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Abstract

The goal of secure multiparty computation is to transform a given protocol involving a trusted
party into a protocol without need for the trusted partysbyulatingthe party among the players.
Indeed, by the same means, one can simulate an arbitrary player in any given protocol. We formally
define what it means to simulate a player by a multiparty protocol among a set of (new) players, and
we derive the resilience of the new protocol as a function of the resiliences of the original protocol
and the protocol used for the simulation.

In contrast to all previous protocols that specify the tolerable adversaries by the number of cor-
ruptible players (a threshold), we consider general adversaries characterized by an adversary struc-
ture, a set of subsets of the player set, where the adversary may corrupt the players of one set in the
structure. Recursively applying the simulation technique to standard threshold multiparty protocols
results in protocols secure against general adversaries.

The classical results in unconditional multiparty computation among a seplafyers state that,
in the passive model, any adversary that corrupts lessithamplayers can be tolerated, and in the
active model, any adversary that corrupts less théplayers can be tolerated. Strictly generalizing
these results we prove that in the passive model, every function (more generally, every cooperation
specified by involving a trusted party) can be computed securely with respect to a given adversary
structure if and only if ndwo sets in the adversary structure cover the full set of players, and in
the active model, if and only if nthreesets cover the full set of players. The complexities of the
protocols are polynomial in the number of maximal adverse player sets in the adversary structure.

Key words. Multiparty computation, Information-theoretic security, Player simulation, General ad-
versaries, Adversary structures.
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1 Introduction

1.1 Secure Multiparty Computation

Consider a set of players who wish to cooperate in a specified manner but do not trust each other. Assume
that the cooperation could be realized if a mutually trusted party was available, but that no such trusted
party exists. In other words, the specification of the desired cooperation can be given in terms of a
protocol among the players and a trusted party, and the goal of the multiparty computation between the
players is to perform the same cooperation without the trusted party, where security is guaranteed if the
subset of players that cheat is not too large. This is achieved by a protocol that simulates the trusted
party.

One particular type of cooperation is the computation of an agreed function of the players’ inputs in
a secure way (secure function evaluation). Most papers in the literature are restricted to this scenario, but
their results often apply also to the general model discussed above. Secure function evaluation is trivial
when a trusted party is available: every player sends his inputtevho computes and announces the
result.

An example of a general secure cooperation scenario is to simulate a fair stock market among a set of
participants (investors) without need for a trusted stock exchange system. The major difference between
secure function evaluation and general secure cooperation is that in the latter, inputs may be given not
only at the beginning but also during the entire computation.

Security of a multiparty protocol is defined with respect to a central adversary that may corrupt certain
players (corresponding to the collaborating cheating players). For secure function evaluation, security
means that the output of the computation is guaranteed to be correct (correctness) and that the players’
inputs remain private (privacy), even when the corrupted players misbehave. For a general cooperation
protocol, security means that whatever the adversary can achieve in the cooperation protocol can also be
achieved directly in the specification involving the trusted party (without corrupting the trusted party).

1.2 Classification

One generally distinguishes betwegassiveand active adversaries. A passive adversary can read all
information available to the corrupted players and tries to violate the privacy, but not the correctness, of
the computation. In contrast, an active adversary controls the complete behavior of the corrupted players,
trying to violate the privacy and/or the correctness of the computation.

The communication models differ with respect to three criteria: whether or not paise@ee
communication channelre available, whether or nbtoadcastchannels are available, and whether the
communication channels asynchronousor asynchronous. The models with secure communication
channels are also referred tosesure channels models

Adversaries can be classified according to whether their computational resources are polynomi-
ally bounded ¢ryptographicsecurity), or unboundedifconditionalor information-theoretic security).

A general secure cooperation could also be reduced to secure function evaluation by having each player give his strategy
as input to the function. However, this approach would require that every player is totally aware of his strategy, and also that
the environment of the computation can be modeled. As an example, each time a player is required to give some input to a
general secure cooperation, he could enter the number of hits when searching some specific term with an internet search engine.
Modeling this strategy would require to model (at least) the behavior of all internet users.

2Synchronous means that the delay of messages is bounded by a constant. See [Can95] for more details.



Clearly, unconditional security can only be achieved in a secure channels model. In the unconditional
model one can distinguish between protocols with exponentially small or with zero failure probability.
We refer to the latter agerfectmultiparty computation. Further, one distinguishes betwstatic and
adaptive(or dynamic) adversaries. In contrast to a static adversary that corrupts players at the beginning
of the protocol execution, an adaptive adversary is allowed to enlarge the set of corrupted players during
the protocol execution, as long as the total set of corrupted players remains admissible. Raobildy,
adversaries were also considered (e.g., [OY91] and [CH94]). As an adaptive adversary, a mobile adver-
sary can corrupt players at any time, but he can also “release” corrupted players, regaining the capability
to corrupt further players. Security against a mobile adversary is referred to as “pro-active security.”

1.3 Previous Work

The problem of general-purpose multiparty computation was first stated by Yao [Yao082]. As a first
general solution to this problem, Goldreich, Micali, and Wigderson [GMW87] presented a passively
secure protocol that allows players to securely compute any given function even if a passive adversary
corrupts anyt < n players, and an actively secure protocol that tolerates an active adversary corrupting
anyt < n/2 of the players. The security of the protocols is cryptographic, that is the adversary is
assumed to be polynomially bound. Chaum, Damdgand van de Graaf [CDG87] improved the bound

for the active model in the sense that the input of one player can even be information-theoretically
hidden. Galil, Haber, and Yung [GHY87] considered efficiency and several corruption types in the
cryptographic model. Ben-Or, Goldwasser and Wigderson [BGW88] proved that in the secure channels
model without broadcast, perfect security foplayers can be achieved even if the adversary can corrupt
any set of less than/2 players (passive case) or, alternatively, any set of lessstharmplayers (active

case). These bounds are tight. The same results were obtained independently by Ceaeay &nd
Damgard [CCD88] in an unconditional model with exponentially small error probability. The bound
for the active model was improved by Rabin and Ben-Or [RB89] by assuming a broadcast channel and
tolerating a negligible error probability. They proposed protocols that provide unconditional security
against an active adversary that may corrupttafiyn /2 of the players. This result was also achieved by
Beaver [Bea91b] with higher efficiency. Combining the advantages of unconditional security (against an
adversary that corrupts a certain fraction of the players) and cryptographic security (against an adversary
with limited computing power), Chaum [Cha89] presented a protocol which tolerates an active adversary
that either corrupts at most< n/3 players, or is polynomially bounded.

The types of tolerable adversaries have recently been generalized in a number of directions (adaptive
adversaries, e.g., [CFGN96], uncoercibility, e.g., [CG96], combined active, passive, and fail-adversaries,
e.g., [FHM98]), and some authors have investigated multiparty computation for various minimality
and complexity criteria, e.g., [Kus89], [BB89], [Bea89], [FY92], [FKN94], [Rab94], [CGT9I5], and
[CKOR97].

Another line of research is concerned with protocols that are tailored to a particular function like
voting (e.g., [CFSY96]), auctioning (e.g., [FR96]), sharing of encryption or signature operations (e.g.,
[dDFY94], [GJKR96a], and [GJKR96b]), or private information retrieval (e.g., [CGKS95] and [KO97]).
The major reason for designing protocols for special functions compared with applying a general-purpose
protocol is the potential gain of efficiency.



