #�1

�
Z
�
2 Z(k)

o
=
n
Z � P � :

�
#�1(Z)

P
[
n
pri 2 R : #�1(Z)

�iPi
62 �iZi

o�
2 Z

o
:

Due to the definition of#, we have#�1(Z)
P

= Z
PnR

. Since the setsP i are pairwise disjoint we have

#�1(Z)
�iPi

= �i(Z)
�iPi

and, because�i is bijective, also�i(Z)
�iPi

= �i
�
Z

Pi

�
. Again using that�i

is bijective implies that�i
�
Z

Pi

�
2 �iPi if and only ifZ

Pi
2 Pi. This results in the claimed adversary

structure

Z� =
n
Z � P � :

�
Z

PnR
[
n
pri 2 R : Z

Pi
62 Zi

o�
2 Z

o
:

19

4 Complete Characterization of Tolerable Adversary Structures

4.1 Completeness Theorems

Theorem 2 In the passive model a setP of processors can compute every function/specification (per-
fectly)Z-securely if no two sets in the adversary structureZ coverP (i.e., if Q(2)(P;Z) is satisfied).
This bound is tight: if two sets coverP , then there exist functions that cannot be computedZ-securely.
The computation is polynomial in the size of the basisjZj of the adversary structure.

Proof. We first prove the sufficiency of the conditionQ(2)(P;Z) for the existence ofZ-secure protocols,
and then prove its necessity. The proof that every function can be computedZ-securely ifQ(2)(P;Z) is
satisfied proceeds in three steps: We describe a construction of a protocol generator, prove the suitability
of the construction, and demonstrate its efficiency.
CONSTRUCTION. Consider a setP of processors and a structureZ for this setP such thatQ(2)(P;Z)
is satisfied. We construct aZ-secure protocol generatorG for the setP of processors, i.e.,G takes as
input an arbitrary specification(�0; �) for the setP0 of processors and outputs a protocol� for the set�
P0nf�g

�
[P of processors thatA-securely computes the specification(�0; �) for every adversaryA

with ZA P
2 Z.

If some processorp 2 P does not occur in any set ofZ (i.e.,Z
fpg

= f;g) thenG simply replaces
the trusted party� in the specification by this processor. More precisely, let� be the processor mapping
that maps� to p (and is the identity function for all other processors), thenG = ((�0; �) 7! �(�0)).

Consider the case where every processor inP occurs in at least one set inZ. The following con-
struction is based on ideas in [AR63, pp. 22–24] and [Fit96]. We select some three-partition ofZ where
the size of each set of the partition is at mostdjZj=3e. Let Z1, Z2, Z3 be the union of the first two,
the first and the third, and the last two sets of the partition, respectively, each completed such that it
is monotone. Assume that protocol generatorsG1, G2, andG3, each among the setP of processors,
toleratingZ1, Z2, andZ3, respectively, have been constructed (by recursion). The protocol generatorG
that toleratesZ can be constructed as follows: Remember thatGp3 is the BGW protocol generator of
[BGW88] for the passive model for the setP

Gp3 = fp1; p2; p3g of processors, tolerating the adversary

structureZ
Gp3 = ffp1g; fp2g; fp3gg. Let � be a bijective processor mapping� : P

Gp3 ! P , where

P is a set of new processor names. First, the protocol generatorG applies�(Gp3) to the specification
(�0; �). �(Gp3) is a protocol generator that tolerates�(Z

Gp3) (Corollary 1), thus the resulting proto-
col tolerates all adversariesA with jZA

P
j � 1. ThenG simultaneously simulates all three processors

in P by subprotocols, applying the protocol generatorsG1, G2, andG3. This results in a protocol��

for the setP � of processors thatZ�-securely computes the specification(�0; �), where according18 to
Theorem 1 the set of processors is

P � =
���

P0nf�g
�
[P

�
nP
�
[P =

�
P0nf�g

�
[P

18Note that in Theorem 1 the protocol generators for the simulation are assumed to be BGW protocol generators. The
protocol generatorsG1, : : : ,G3 of this proof are recursively constructed protocol generators, which means that in fact only
BGW protocol generators (alternated with processor mappings) are applied.