1.4 Contributions of this Paper

This paper is concerned with protocol generators, which for any given function (more generally, for any
given specification) generate a protocol for securely computing it. The provided security is perfect (with
zero error probability), i.e., we consider a passive or an active adversary with unbounded computing
power, in the classical model with pairwise synchronous secure communication channels between play-
ers, but not assuming a broadcast channel (like in [BGW88] and [CCD88]). Although the proofs only
consider static adversaries, the protocols actually provide security against adaptive adversaries as well.
Formal proofs for adaptive security are beyond the scope of this paper.

All previous results in the literature specify the sets of potentially corrupted players by their cardi-
nality, i.e., by a threshold. We define more generally the security of a multiparty computation protocol
with respect to aradversary structurea monotone set of subsets of the players, where the adversary
may corrupt the players aneset in this adversary structure. An adversary structure is monotone in the
sense of being closed with respect to taking subsets, and corresponds to the notion of an access structure
in the area of secret sharing (or, more precisely, the complement of it), e.g., [ISN87] and [BL88]. Note
that which particular subset is corrupted is not known in advance, and in fact may even remain unknown
after the protocol execution.

As an example of an adversary structure, consider thE séplayers and the adversary struct@e
where

P = {p17p27p37p4}7

z = {04} o} s} Apad {pr,po}s {on, s} ol |-

In this example, the adversary can choose either to corrupt no player, or to corrupt a single player, or to
corruptp; and an additional player.

The contributions of this paper are twofold: First, we propose a framework for constructing new
secure multiparty computation protocols by simulating players in known protocols. In particular, we
make explicit the concepts of a specification and a protocol generator which converts a specification into
a protocol, in contrast to [GMW87] and [BGW88] where tools for constructing protocols are described
and these new concepts are only implicit. Simulating a player by a set of players means to perform all
operations of the simulated player by a multiparty protocol among the simulating players. Of course,
any of the simulating players can again be simulated. The adversary structure tolerated by the resulting
protocol is derived and proven based on the tolerated adversary structures of the basic protocol and the
simulation protocol.

Second, we introduce the notion of general adversary structures into the field of multiparty computa-
tion, and we characterize exactly which adversary structures can be tolerated in information-theoretically
secure multiparty computation. For a given &ebf players and an adversary structu£e we define
Q(Z)(P, Z) to be the predicate that no two setsZhcover the full setP of players, and we define
Q(3)(P, Z) to be the predicate that no three set€igover the full setP of players. Formally

QPP 2) — V2,2, €Z:Z,UZy # P,
QBN(P,2) = VZi,Z5,75€ Z:Z,UZy U Z3 # P.

The following tight bounds are proved:



1. In the passive model, as a strict generalization of the threshold-type result of [BGW88] and
[CCD88], perfect multiparty computation for any function (specification) is possible if and only if
no two sets in the adversary structure cover the full player set@@.(P, Z) is satisfied).

2. Inthe active model, as a strict generalization of the threshold-type result of[BGW88] and [CCD88],
perfect multiparty computation for any function (specification) is possible if and only if no three
sets in the adversary structure cover the full player set @.@?,(P, Z) is satisfied).

In general, the threshold-type structures are not maximal and hence our protocols can tolerate strictly
larger adversary structures. For example, in the active model with six players, the protocol of [BGW88]
tolerates only adversaries that corrupt at most one player (formally, it tolerates the adversary structure
Z = {0,{p1},{p2}, {ps}, {ps},{ps}, {ps}}). Our approach yields protocols that tolerate additional
pairs and even triples of potentially corrupted players. For example, the adversary structure

2 ={0,{p:}, {p2}, {ps} o}, o5}, oo},
{pz,m}, {p2,p5}, {p2,p6}, {p3,p5}, {p3,p6}, {p4,p5}, {p4,p6}, {p5,p6}a
{pz,p5,p6}, {p4,p5,p6}}

satisfies)® and can hence be tolerated. Itis clear that every adversary structure is monotone, and hence
it is sufficient to enumerate only the maximal sets. The set of maximal sets of an adversary sucture
is called thebasisZ. In the above example,

Z= {{pl}a {p2,p4},{P3,P5},{P3,P6}, {P2,P5, 6} {P4,P5,P6}}-

When our results are applied to reliable broadcast (Byzantine agreement), they provide the first non-
threshold broadcast protocol, as required for example in [CDM98] (where later solutions [FM98] are
more efficient). Applying the results to verifiable secret-sharing, they provide a nonthreshold verifiable
secret-sharing scheme as first proposed in [Gen96].

The primary emphasis of this paper is on the existence of protocols. Indeed, all proposed protocols
have time and communication complexities polynomial in the number of maximal sets in the adversary
structure® but further efficiency considerations and tuning are suggested as future work (however, ef-
ficiency polynomial in the number of players is impossible to achieve for all adversary structures, see
Theorem 4). Also, concurrency is not addressed in this paper, and our formalism does not support the
analysis and/or the optimization of the round complexity of the protocols. The constructions in this paper
are based onblivious protocols [BGW83], i.e., on protocols in which the sequence of executed state-
ments is independent of the contents of the previous messages (as opposed to protocols like, e.g., [FM88]
and [BB89], in which the flow depends on the contents of the variables), and the proposed formalism is
restricted to oblivious protocols.

1.5 Motivating Examples

As a first example, consider a set of five playBrs= {p1, p2, p3, p4, p5} that participate in a nine-party
protocol of [BGW88] (passive case), whewg and p, each play for two playersys plays for three
players, angp; andp, each play for one player of this protocol. This protocol tolerates the adversary

3The constructions of polynomial protocols are based on joint work with Matthias Fitzi [Fit96].



structure that containgpi, pa, ps}, {p1,p2,pa}, {p1,ps5}, {p2,pa}, {p3,p4} (@nd of course all subsets
of these sets), because every set in this structure plays for at most four players in the 9-party protocol.
More generally, consider a protocol for the of players in which each playey acts forw; players

in a threshold-type protocol of [BGW88] with = > w; players. In the passive model, security is
ip;EP
guaranteed with respect to the adversary structure

Z=(ZCP: Y w<n/2y,
ip; €72

and in the active model, security is guaranteed with respect to

Z=0ZCP: ) w<n/3
up;i€EZ

These generalized threshold-type protocols are not sufficient for capturing general scenarios of mu-
tual trust and distrust, where players (e.g., people, companies, countries) are often either in a trust rela-
tionship (related, married, mutually affiliated, allied) or in a distrust relationship (animosities, competi-
tion, hostilities).

As an example of player simulation, consider thel3et {p1,... ,ps} Of players, and the four-party
protocol of [BGW88] (for the active case) in whigh andps play for one player each and the other two
players are simulated by four-party protocols of the same type, one among the playet®s, andpy,
and the other among the players p, ps, andpgs (see Fig. 1).

P4s—Dp3 Pe—Ds5

| X =1 | X]

pP1—Dp2 P1—Dp2
b1 p3

P1 P2 P3 P4 b1 P2 Ps Pe
P —— p3

Figure 1: Example of a player simulation.

This protocol tolerates exactly the adversary structure that was discussed in the example in Sec-
tion 1.4, namely the adversary structugenith the basis

Z= {{pl}a {p2,p4},{P3,P5},{P3,P6}, {P2,P5, 6} {P4,P5,P6}}-

For each set inZ, one can easily verify that the set is tolerated: for example, th€seps, ps} is
tolerated because only one player is corrupted in the simulating protocol amamg ps, andp, (thus

this protocol simulates an honest player for the main protocol), and hence three of the four players in
the main protocol play honestly. The fact that there are too many corrupted players in the subprotocol
amongp1, p2, ps, andpg does not matter.



The tolerated sets can easily be derived by representing the simulation hierarchy as a tree (see the
right-hand side of Fig. 1). For a specific adversary, to every leaf the vaguassigned if the correspond-
ing player is noncorrupted, aridis assigned if the corresponding player is corrupted. To every inner
node,l is assigned if and only if more than two-thirds of its children hhessociated (more than half in
the passive model). The considered adversary is tolerated exactly if this procedure assitresroot
node. More formally, the tree corresponds to a circuit with threshold gates, and an adversary is tolerated
exactly if the corresponding input vector evaluate$.to

In this example we have considered a particular simulation tree, and derived the tolerated adversary
structure. Deriving and proving the tolerated adversary structure of a simulation is one major goal of this
paper. Another goal will be to find such a simulation tree for any given adversary structure.

1.6 Subsequent Work

Subsequently to [HM97], several extensions and improvements for general adversaries were suggested.
In [BW98] a more efficient protocol for the passive model is proposed, and the results are formulated in
terms of quorum systems. In [CDM98] efficient and modular protocols secure against general adversaries
are given for the active and passive model with unconditional and computational security. The efficiency
of the protocols for the active model with broadcast is improved in [SS98]. Finally, in [FHM99], a new
model with general (nonthreshold) mix-type (active and passive at the same time) adversaries is proposed
and tight bounds on the existence of such protocols are given.

1.7 Ouitline of the Paper

The basic technique for constructing a protocol that tolerates a given adversary structure is to begin
with a protocol among a few players and to simulate successively some players by subprotocols among
appropriate sets of players. In Section 2 we formalize protocols and adversaries and describe the passive
and the active models. In Section 3 we show what it means to simulate a player by a subprotocol and
we derive the exact tolerated adversary structures for protocols in which players are simulated by other
multiparty protocols. The exact characterization of tolerable adversary sets for both models are presented
in Section 4. This is achieved by deriving an appropriate sequence of player simulations from any given
admissible adversary structure. In contrast to Section 3, which is concerned with the security of protocols
with simulated players, the arguments of Section 4 are purely combinatorial. In Section 5 we show that
for some adversary structures, no secure protocols with polynomial efficiency (in the number of players)
can exist. Finally, some open problems are mentioned in Section 6.

2 Definitions and Models

Defining and proving the security of multiparty computation protocols is known to be very delicate. In
order to be on safe grounds, it is unavoidable to be rather formal in the definitions and proofs. Our
definitions are based on Canetti’s recent natural and general definitions of security in multiparty compu-
tation [Can98b].



2.1 Players, Processors, and Communication

In the literature and also in the previous section, players are assumed to perform two entirely different
tasks: On one hand, they provide input and receive output, and on the other hand, they are supposed to
perform the operations of the actual protocol. It is necessary to distinguish clearly between these two
tasks. Therefore, in the sequel, we refer tplayer only as the entity that provides input and receives
output, and to the associatptbcessoras the entity that performs the operations of the protocol. This
distinction is important for taking into account the fact that in a general multiparty specification with
several input stages, the players’ inputs can depend on information obtained during the execution of, but
outside of, the protocol (e.qg., insider information in a stock-market protocol). The players’ computational
resources need not be restricted.

A processor can perform operations in a fixed finite fi¢fd+, x), can select elements from this field
at random, and can communicate with other processors over perfectly authenticated and confidential syn-
chronous channels. The processors are polynomially bounded. In addition to processors associated with
players, we also introduce the abstract conceptwitaal processoy which offers the same functional-
ity as a processor but only appears in the construction of a protocol. In particular, the trusted party of a
specification (or other simulated processors) are virtual processors. Processors are demoietdre
positive indices refer to real processors and negative indices refer to virtual processors.

Formally, a processor can be modeled as a probabilistic Turing Machine, with a (read-only) input
tape, a (write-only) output tape, and a (read—write) working tape. The player associated with a processor
can write its input tape and can read its output tape. The input and output tapes of virtual processors
are not used. Every pair of processors can communicate via a pair of tapes, where one tape is read-only
for the first and write-only for the second processor, and the other tape is write-only for the first and
read-only for the second processor. All tapes (in particular the communication tapes) are private and
authentic, i.e., only the involved processors can read from (or obtain any information about) or write to a
tape.

2.2 Variables and Views

We assume a globalariable spacet. A variable z € X can take on a value from the given finite
field (F,+, ). Every quantity ever generated during a protocol execution, including inputs, local data
(e.g., shares), and outputs, is assigned to a variable. For a particular protocol execution each variable
takes on only one particular value, i.e., variables are not to be understood in the sense of an imperative
programming language but rather as labels for values or, more precisely, as a fixed binding between a
name and a value.

The locality or confidentiality of the value assigned to a variable, i.e., the fact that certain variables
are seen only by certain processors or sets of processors, is modeled by associeting@d C X with
every processaw, capturing the set of variables knowngoThe viewv(B) of a setB of processors is
the union of the views of the processorsBn Note that a processor may have full or partial knowledge
about a variable although the variable is not in its view. A local variable of a processor is in the global
variable space but is only in the view of this processor. Transmitting the value of a variable from one
processor to another processor means to include the variable in the latter’s view.



2.3 Protocols, Specifications, and Protocol Generators

A protocol ™ among a seP of processors that involves variables from a variable spat®a sequence
dy,...,d; of statements. There are four typesstditementsAn input statemenitnput(p;, ) instructs

the processop; € P to read a value from its input tape (i.e., from its associated player) and to assign
the value to the variable € X'. A transmit statementransmip,, p2, ) instructs the processei € P

to send the value of the variabtec X to the processags, € P.* An output statemenbutputp, ) in-
structs the processepre P to output the value of the variableto its associated player. Finallgpmpu-
tation statementare of one of three forms: Bomgp, +, x, z1, z2)-Statement (@omgp, *, z, x1, x2)-
statement) instructs the procesgdo add (multiply) the values of the variables andx, and to assign

the result to the variable. A comfdp, ran, x)-statement instructs the procesgaio select an element
from the field at random and to assign the value to the variable

Assigning a value to a variable (in an input or computation statement) means to define its (global)
value and to include it in the processor’s view, and is only admissible if no value has previously been
assigned. A processor can only use (in a computation, transmit, or output statement) the values of
variables that are globally defined and are included in the processor’s view.

A multiparty computation specificatiqior simply called specification) formally describes the coop-
eration to be performed and the processors that give input to, or receive output from, the computation.
Intuitively, a specification specifies the cooperation in an ideal environment involving a trusted party.
Formally, a specification is a paifrg, 7) consisting of a protocoty among a seP, of processors, and
the name of a virtual processer € P,. The protocolr, of the specification is also called theeal
protocol

In the special case of secure function evaluation, the protocol of the specification first instructs each
processor to receive the input from the associated player and to send this valu&hen it instructs
T to compute the agreed function and to send the output to every processor. Finally, it instructs each
processor to send the output value to its associated player.

A multiparty protocol generator7 for the setP; of processors is a function that takes as input a
multiparty computation specificatidmy, 7) involving processors from a sé} and returns a protocad
for the processoréP,\{7}) U Pg. A statement index functidior a specificatior{ro, 7) and protocotr
is a strictly monotone functioffi,

AL mol + 1} = {1, ... |7 + 1},

wheref(1) = 1 andf(|mp| + 1) = |«| + 1.

The intuition is that a protocol generat@rsimulates the virtual trusted processoby a multiparty
computation protocol among the processor$in Each statement of the ideal protoeglis expanded
into a sequence of statements, and all these sequences are concatenated to the resulting.photocol
order to keep track of which subsequenceratsulted from a given statemedit of the ideal protocol
7o, the statement index function maps the indexf each statement; in 7 to the indexf (i) of the
first statement in the corresponding expansiom,in.e., theith statement ofry “is computed” by the
sequencef (i) to f(i + 1) — 1 of statements ofr (sincei = |my| is possible the domain of includes
|| + 1).