20

and the tolerated adversary structure is

Z� =

�
Z � P � :

�
Z �

(P0nf�g)[P
�
nP
[
�
pri 2 P : Z

P
=2 Zi

	�
2 �Z

Gp3

�

=

�
Z � P � :

�����Z P0nf�g
[
�
pri 2 P : Z

P
=2 Zi

	�
P

���� � 1

�
=
n
Z � P � :

����pri 2 P : Z
P
=2 Zi

	��� � 1
o
:

Every setZ 2 Z is in two of the structuresZ1, Z2, Z3, thus every adversaryA with ZA P
2 Z is

tolerated in��. As claimed, the constructed protocol generatorG is for the setP of processors and is
Z-secure.
SUITABILITY . The suitability of this construction can be proved by induction. First, consider an ad-
versary structureZ satisfyingQ(2) with jZj � 2. Since the (at most) two sets inZ do not coverP ,
and all other sets inZ are subsets of one of the sets in the basis, there is a processorp 2 P that does
not occur in any set inZ (induction basis). Now assume that we can construct a protocol generator for
every adversary structure which contains2m of the sets inZ (induction hypothesis). Then the above
construction yields a protocol generator for an arbitrary adversary structure with up to3m of the sets in
Z (induction step).

Let ti be defined as the basis size guaranteed to be achievable with recursion of depthi. We have
t0 = 2, t1 = 3, andti+1 = ti + bti=2c. One can easily verify that(3=2)i � ti � (3=2)i+2. Thus,
in order to construct a protocol that tolerates the adversary structureZ, the recursion depth is at most
dlog3=2 jZje.

EFFICIENCY. The protocol generatorGp3 applied to a specification(�; p) translates every statement in
� that involvesp into a statement sequence of length at mostb, whereb is a constant parameter ofGp3.
Considering all simultaneous simulations at a given leveli of the recursion, every statement is affected
by the application of at most two BGW protocol generators (because every statement involves at most
two processors). Hence the total blow-up due to a given level of the recursion is at mostb2. The total

length of the constructed protocol toleratingZ is thus at mostj�0j �
�
b2
�dlog3=2 jZje = j�0j � jZj

O(1), which
is polynomial injZj.

In order to prove the necessity of the conditionQ(2)(P;Z) for the existence ofZ-secure protocols,
suppose there is a protocol that tolerates an adversary structure not satisfyingQ(2), i.e., there are two
potential setsZ1 andZ2 with Z1[Z2 = P . Without loss of generality we assumeZ1\Z2 = ;. Then we
can construct a protocol with two processorsp1 andp2, wherep1 simulates all processors inZ1 andp2
simulates all processors inZ2 (i.e., we apply a mapping to the given protocol), and we obtain a protocol
for two processors that tolerates both sets with a single adverse processor. Such a protocol for secure
function evaluation does not exist for most functions (for example for the binary OR-function), as stated
in [BGW88], thus resulting in a contradiction. A more careful analysis of the class of functions that are
not securely computable ifQ(2) is not satisfied is given in [CK89], [Kus89], and [Bea89].

Theorem 3 In the active model a setP of processors can compute every function/specification (per-
fectly)Z-securely if no three sets in the adversary structureZ coverP (i.e., ifQ(3)(P;Z) is satisfied).
This bound is tight: if three sets cover the full set of processors, there are functions that cannot be com-
putedZ-securely. The computation is polynomial in the size of the basisjZj of the adversary structure.

21

Proof (Sketch). This proof for sufficiency ofQ(3)(P;Z) is along the lines of the proof of Theorem 2
and also proceeds in the same three steps. We describe only the major differences.
CONSTRUCTION. A four-partition of the adversary structureZ is selected where the size of each set
of the partition is at mostdjZj=4e. By recursion, a protocol is constructed for each of the four unions
of three set of the partition. First, the protocol generator appliesGa4 in order to substitute the trusted
party� in the specification by a protocol among four virtual processors, then simultaneously replaces the
four virtual processors by applying the recursively constructed protocol generators. Applying Theorem 1
shows that the tolerated adversary structure isZ.
SUITABILITY . The induction basis (there is a processorp 2 P that does not occur inZ) holds for any
structureZ with jZj � 3, and the induction step constructs a protocol generator that tolerates4m of the
sets inZ by assuming protocol generators that tolerate3m of the sets.
EFFICIENCY. Let b be the constant “blow-up factor” ofGa4, and letui be defined as the minimal
size of the basis of the adversary structures guaranteed to be achievable with recursion of depthi. The
sequenceui is hence given byu0 = 3, u1 = 4, andui+1 = ui + bui=3c. One can easily verify that
(4=3)i � ui � (4=3)i+3. Thus, in order to construct a protocol that tolerates the adversary structureZ,
the recursion depth is at mostdlog4=3 jZje, and the total length of the constructed protocol toleratingZ

is at mostj�0j �
�
b2
�dlog4=3 jZje = j�0j � jZj

O(1), which is polynomial injZj.