“In order to guarantee that every variable has a unique value in a protocol, one could more formally, but equivalently, define
a transmit statement &ansmitp., p2, 1, “x2"), which instructs the processpr to send the value of the variable, andp-
to assign the received value to the variabje



A BGW multiparty protocol generatd is a multiparty protocol generator that is constructed using
the tools of [BGW88] (see Section 2.7 for more details).
2.4 Structures

A structure Z for the setP of processors is a monotone set of subset®of.e., Z C 2°, where all
subsets o are inZ if Z € Z. For a structureZ, Z denotes théasisof the structure, i.e., the set of the
maximal sets irZ:

Z={Zez:22€Z:2CZ'}.
Torestricta structureZ to the setP’ of processors means that all setsdrare intersected witt’, i.e.,
Zlp={ZnP:ZeZ}.

Note that a restricted monotone structure is still monotone but a restricted basis is not necessarily a basis.
(However, we haveZ| ,, C Z|,,). We also use this operator to restrict elements of a structure to a set of
processors (i.eZ| , stands forz N P).

2.5 Adversaries and Definition of Security

Let 7 be a protocol for the seP of processors. A (statiqQyassive adversaryl for the protocolr that
corrupts the processors #fiy C P is a (probabilistic) program (or strategy). After each statement of the
protocol 7, the passive adversary may read the variables in the views of the corrupted processors (i.e.,
the variables in/(Z,)), and extend its current view by these val@eghen it can perform an arbitrary
computation on the values in its view and extend its view by the computed VaWeslo not give a more
precise definition of the adversary’s view but it is understood that it consists of random variables with a
well-defined range. For instance, if the adversary is modeled as a Turing machine, the view consists of
the content of all tapes. The complexity of an adversary is not assumed to be polynomial.

A (static) active adversan for the protocolr that corrupts the processorsity C P is a passive
adversary which in addition may stop the corrupted processors and take complete control over their
communication tapes. This means that the adversary can read the complete internal state of the corrupted
processors and impersonate them in the remaining protocol.

The following definitions of security apply to both passive and active adversaries. For an adversary
A, a protocolA-securely computea specification if, whateved does in the protocol, the same effect
could be achieved by an adversary (with a modified strategy, but with similar costs) in the ideal protocol
of the specification.

Formally, for an adversant and a specificatiofr, 7) for the setP, of processors, the protocelA-
securely computes the specification, 7) if there exists a statement index functigp: {1, ... ,|mo| +

%It may at first appear to be sufficient to assume that the adversary reads the variables of all corrupted processors only at the
end of the protocol. However, in our construction a protocol may consist of several intertwined protocols and values appearing
in one of them could be of use in selecting inputs corresponding to another protocol; therefore it must be tolerated that the
adversary reads the variables after every statement. This corresponds to the notion of “on-line security” in [Can98b].

®The values in the adversary’s view need neither be elements of the finite field nor be assigned to variables of the global
variable space. However, such a restriction could be made without loss of generality.
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1} — {1,...,|r| + 1} and an adversary, for the ideal protocoky with” Z,, = ZA‘PO\{T} such that

for all inputs and for every = 1,... ,|mg| + 1 the joint distribution of4,’s view and the views/;(p)
of all noncorrupted processogs€ (P \{r}\ Z4,) before theith statement of the ideal protoco)
(with the adversaryl, present) is equal to the joint distribution dfs view and the views s ;) (p) of all
noncorrupted processopse (P \{7}\Z.4,) before thef (i)th statement of the real protocel(with the
adversaryA present). Moreover, the complexity df must be polynomial in the complexity of. This
corresponds to the definition of on-line security of [Can98b]. The adveranan be seen as a kind of
simulator and is called thideal adversaryof A.

For the special case of secure function evaluation, the only effect that an advérsamnyachieve in
a protocol thatd-securely computes this specification corresponds to a modification of the inputs and
outputs of the corrupted processors in the ideal protocol (which of course cannot be prevented).

For a structureZ and a specificatiorimy, 7), a protocolr Z-securely computethe specification
(mo, 7) if, for every adversaryd with Z, € Z, the protocolr A-securely computes the specification
(mo, 7). Whenever the specification is clear from the context, we also say that a praiteratesan
adversaryA (a structureZ) instead of saying that the protocdtsecurely £-securely) computes the
specification.

A protocol generato6 for the setP of processors igl-secure(or toleratesA) for a given adversary
A if, for every specification, the protocol that results by applying the generator to this specifidation
securely computes the specification. For a strucire 2°, a protocol generataf for the setP of
processorség i€-secure(or toleratesZ) if, for every adversaryl with Z4 |, € Z, the protocol generator
is A-secure’

2.6 Models

We consider the same two models as in [BGW88]. Ingassive modebnly a passive adversary may be
present. In thactive modelonly an active adversary may be present. In both models, we assume reliable
synchronous secure channels between every pair of processors but we do not assume a broadcast channel.
The basic protocols of [BGW88] can be realized without broadcast or, more precisely, by simulating it
with a protocol among the sender and the receivers of the broadcast (e.g., [LSP82], [FM88], [BDDS92],
and [FM97]).

In both models, we only consider a static adversary, but the protocols are also secure against an
adaptive adversary. For the sake of simplicity, the proofs are not extended to capture the additional
power of adaptive adversaries.

2.7 BGW Protocol Generators

We use a particular BGW protocol generator for each ma@e# denotes the three-party BGW protocol
generator of [BGW88] for the sé?tGpg = {p1, p2, p3 } of processors for the passive model, tolerating all

passive adversaries that may corrupt one single processaindenotes the four-party BGW protocol

"It is necessary to explicitly excludebecause it is possible thatoccurs inr, and even if4 may corruptr (which thus is
a simulating processor), it cannot be tolerated thatorruptsr (which is the trusted party of the specification). At this point,
this technicality appears to be pedantic, but in later recursive constructions it will be necessary. Notedbasihot occur in
T, thenZA|P0\{T} = ZA|P0'
8The intuitive conditionZ4 € Z is too restrictive, because this would not include adversaries that corrupt processors of the
specification.
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generator for the set a4 = {p1, p2, p3, ps} of processors of [BGW88] in the active model, tolerating
all active adversaries that may corrupt one single processor.

The protocol generatoi6P3 andG2* are realized as follows: For a given specificatiag, 7), they
scanmy statement by statement and generate a new protocol in which each statement invalving
replaced by a statement sequence.

In the passive modet7P3 for the setPGp3 = {p1,p2,p3} of processors is defined as follows: All
statements ofry that do not involver are left unchanged. Every statemeérdnsmitp, 7, z) is replaced
by a secret sharing protocol in whighis the dealer who shares the variabl@among the processors
p1, p2, andps such that any two of them can reconstruct the secret. Every statéraesinitr, p, x) is
replaced by the subprotocol to reconstruct the secret, in which the processpss andps send their
shares t@ who then interpolates the secret. Every statenoemtr, +,x, z1, z2) is replaced by the
three statements that instruct the procesgere., andp; to add their shares af; and ofz, and to
assign the result to the variable of their share:oEvery statementomg(r, x, z, x1, x3) is replaced by
the multiplication protocol of [BGW88] (improved by [GRR98]) that multiplies the shared varialjles
andzs and assigns the resulting shares to the variables of the shares of

A statementcomgr, ran, x) is first replaced by a short sequence of statements, still involvjng
but not involving a statement of the foroomgr, ran, ... ), and then, this sequence is replaced by a
sequence without need for the trusted partyy using the techniques described above. In the first step,
each processar , p2, andps selects a random number (i.eamgp;, ran, ;) fori = 1,2, 3), then each
one sends his number to the trusted partfi.e., transmitp;, 7, z;)), who then computes the random
valuez as the sum aof{, zo, andz; (i.e.,comdr, +, z', x1, z2), comdr, +, z, x', x3)). Itis clear that if
at least one of the playets, p2, or ps3 is honest, thern is a uniformly selected secure random number.

In the active modek724 is constructed similarly. Instead of the secret sharing protocol, the verifiable
secret sharing protocol of [BGW88] is used. Moreover, reconstruction involves error correction. As
multiplication protocol we use the protocol that robustly multiplies two shared values, as described in
[BGW88] and [GRR98]. The protocol to select jointly a random field element (as described above) uses
verifiable secret sharing.

The protocol generator§P2 and G3* are indeedz-secure forZ = {{pl}, {p2}, {p3}} (passive
model,GP3) or Z = {{pl}, {p2},{p3}, {p4}} (active model(z3%), respectively. The security is claimed
in [BGW88], but is not formally proven. It is outside the scope of this paper to fill this gap, but such a
proof is in preparation [Can98a]. In the sequel, we assumaiPiand G2+ are secure.

3 Processor Simulation

In this section we introduce the technique of simulating (virtual) processors by other prodedsors.

a first step (Section 3.2), virtual processors are simphamedusing aprocessor mapping.e., one
(virtual) processor plays for one or several virtual processors. In a second step (Section 3.3), virtual
processors areimulatedby a set of (virtual) processors, i.e., the simulating processors perform all oper-
ations of the simulated virtual processor by a multiparty computation.

The idea of simulating a single processor by a subprotocol was used in [Cha89] for a different purpose.
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3.1 Definitions

Let P and P’ be sets of processors. gkocessor mapping,
oc:P— P,

is a surjective function fromP onto P’.1° The definition of a processor mappimgis extended to
the following domains: For a protocal, the mapped protocat () (or, equivalentlyor) is the same
protocol, where in each statement all involved processors are replaced by the corresponding mapped
processors (if processors that are notArare involved in a statement, then these processors are not
replaced). For a specificatidm, 7) with 7 ¢ P, the mapped specification is the specification with the
mapped protocol, i.eq(my, 7) = (o, 7). Note thato (m, 7) stands fowr ((mo, 7))

Theinverse processor mapping ! of a processor mappingis defined by

ot P =2l g {pePio(p)=p'}).

If the processor mapping is bijective, then the function value of the inverse processor mappings
sometimes interpreted as a single processor (instead of a set that contains a single proo&issore

define the mapping of a set of processors to be the set of the mapped processors, and the inverse mapping
of a setB of processors to be the union of the sets of the inverse mappings applied to the processors in
B(i.e,o(B) = UpEB{U(p)} ando~!(B) = UpeB o' (p))-

In the following we give definitions for applying processor mappings to adversary structures and to
protocol generators. These definitions are appropriate in the sense that if a protocol (generator) tolerates
an adversary structure, then the mapped protocol (generator) will tolerate the mapped adversary structure.
This will be proven in the next section.

For a structureZ for the setP of processors and a processor mapping P — P’, the mapped
structure is

o(2)={ZCP:0"2) €2},

i.e., asetZ isino(Z) if the set of all processors mapped to a processdf is in Z. For a protocol
generatorG for the setP of processors and a processor mapping P — P’, the mapped protocol
generator (G) is a protocol generator that, applied to a specificatian r), simulates the trusted party

7 by the processors iR’ (instead ofP). In order to prevent syntactical collisions with the names of the
processors irP and of those appearing iry, we first rename the processors appearingito some

new processor nameés$then apply the original protocol generat@r then apply the processor mapping

o, and finally rename the previously renamed processors back to their original names. More formally,
when given(ry, 7) wheren involves the sef’ of processorsy(G) first applies an arbitrary bijective

1%n the application of processor mappings, parentheses may be omitted whenever the precedence rules allow it. As usual,
function application (in particular a processor mapping) is right-associative and has higher precedence than any two-adic op-
erator. For any two processor mappings and o2, for an arbitrary two-adic operater, and for anyz; and x> we have
0102x1 0 T2 = 01(02(71)) © T2.

"Generally, the inverse of a processor mapping is not a processor mapping. However, the inverigectif@processor
mapping can be considered (and will be considered) as a processor mapping.

2That is, processor names that did not yet appear anywhere, neither in the protocol nor in the protocol generator nor in the

mapping.

13



processor mappifd p : (Py\7) — P, whereP is a set of new processor names, to the specification,
then applies the protocol generaterto this modified protocol specification, further applies the original
processor mapping and finally applies the inverse processor mapping to the resulting protocol.
Formally,

oG =0(G) = ((7?0,7) —op (U(G(PWOJ))))

for an appropriate bijective processor mappingNote thatoG does not depend on the choicepof
Consider a multiparty protocal among the seP of processors and a protocol generaidior the set
Pg of processors. Tsimulatea virtual processop € P in « applying the protocol generat6f means
to consider this processpras a trusted party and to have this party simulated by a subprotocol among
the processors i, according toG. More precisely, the specificatiamr, p) is used as input for the

protocol generato6. To simultaneously simulatihe processors,,, ... ,p,, € P in « using the pro-
tocol generatorssy, . .. , Gy for the processor sefs,, . .. , Py, respectively, is defined as follows: First
considerk arbitrary bijective processor mappings: P, — P; (fori = 1,... ,k), whereP,... , P,

are pairwise disjoint sets of new processor names. Then the resulting protocol is

0;1 . Uf1<(0ka) ( .. (O'QGQ) ((01G1)(7T,Pr1),Pr2) T 7p7‘k)>7

and does not depend on the choicesdqr. . . , 0.

3.2 Renaming Processors

It is trivial that by renaming processors in a protocol, the tolerated adversary structure is the same with
the identically renamed processors. More precisely, security of a protocol is defined with respect to
a specification, and the security of the renamed protocol is with respect to the renamed specification.
Furthermore, when several processors are renamed to the same prpdgssop “plays” the role of
several processors), then a subBeif the processors that contaipss tolerated in the renamed protocol

if and only if the set of all the renamed processors and all the process@r§{in} is tolerated in the
original protocol. A subsef with p ¢ Z is tolerated ifZ is tolerated in the original protocol. This
naturally extends the “partition lemma” of [CK89].

Lemma 1 Given a protocolr for the setP of processors thag-securely computes the specification
(mg,7), @and some processor mappiag theno () is a protocol for the set(P) of processors that
o(Z)-securely computes the specificatiofir, 7).

Proof. We have to show that for every adversatyfor the mapped protocel(r), with Z 4, € o(Z), the
protocolo () A’-securely computes the mapped specification,, 7). Figure 2 illustrates the procedure
for constructing an ideal adversany, for the mapped specification(r, 7) from a given adversaryl’

for om. We begin with the adversarny’ for the mapped protocatr, construct an adversary for the
original protocolr, and show tha# is tolerated in the protocat. Thus, by the definition of security of
a protocol, there exists an ideal adversdgyfor the protocolr, of the specification. Then we usk to
construct an adversary; for the mapped specification(r, 7), and we prove that this adversary is an
ideal adversary of the original adversaty:.