In order to prove the necessity of conditionQ(3)(P;Z), suppose that there exists a protocol generator
for an adversary structure not satisfyingQ(3), i.e., there are three potential adversaries that cover the
full set of processors. Then we can construct a protocol among three processors, where each of them
simulates the processors of one adversary, and we obtain a protocol among three processors, perfectly
tolerating active cheating of one of them. Such a protocol for secure function evaluation does not exist
for most functions (for example for the broadcast function, as proved in [PSL80] and [LSP82]), thus
resulting in a contradiction.

4.2 Example

We apply Theorem 2 to construct a protocol generatorG for the passive model among the setP =
fp1; p2; p3; p4; p5; p6g of processors that tolerates the adversary structureZ with the basisZ = ffp1; p4; p6g,
fp2; p3; p6g, fp1; p2; p6g, fp1; p2; p5g, fp2; p4; p5g fp1; p3; p5g, fp1; p2; p3; p4gg. It is easy to verify that
Q(2)(P;Z) is satisfied.

As a short notation, we write[pi; pj ; pk] for the (mapped) protocol generatorGp3 with the three
processorspi, pj , andpk, and[pi; pj ; [pk; pl; pm]] for the protocol generator among the processorspi,
pj and a virtual processor simulated by a protocol generated by the protocol generatorGp3 among the
processorspk, pl, andpm (i.e., a mapped protocol generator). As a special case,[p] refers to the protocol
generator that simply replaces the name of the trusted party in the multiparty computation specification
by p. Whenever a structure is partitioned, this partition is not made explicit, but can easily be derived
from the three resulting structures.

Step 1: DivideZ into three partitions and set
Z1 = ffp1; p4; p6g, fp2; p3; p6g, fp1; p2; p6g, fp1; p2; p5g, fp2; p4; p5gg,
Z2 = ffp1; p4; p6g, fp2; p3; p6g, fp1; p2; p6g, fp1; p3; p5g, fp1; p2; p3; p4gg,
Z3 = ffp1; p2; p5g, fp2; p4; p5g, fp1; p3; p5g, fp1; p2; p3; p4gg.

22

Step 2: ConstructG1 toleratingZ1.

Step 2.1: DivideZ1 into three partitions and set
Z11 = ffp1; p4; p6g, fp2; p3; p6g, fp1; p2; p6gg,
Z12 = ffp1; p4; p6g, fp1; p2; p5g, fp2; p4; p5gg,
Z13 = ffp2; p3; p6g, fp1; p2; p6g, fp1; p2; p5g, fp2; p4; p5gg.

Step 2.2: ConstructG11 toleratingZ11. This is achieved by[p5].
Step 2.3: ConstructG12 toleratingZ12. This is achieved by[p3].
Step 2.4: ConstructG13 toleratingZ13.

Step 2.4.1: DivideZ13 into three partitions and set
Z131 = ffp2; p3; p6g, fp1; p2; p6g, fp1; p2; p5gg,
Z132 = ffp2; p3; p6g, fp2; p4; p5gg,
Z133 = ffp1; p2; p6g, fp1; p2; p5g, fp2; p4; p5gg.

Step 2.4.2: ConstructG131 toleratingZ131. This is achieved by[p4].
Step 2.4.3: ConstructG132 toleratingZ132. This is achieved by[p1].
Step 2.4.4: ConstructG133 toleratingZ133. This is achieved by[p3].
Step 2.4.5:G13 = [p4; p1; p3] isZ13-secure.

Step 2.5: G1 = [p5; p3; [p4; p1; p3]] isZ1-secure.

Step 3: ConstructG2 toleratingZ2.

Step 3.1: DivideZ2 into three partitions and set
Z21 = ffp1; p4; p6g, fp2; p3; p6g, fp1; p2; p6gg,
Z22 = ffp1; p4; p6g, fp1; p3; p5g, fp1; p2; p3; p4gg,
Z23 = ffp2; p3; p6gg, fp1; p2; p6g, fp1; p3; p5g, fp1; p2; p3; p4gg.