13This corresponds to alpha renaming in the context of lambda calculus and is a purely technical step. Note that the name of
the trusted party must not be mapped.
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Figure 2: Construction of the ideal adversaty for a given adversaryt’.

Consider an arbitrary adversad/ for or with Z4 € o(Z). We defineA to be the adversary
for 7 with Z4, = 0~!(Z4/) and with the same strategy &S, except that whenevet’ reads from, or
writes to, the tape of a corrupted procesgbe Z 4/, then A accesses the tape of the correspontfing
processop € o~ (p') in the same manner ag. By the definition of processor mappings for structures,
Zy € o(Z2) implies thatZ, € Z. Hence, by what it means for a protocol to Hesecure, there

exists a statement index functigh : {1,... ,|mo| + 1} — {1,... , || + 1} and an adversary, for m
with Z4, = Z A‘ Por) (where P, is the set of processors of the ideal protogg) such that for every
i = 1,...,|m| + 1 the joint distribution of the view of the adversary, and the views/;(p) of all

noncorrupted processopse (Po\{r}\Z4,) before theith statement of the ideal protoce} (with the
adversaryA, present) is equal to the joint distribution of the view of the adversgaand the views/; (p)

of all noncorrupted processopse (Py\{7}\Z4,) before thef, (i)th statement of the real protocel
(with the adversary present). Let the statement index functify} for the mapped protocol be equal to
that of the unmapped protocol, i.¢,, = f, and let4j, be the adversary for the mapped ideal protocol
om With Zyy = 0(Z4,) = U(ZA\PO\{T}) = O'(U_I(ZA/) PO\{T}) =Zu ‘U(PO)\{T}. The st.rategy ofdj, is

the same as the strategy of the adverségyexcept that whenevet, reads from, or writes to, the tape
of a corrupted processpre Z,,, thenAj, accesses the tape of the process@r).

Clearly, foreach = 1,... ,|om| + 1, the joint distribution of the view of the adversa#y, and the
viewsy; (p) of all noncorrupted processasse (o(Po)\{7}\Z A6) before theth statement of the mapped
ideal protocolom, (with the adversaryd|, present) is equal to the joint distribution of the view of the
adversaryA’ and the views/, ;) (p) of all noncorrupted processopsc (o(Po)\{r}\Z A6) before the
fox(7)th statement of the mapped real protogal (with the adversaryl’ present). ]

If the structureZ is maximal for the protocofr (i.e., for everyZ C P with Z ¢ Z there exists a
specificationw, 7) and an adversarg with Z4 C Z, such thatr does notA-securely computérg, 7)),
theno(Z) is also maximal fow ().

The corollary below follows immediately from Lemma 1 and from the definition of processor map-
pings for protocol generators.

Corollary 1 Given aZ-secure protocol generatdi for the setP; of processors, and given some pro-
cessor mapping, theno(G) is ac(Z)-secure protocol generator for the setPs) of processors.

141f the mapping is not bijective, then for constructing the advershone must consult the unmapped protogdb deter-
mine which processor’s tape needs to be accessed.
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3.3 Simulating a Single Processor

Consider a protocok for the setP of processors, a processere P, and a protocol generat@¥’ for
the setP’ of processors, and assume thas Z-secure for an adversary structueandG’ is Z’-secure
for an appropriate adversary structugé Let p be simulated inr by G, and letr* denote the resulting
protocol. A setZ of processors is tolerated it if the setZ is tolerated inr (i.e., Z|, € Z) andZ

is tolerated byG’ (i.e Z|,, € 2'). Even if Z is not tolerated byG’, but insteadr tolerates thap is
corrupted in addition to the processorsiri.e., (Z|P U {p}) € Z), thenZ is nevertheless tolerated in
the resulting protocot*. This is formally stated and proved below.

Lemma 2 Consider a specificatioffry, 7) for the setP, of processors, a protocot for the setP of
processors thag-securely computesrg, 7) for some adversary structug C 2, and a BGW protocol
generatorG’ for the setP’ of processors (wher@’ N P = () that is Z’-secure for some adversary
structure2’ C 2. Simulating a processgr € (P\{7}\F) in 7 by applying the protocol generata’
results in a protocolr™ for the setP* of processors thag*-securely computes the specification, 7)
where

P* = (P\{p}) U P’
z={zcpP:((z,up)e2)v(2,€2n2|pe )},

Proof. Consider an arbitrary adversan/ for the protocolr* with Z,« € Z*, and a statement index
function ' : {1,... |7 + 1} — {1,...,|7*| + 1}. We construct a statement index functigh :
{1,...,|mo| + 1} — {1,... ,|7*| + 1} and an ideal adversary, of the adversaryl* whereZ,, =
e P} We distinguish between two cases: in the first case, we assumézmqtp U {p}) € Z,

and in the second case we assume ﬂ)@qp €EZNZa|p € zZ.

First, assume thafZ - pU {p}) € Z. We defineA to be the adversary for the protocelwith
Z A = Za+|pU{p} with the following strategy: Without loss of generality, Bt = {p1,... ,py }. First,
A locally initializes | P’| virtual processorgy, ... , pn,, one for each processor i, and an additional
virtual processotp, for simulating the behavior of a noncorrupted sender or receiver in the protocol
m* (po IS re-initialized after every such use), and assigns an empty view to each of them. For every
i=1,...,|r|+ 1, A performs the following steps for thiéh statemend; of r:

¢ If the statementl; does not involvey, A performs the same steps thdt would perform.

e If d; is acompstatement fop, thenA executes the sequen¢§:), ... , (f'(i + 1) — 1) of state-
ments ofr*, where each processpy € P’ is relabeled to the virtual processgr!® After each
statement of this sequenc performs the same steps thét would perform (modified such that
it accesses the tapesmfinstead of;).

e If d; is atransmifp, p;, z)-statement, thenl executes the sequen¢§i),... , f'(i + 1) — 1 of
statements ofr*, where each processpr € P’ is relabeled to the virtual processoy, and the
receiving processop; is renamed t@,. After each statement of this sequengeperforms the
same steps thatl* would perform (whered accesses the tapes &f instead ofp;, and of py
instead ofp;). At the end of the sequencd, reads the value of the variablein the view ofp,
and sends this value {g. If the adversaryA® is passive (and henc also is passive), then this
value corresponds to the value thavould send tg;.

SMore precisely, a processor mappimghat mapg; — p; (1 <i< m) is applied to the sequence of statements.
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e If d; is atransmitp;, p, z)-statement, theunl first reads the value af and puts this value into the
view of py, then executes the sequenté¢i),... , f'(: + 1) — 1 of statements of*, where each
processomp; € P’ is first relabeled to the virtual processor, and the sending processpy is
renamed t@,.1% After each statement of this sequendeperforms the same steps th&t would
perform (modified as above).

The described adversaryis tolerated inr becauseZ 4 € Z. Thus there exists an ideal adversaly of
A with Z4, = ZA‘PO\{T}' Clearly, this is also an ideal adversary fb.

Second, assume th@ty-|, € Z A Za<|,, € 2Z'. A*is tolerated by the protocol generatGf
(becauseZs-|,, € Z'"); thus by considerindm,p) as the specification of*, there exists an ideal
adversaryA of A* for the protocolr with 74 = Z 4~ p- BecauseZ, € Z there exists an ideal adversary
Ay of A for the ideal protocotry with Z4, = Z A‘ Por)” One can easily verify thai, is also an ideal
adversary ofA*. ]

3.4 General Simulation of Processors

In this section we consider the simultaneous simulation of several processors with completely general
(possibly overlapping) sets of simulating processors. In a protocol resulting from such a simulation,
an adversary is tolerated if every corrupted nonsimulated processor is tolerated in the original protocol
and, in addition, for every simulated processor, either the adversary is tolerated in the corresponding
subprotocol (more precisely, by the corresponding protocol generator), or this processor is tolerated to
be (additionally) corrupted in the original protocol. This is formally stated and proved below.

Theorem 1 Letw be a protocol among the sét of processors thag-securely compute a specification
(mo,7), and letGy, ... , Gy be Z-, ... ,Z;-secure BGW protocol generators for the processor sets
Py,..., P, respectively’ Assume that inr the k processorg,,, ... ,pr, € P are simultaneously
simulated by subprotocols applying the protocol generaférs. . . , Gy, respectively. Then the resulting
multiparty protocolr™ is for the setP* of processors an&*-securely computes the specificatian,(r),
where

k
P =(P\R)u|JP,
=1

Z*:{ng*: (z‘mu{pn € R: 7|, ¢Zi}> ez},

andR = {p,,,... ,pr, } is the set of replaced processors.

Here we assume that the statements in the sequéliige . . , f(i + 1) — 1 of 7" requirep; to know only the value of the
variablez but of no other variables. This is the case for example for BGW protocol generators. For most other protocol gen-
erators (e.g., [RB89]), the proof can be adapted such that additional information (e.g., check vectors) are associated with each
variable. However, one can construct artificial protocol generators for which this lemma does not hold. For example, consider
the protocol generator that is almost identical to the BGW protocol generators with the only exceptioimahatralp;, p, x)
is translated into a secret sharing protocoldbariables in the view (p;) of p; (and not only forz). This protocol generator
is still secure, but an untolerated adversdrylearns the whole view g;, which cannot be simulated in the protoeaol

YNote thatG, . .. , G}, are generally mapped versions@P> or G24.
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Proof. According to the definition of simultaneous simulation,
Tt =0, "Ufl((aka)(' -+ (02G2)((01G1)(m, Py, )y Pry) -+ ,prk)>

for some bijective processor mappings: P, — Pi,... ,0; : P, — P, whereP,... , P, are pair-
wise disjoint sets of new processor names. According to Corollary@,, . .. ,0,Gy. are BGW protocol
generators for the setg P, ... , o, P, Of processors that arg Z1, . .. , 0 2, Secure, respectively.
These protocol generators are applied subsequently, where after applyitiygeaerator the set of
processors is denoted Bf?) and the tolerated adversary structure is denoteg@ ®y In the following,
some technical transformations 8f”) may at first glance appear to be unmotivated.
Applying Lemma 2(o1G)(r, p,,) is a protocol for the seP(!) of processors tolerating(!), where

P = (P\{p,,}) U o1 Py

Z(l) =<d7C P(l): <(Z|P U {prl}) € Z)
= V (21, €277),,p e0n2)

—{zcpW. (Z|P U {pri e {pn): 2|, p ¢ aiZi}> c z}. @)
Furthermore(02Gs) ((01G1) (7, pr, ), pr, ) IS @ protocol for the seP®) of processors tolerating(?),
where

P(2) = (P(l)\{prz}) U O'QPQ = (P\{prl Uprg}) UO’1P1 UO’2P2

z@ {7z cp?. <(Z|P(1) U{p}) € ZU))
: \ (Z|P(1) e 20 A Z)oups € 0222>

S L S e e

. /
-~

T

We now replaceZ() in the above equation by using (1). LEtbe the underbraced term.

20 ={zcP?: (1), U{p e lpn}: T, ¢ iZi}) € 2}

We have
Tlp = (2] U{pr € o} 2], ¢ 0iZi})|
= (Z]p)|p U {pr € {pr}: 2], # 0iZi}
=Z|p U {pn € {pr}: Z],.p, ¢0z~Zi}
and
Typ, = (2] py U{or € o} 2,5 # 02} )| o,

- (Z|P(1)) oi P J {pri € {pr.}: Z|0'iPi ¢ O-izi} aiP;

=Zl,p V0 =12

o, P;"
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This gives

20 _ {Z C pl®), ( <Z|PU{pri €{pn}: 2|, p gzaz-zz-}) ) ] Z}

C U {Pri G{prl}:Z|aiPi ¢UZ-ZZ-}

- {Z c P®. (Z|P Y {pri € P prat: 2, p, & UiZi}) € Z}'

Repeating this step times vyields the seP®) of processors and the tolerated structdé) of the
protocol (o G) (- - - (02G2) ((01G1) (T, r ), Pra) -+ s Py )

P® = (P\R)Uo P,U---Uoy Py

20 ={zcP®: (2),0{p e R: 2|, , ¢0nz}) € 2}.

Finally, we apply the inverse processor mappings, ..., o, *. Letd = o, '---0;'. Because

01‘1, e ,ak‘l are bijective and have pairwise disjoint domains, all function value$ afe sets with

a single processor and are considered as those processors (rather than as setsinddsbe extended
to be the identity function for the processorgiRR, since it will be applied to the previously constructed
protocol among the sét(¥) of processors. The resulting protoedifor the setP* of processors tolerates

the structurez*, where
P*=y9p®
- 19<(P\R) UoPLU---U akpk)
= (P\R)Uo{'o1PLU---Uo} o, P;
=(P\R)UP,U---UP,
= (P\R)U LkJP
z* =92k -
={zcor®.971(z) e 20}
_ {z C P (79*1(2)|P U {p,«i eR:9°N7), . ¢ a,»z,»}) c z} .
Due to the definition of}, we haved *(Z)|, = Z‘P\R. Since the set®; are pairwise disjoint we have
9~N2)|,.p, = 0i(Z)],. p. and, because; is bijective, alsori(Z)|, . = 0i(Z|,). Again using thaw;

is bijective implies thatri(Z|P,) € o; P; if and only ifZ|P, € P;. This results in the claimed adversary
structure

z*:{ZgP*: (Z‘Mu{p,«i € R: 7|, QZi}> ez}.
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4 Complete Characterization of Tolerable Adversary Structures

4.1 Completeness Theorems

Theorem 2 In the passive model a sét of processors can compute every function/specification (per-
fectly) Z-securely if no two sets in the adversary struct@ecover P (i.e., if Q(Z)(P, Z) is satisfied).
This bound is tight: if two sets covét, then there exist functions that cannot be compueskcurely.
The computation is polynomial in the size of the baZisof the adversary structure.

Proof. We first prove the sufficiency of the conditigy?) (P, Z) for the existence of-secure protocols,

and then prove its necessity. The proof that every function can be compButedurely ifQ(z)(P, Z)is

satisfied proceeds in three steps: We describe a construction of a protocol generator, prove the suitability
of the construction, and demonstrate its efficiency.

CONSTRUCTION Consider a seP of processors and a structugefor this setP such thatQ(z)(P, Z)

is satisfied. We construct &-secure protocol generat6f for the setP of processors, i.e(7 takes as

input an arbitrary specificatiofry, 7) for the setP, of processors and outputs a protoeolor the set
(P[)\{T}) U P of processors thatl-securely computes the specificationy, 7) for every adversaryl

with ZA|P € Z.

If some processagp € P does not occur in any set &f (i.e., Z‘{p} = {0}) thenG simply replaces
the trusted party in the specification by this processor. More preciselyplbe the processor mapping
that maps- to p (and is the identity function for all other processors), thee: ((m, 7) — p(m)).