Step 3.2: ConstructG21 toleratingZ21. This is achieved by[p5].
Step 3.3: ConstructG22 toleratingZ22.

Step 3.3.1: DivideZ22 into three partitions and set
Z221 = ffp1; p4; p6g, fp1; p3; p5gg,
Z222 = ffp1; p4; p6g, fp1; p2; p3; p4gg,
Z223 = ffp1; p3; p5g, fp1; p2; p3; p4gg.

Step 3.3.2: ConstructG221 toleratingZ221. This is achieved by[p2].
Step 3.3.3: ConstructG222 toleratingZ222. This is achieved by[p5].
Step 3.3.4: ConstructG223 toleratingZ223. This is achieved by[p6].
Step 3.3.5:G22 = [p2; p5; p6] isZ22-secure.

Step 3.4 ConstructG23 toleratingZ23.

Step 3.4.1: DivideZ23 into three partitions and set
Z231 = ffp2; p3; p6g, fp1; p2; p6g, fp1; p3; p5gg,
Z232 = ffp2; p3; p6g, fp1; p2; p6g, fp1; p2; p3; p4gg,
Z233 = ffp1; p3; p5g, fp1; p2; p3; p4gg.

Step 3.4.2: ConstructG231 toleratingZ231. This is achieved by[p4].
Step 3.4.3: ConstructG232 toleratingZ232. This is achieved by[p5].
Step 3.4.4: ConstructG233 toleratingZ233. This is achieved by[p6].
Step 3.4.5:G23 = [p4; p5; p6] isZ23-secure.

23

Step 3.5: G2 = [p5; [p2; p5; p6]; [p4; p5; p6]] isZ2-secure.

Step 4: ConstructG3 toleratingZ3. This is achieved by[p6].
Step 5: The protocol generator

G =
h�
p5; p3; [p4; p1; p3]

�
;
�
p5; [p2; p5; p6]; [p4; p5; p6]

�
; p6

i
isZ-secure.

Figure 3 illustrates this protocol generator. Remember thatpi for i < 0 refers to a virtual processor
and does not explicitly appear in the above description.

p�2

p6

p�1

+

p6

p5 p�3

p�4p3 p5

p�5

+

p6

p5

p2
p5

p6

p4
p5

p6

p3 p5

p1 p3

p4

Figure 3: An example of recursive processor simulation.

5 Adversary Structures without Efficient Protocols

The goal of this section is, informally, to prove that there exists a family of adversary structures for which
the length of every resilient protocol grows exponentially in the number of processors.

For a specification(�0; �), a setP of processors, and an adversary structureZ, let'
�
(�0; �); P;Z

�
denote the length of the shortest protocol� for P thatZ-securely computes(�0; �). Furthermore, let
(��; �) denote the specification for the processorsp1 andp2 that reads one input of both processors,
computes the product, and hands it top1. Finally, letPn denote the setfp1; : : : ; png of processors.

24

Theorem 4 For both the passive and the active model there exists a familyZ2;Z3; : : : of adversary
structures for the setsP2; P3; : : : of processors, respectively, such that the length'

�
(��; �); Pn;Zn

�
of

the shortestZn-secure protocol for(��; �) grows exponentially inn.

In order to prove the theorem we need an additional definition: An admissible adversary structureZ
for the setP of processors ismaximalif Q(2)(P;Z) (in the passive model) orQ(3)(P;Z) (in the active
model) is satisfied, but any adversary structureZ 0 with Z � Z 0 (andZ 6= Z 0) violatesQ(2)(P;Z 0), or
Q(3)(P;Z 0), respectively.

Proof. The proof proceeds in three steps: First we prove that in both models, the number of maximal
admissible adversary structures grows doubly exponentially in the numbern of processors. In the second
step we show that for the given specification(��; �), for every maximal admissible adversary structure a
different protocol is required. Finally, we conclude that for some adversary structures the length of every
secure protocol is exponential in the number of processors.

1. First consider the passive model. Without loss of generality, assume thatn = jP j is odd, and
let m = (n + 1)=2. Fix a processorp 2 P , and consider the setB that contains all subsets of
P nfpg with exactlym processors, i.e.,B = fZ � (P nfpg) : jZj = mg. For each subsetB0 � B,
we defineZB0 to be the adversary structure that contains all sets inB0, plus all setsZ � P with
jZj < n=2 and (P nZ) =2 B. One can easily verify thatZB0 is admissible and maximal, and
that for two different subsetsB0;B00 � B, the structuresZB0 andZB00 are different. The size of
B is jBj =

�n�1
m

�
= 2
(n), hence there are22

(n)
different subsetsB0 of B, and thus doubly

exponentially many different maximal admissible adversary structures for the passive model.

For the active model, consider an arbitrary maximal admissible adversary structureZ for P for the
passive model, i.e.,Q(2)(P;Z) is satisfied. Clearly, for an additional processorp =2 P , the structure
Z [ffpgg for the setP [fpg is admissible for the active model (i.e.,Q(3)(P [fpg;Z [ffpgg)),
and there exists a maximal adversary structurebZ � (Z [ffpgg) for P [fpg. For two different
adversary structuresZ andZ 0, also bZ andcZ 0 are different (one can easily computeZ for a givenbZ). Hence, the number of maximal admissible adversary structures for the active model with
n processors is at least as large as for the passive model withn � 1 processors, thus doubly
exponential inn.

2. LetZ be a maximal admissible adversary structure, and let� be a protocol thatZ-securely com-
putes(��; �). For the sake of contradiction, assume that for some other maximal admissible ad-
versary structureZ 0 (whereZ 0 6= Z), the same protocol� Z 0-securely computes(��; �). Then�
would (Z[Z 0)-securely compute(��; �). However, since bothZ andZ 0 are maximal admissible,
(Z [Z 0) is not admissible, and hence no such protocol exists (see Theorems 2 and 3). Hence,
for each maximal admissible adversary structureZ a different protocol� is required for securely
computing(��; �).

3. There are doubly exponentially many maximal admissible adversary structures, and for each of
them, a different protocol is required, hence there are doubly exponentially many different proto-
cols. This implies that some of these protocols have exponential length.

25

6 Conclusions and Open Problems

We have given a complete characterization of adversaries tolerable in unconditional multiparty compu-
tation. Corresponding results for the case of cryptographic security are given in [CDM98] where also an
alternative proof technique for the unconditional case based on span-program secret-sharing schemes is
presented. Our techniques also allow us to prove the natural generalization of the threshold-type results
in [RB89] for a model with a broadcast channel: unconditional multiparty computation is possible if and
only if no two sets in the adversary structure cover the full player set [HM97], [SS98]. More generally,
the simulation technique applies to most previously proposed unconditional multiparty protocols. Fur-
thermore, we believe that every reasonable protocol generator can be used in our construction, but we
have also given an example of an artificial protocol generator which can not (see footnote 16). Formu-
lating the exact condition for when a protocol generator can be applied in our construction is suggested
as an open problem. The player substitution techniques can also be applied in the cryptographic model
of multiparty computation, but the security of such composite protocols remains to be proven [Can98b],
[Bea91a], [MR91].

The efficiency of the proposed protocols is polynomial in the size of the basis of the adversary
structure to be tolerated. It is an open problem to find other general descriptions of structures for which
polynomial (in the number of players) protocols can be found (for a possible approach and some new
results see [CDM98]). A further open problem is to give general conditions on adversary structures such
that polynomial protocols exist. However, the number of maximal bases of structures satisfying theQ(2)

or theQ(3) condition are more than exponential in the number of processors, and therefore a construction
of polynomial protocols can be found at most for some particular classes of structures.

The recursive construction of Section 4 has a large number of degrees of freedom in the partitioning
of the adversary structure. We did not investigated the problem of finding recursive partitionings with
high or optimal efficiency, nor the round complexity of our protocols.

Acknowledgments

We would like to thank Matthias Fitzi for his collaboration on finding efficient protocols and for many
helpful discussions. We are very grateful to Oded Goldreich for his detailed comments on the con-
ference version of this paper [HM97] and for insisting on a sufficiently formal treatment, and to the
anonymous referees for their constructive comments. Ran Canetti provided an early unpublished version
of [Can98b], where a definition of security of unconditional multiparty protocols is given. We thank
Masayuki Abe, Christian Cachin, Ronald Cramer, Claude Cr´epeau, Ivan Damg˚ard, Rosario Gennaro,
Tal Rabin, Markus Stadler, and Stefan Wolf for interesting discussions related to this paper.

References

[AR63] S. Akers and T. Robbins. Logical design with three-input majority gates.Computer Design,
pp. 12–27, Mar. 1963.

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant num-
ber of rounds of interaction. InProc. 8th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 201–210, Aug. 1989.

26

[BDDS92] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears: Changing algorithms
on the fly to expedite Byzantine agreement.Information and Computation, 97(2):205–233,
Apr. 1992.

[Bea89] D. Beaver. Perfect privacy for two-party protocols. InProc. DIMACS Workshop on Dis-
tributed Computing and Cryptography, Oct. 1989.

[Bea91a] D. Beaver. Foundations of secure interactive computing. InAdvances in Cryptology —
CRYPTO ’91, volume 576 ofLecture Notes in Computer Science, pp. 377–391. Springer-
Verlag, Berlin, 1991.

[Bea91b] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a
faulty minority. Journal of Cryptology, 4(2): 75–122, 1991.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. InProc. 20th ACM Symposium on
the Theory of Computing (STOC), pp. 1–10, 1988.

[BL88] J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. InAd-
vances in Cryptology — CRYPTO ’88, volume 403 ofLecture Notes in Computer Science,
pp. 27–35. Springer-Verlag, Berlin 1988.

[BW98] D. Beaver and A. Wool. Quorum-based secure multi-party computation. InAdvances in
Cryptology — EUROCRYPT ’98, volume 1403 ofLecture Notes in Computer Science,
pp. 346–360. Springer-Verlag, Berlin, 1998.

[Can95] R. Canetti.Studies in Secure Multiparty Computation and Applications. Ph.D. thesis, Weiz-
mann Institute of Science, Rehovot 76100, June 1995.

[Can98a] R. Canetti. Personal communications, 1998.

[Can98b] R. Canetti. Security and composition of multi-party cryptographic protocols. Manuscript,
June 1998. Former (more general) version: Modular composition of multi-party crypto-
graphic protocols, Nov. 1997.

[CCD88] D. Chaum, C. Cr´epeau, and I. Damg˚ard. Multiparty unconditionally secure protocols (ex-
tended abstract). InProc. 20th ACM Symposium on the Theory of Computing (STOC), pp.
11–19, 1988.

[CDG87] D. Chaum, I. Damg˚ard, and J. van de Graaf. Multiparty computations ensuring privacy of
each party’s input and correctness of the result. InAdvances in Cryptology — CRYPTO ’87,
volume 293 ofLecture Notes in Computer Science, pp. 87–119. Springer-Verlag, Berlin,
1987.

[CDM98] R. Cramer, I. Damg˚ard, and U. Maurer. Span programs and general multi-party computa-
tion. Manuscript, 1998.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computa-
tion. In Proc. 28th ACM Symposium on the Theory of Computing (STOC), pp. 639–648,
Nov. 1996.

27

[CFSY96] R. Cramer, M. K. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-ballot
elections with linear work. InAdvances in Cryptology — EUROCRYPT ’96, volume 1070 of
Lecture Notes in Computer Science, pp. 72–83. IACR/Springer-Verlag, Berlin, May 1996.

[CG96] R. Canetti and R. Gennaro. Incoercible multiparty computation. InProc. 37th IEEE Sym-
posium on the Foundations of Computer Science (FOCS), pp. 504–513, 1996.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
Proc. 36th IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 41–51,
Oct. 1995.

[CGT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and private multi-
party computation. InAdvances in Cryptology — CRYPTO ’95, volume 963 ofLecture
Notes in Computer Science, pp. 110–123. Springer-Verlag, Berlin, 1995.

[CH94] R. Canetti and A. Herzberg. Maintaining security in the presence of transient faults. InAd-
vances in Cryptology — CRYPTO ’94, volume 839 ofLecture Notes in Computer Science,
pp. 425–438. Springer-Verlag, Berlin, 1994.

[Cha89] D. Chaum. The spymasters double-agent problem. InAdvances in Cryptology —
CRYPTO ’89, volume 435 ofLecture Notes in Computer Science, pp. 591–602. Springer-
Verlag, Berlin, 1989.

[CK89] B. Chor and E. Kushilevitz. A zero-one law for Boolean privacy. InProc. 21st ACM
Symposium on the Theory of Computing (STOC), pp. 62–72, 1989.

[CKOR97] R. Canetti, E. Kushilevitz, R. Ostrovsky, and A. Ros´en. Randomness vs. fault-tolerance. In
Proc. 16th ACM Symposium on Principles of Distributed Computing (PODC), pp. 35–44,
Aug. 1997.

[dDFY94] A. de Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function securely. In
Proc. 26th ACM Symposium on the Theory of Computing (STOC), pp. 522–533, 1994.

[FHM98] M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in unconditional multi-
party computation. InAdvances in Cryptology — CRYPTO ’98, volume 1462 ofLecture
Notes in Computer Science, 1998.

[FHM99] M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional multi-party compu-
tation. Manuscript, 1999.

[Fit96] M. Fitzi. Erweiterte Zugriffstrukturen in Multi-Party-Computation. Student’s project, 1996.

[FKN94] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. InProc. 26th
ACM Symposium on the Theory of Computing (STOC), pp. 554–563, 1994.

[FM88] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. InProc. 20th ACM
Symposium on the Theory of Computing (STOC), pp. 148–161, 1988.

[FM97] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous Byzantine
agreement.SIAM Journal on Computing, 26(4):873–933, Aug. 1997.

28

[FM98] M. Fitzi and U. Maurer. Efficient Byzantine agreement secure against general adversaries.
In Distributed Computing — DISC ’98, volume 1499 ofLecture Notes in Computer Science,
Springer-Verlag, Berlin, Sept. 1998.

[FR96] M. K. Franklin and M. K. Reiter. The design and implementation of a secure auction service.
IEEE Transactions on Software Engineering, 22(5):302–312, May 1996.

[FY92] M. K. Franklin and M. Yung. Communication complexity of secure computation. In
Proc. 24th ACM Symposium on the Theory of Computing (STOC), pp. 699–710, 1992.

[Gen96] R. Gennaro.Theory and Practice of Verifiable Secret Sharing. Ph.D. thesis, Massachusetts
Institute of Technology (MIT), Cambridge, MA, May 1996.

[GHY87] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: secure fault-tolerant protocols
and the public-key model. InAdvances in Cryptology — CRYPTO ’87, volume 293 of
Lecture Notes in Computer Science, pp. 135–155. Springer-Verlag, Berlin, 1987.

[GJKR96a] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing of RSA
functions. In N. Koblitz, editor,Advances in Cryptology — CRYPTO ’96, volume 1109 of
Lecture Notes in Computer Science, pp. 157–172. Springer-Verlag, Berlin, Aug. 1996.

[GJKR96b] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In
U. Maurer, editor,Advances in Cryptology — EUROCRYPT ’96, volume 1070 ofLecture
Notes in Computer Science, pp. 354–371. Springer-Verlag, Berlin, May 1996.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a completeness
theorem for protocols with honest majority. InProc. 19th ACM Symposium on the Theory
of Computing (STOC), pp. 218–229, 1987.

[GRR98] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty com-
putations with applications to threshold cryptography. InProc. 17th ACM Symposium on
Principles of Distributed Computing (PODC), 1998.

[HM97] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-
party computation. InProc. 16th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 25–34, Aug. 1997.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure.
In Proceedings IEEE Globecom ’87, pp. 99–102. IEEE, New-York, 1987.

[KO97] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single data base
computationally-private information retrieval. InProc. 38th IEEE Symposium on the Foun-
dations of Computer Science (FOCS), pp. 364–373, 1997.

[Kus89] E. Kushilevitz. Privacy and communication complexity (extended abstract). InProc. 30th
IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 416–421, 1989.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.ACM Transactions
on Programming Languages and Systems, 4(3):382–401, July 1982.

29

[MR91] S. Micali and P. Rogaway. Secure computation. InAdvances in Cryptology — CRYPTO ’91,
volume 576 ofLecture Notes in Computer Science, pp. 392–404. Springer-Verlag, Berlin,
1991.

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In
Proc. 10th ACM Symposium on Principles of Distributed Computing (PODC), pp. 51–59,
Aug. 1991.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, Apr. 1980.

[Rab94] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating.Journal of the
ACM, 41(6):1089–1109, Nov. 1994.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proc. 21st ACM Symposium on the Theory of Computing (STOC), pp. 73–85,
1989.

[SS98] A. Smith and A. Stiglic. Multiparty computation unconditionally secure againstQ2 adver-
sary structures. Manuscript, July 1998.

[Yao82] A. C. Yao. Protocols for secure computations. InProc. 23rd IEEE Symposium on the
Foundations of Computer Science (FOCS), pp. 160–164. IEEE, New-York, 1982.

30