Consider the case where every processaP iaccurs in at least one set 5. The following con-
struction is based on ideas in [AR63, pp. 22—24] and [Fit96]. We select some three-partifionhefre
the size of each set of the partition is at msZ|/3]. Let Z;, 25, Z3 be the union of the first two,
the first and the third, and the last two sets of the partition, respectively, each completed such that it
is monotone. Assume that protocol generai@is G2, andG3, each among the sé&t of processors,
tolerating 21, Z,, and Z3, respectively, have been constructed (by recursion). The protocol gen@rator
that toleratesZ can be constructed as follows: Remember tiB# is the BGW protocol generator of
[BGW8S] for the passive model for the SB(t;pg = {p1,p2,p3} Of processors, tolerating the adversary
structureZ n3 = {{p1},{p2}, {p3s}}. Leto be a bijective processor mapping: P _p3 — P, where
P is a set of new processor names. First, the protocol gen@aaprplieSU(GW) to the specification
(m0,7). o(GP3) is a protocol generator that toIeraﬁeSZGpg) (Corollary 1), thus the resulting proto-
col tolerates all adversarie$ with |ZA‘ﬁ| < 1. ThenG simultaneously simulates all three processors
in P by subprotocols, applying the protocol generatGs G, andGs. This results in a protocat*

for the setP* of processors thaE*-securely computes the specificatiom, 7), where accordin to
Theorem 1 the set of processors is

P = (((Po\{f})uﬁ)\ﬁ) UP= (PO\{T}) upP

8Note that in Theorem 1 the protocol generators for the simulation are assumed to be BGW protocol generators. The
protocol generator§&s, ... ,Gs of this proof are recursively constructed protocol generators, which means that in fact only
BGW protocol generators (alternated with processor mappings) are applied.
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and the tolerated adversary structure is

Z*:{ZQP*:(Z‘(( U{priE?:Z|P¢Zi}>EUZGp3}

PO{THUP)\P
_ {Z c P ‘(Z‘PO\{T} U{p. €P: 2|, ¢ Z,-})‘P‘ < 1}

gl}.

Every setZ € Z is in two of the structures®,, 25, Z3, thus every adversaryl with 7 Alp € Z is
tolerated int*. As claimed, the constructed protocol generdtois for the setP of processors and is
Z-secure.
SUITABILITY . The suitability of this construction can be proved by induction. First, consider an ad-
versary structureg satisfying Q@) with |Z| < 2. Since the (at most) two sets & do not coverP,
and all other sets i¥ are subsets of one of the sets in the basis, there is a progessdr that does
not occur in any set it (induction basis). Now assume that we can construct a protocol generator for
every adversary structure which contaiis of the sets inZ (induction hypothesis). Then the above
construction yields a protocol generator for an arbitrary adversary structure wittup dbthe sets in
Z (induction step).

Let ¢; be defined as the basis size guaranteed to be achievable with recursion of. défatthave
to = 2,t; = 3, andt;,; = t; + |t;/2]. One can easily verify thaB8/2)" < t; < (3/2)"*2. Thus,
in order to construct a protocol that tolerates the adversary strugtutiee recursion depth is at most
“083/2 1Z[].
EFFICIENCY. The protocol generatafP2 applied to a specificatiofwr, p) translates every statement in
7 that involvesp into a statement sequence of length at ndpsthereb is a constant parameter 6°3.
Considering all simultaneous simulations at a given léwalthe recursion, every statement is affected
by the application of at most two BGW protocol generators (because every statement involves at most
two processors). Hence the total blow-up due to a given level of the recursion is at’madste total

length of the constructed protocol toleratifgs thus at mosfr |- (b°) fogs» 1211 _ |mo]-|Z]°™), which
is polynomial in| Z.

_ {ng*: ‘{pn €P: 7|, ¢ 2}

In order to prove the necessity of the conditiof?) (P, Z) for the existence off-secure protocols,
suppose there is a protocol that tolerates an adversary structure not sat(@@)nge., there are two
potential setsZ; andZ, with Z; UZ, = P. Without loss of generality we assun#g N Z, = (). Then we
can construct a protocol with two processprsandp,, wherep, simulates all processors &y andp,
simulates all processors ity (i.e., we apply a mapping to the given protocol), and we obtain a protocol
for two processors that tolerates both sets with a single adverse processor. Such a protocol for secure
function evaluation does not exist for most functions (for example for the binary OR-function), as stated
in [BGW8E], thus resulting in a contradiction. A more careful analysis of the class of functions that are
not securely computable @(2) is not satisfied is given in [CK89], [Kus89], and [Bea89]. ]

Theorem 3 In the active model a seé® of processors can compute every function/specification (per-
fectly) Z-securely if no three sets in the adversary structgreover P (i.e., if Q(3)(P, Z) is satisfied).

This bound is tight: if three sets cover the full set of processors, there are functions that cannot be com-
puted Z-securely. The computation is polynomial in the size of the hasisf the adversary structure.
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Proof (Sketch). This proof for sufficiency OQ(3)(P, Z) is along the lines of the proof of Theorem 2

and also proceeds in the same three steps. We describe only the major differences.

CONSTRUCTION A four-partition of the adversary structu is selected where the size of each set

of the partition is at mosf|Z|/4]. By recursion, a protocol is constructed for each of the four unions

of three set of the partition. First, the protocol generator ap@@Sin order to substitute the trusted
party T in the specification by a protocol among four virtual processors, then simultaneously replaces the
four virtual processors by applying the recursively constructed protocol generators. Applying Theorem 1
shows that the tolerated adversary structutg.is

SUITABILITY . The induction basis (there is a procesgas P that does not occur iZ) holds for any
structureZ with | Z| < 3, and the induction step constructs a protocol generator that toldrate$ the

sets inZ by assuming protocol generators that toleaieof the sets.

EFFICIENCY. Let b be the constant “blow-up factor” af®*, and letu; be defined as the minimal

size of the basis of the adversary structures guaranteed to be achievable with recursion of Geeth
sequencey; is hence given by,y = 3, u; = 4, andu; 1 = u; + |u;/3]. One can easily verify that
(4/3)" < u; < (4/3)"F3. Thus, in order to construct a protocol that tolerates the adversary strugture

the recursion depth is at mobg, /3 |Z[], and the total length of the constructed protocol toleratihg

is at most | - (b2) %4/ 11— |xo] - [Z/°0), which is polynomial inZ.

In order to prove the necessity of conditi@ﬁ3)(P, Z), suppose that there exists a protocol generator
for an adversary structure not satisfyin§®), i.e., there are three potential adversaries that cover the
full set of processors. Then we can construct a protocol among three processors, where each of them
simulates the processors of one adversary, and we obtain a protocol among three processors, perfectly
tolerating active cheating of one of them. Such a protocol for secure function evaluation does not exist
for most functions (for example for the broadcast function, as proved in [PSL80] and [LSP82]), thus
resulting in a contradiction. ]

4.2 Example

We apply Theorem 2 to construct a protocol generatdior the passive model among the det=
{p1,p2, 3, P4, P53, Pe } Of processors that tolerates the adversary strucwith the basisZ = {{p1, p4, s},
{p2, 03,6}, {P1,P2,p6}, {P1, P2, D5}, {P2, Pas P5} {P1, 03,5}, {P1, P2, p3,pa}}. Itis easy to verify that
QB (P, Z) is satisfied.

As a short notation, we writé;, p;, pi] for the (mapped) protocol generat6®3 with the three
processorg;, pj, andpy, and[p;,p;, [pk, 1, Pm]] for the protocol generator among the procesggrs
pj and a virtual processor simulated by a protocol generated by the protocol ger@atamong the
processorgy, p;, andp,, (i.e., a mapped protocol generator). As a special daseefers to the protocol
generator that simply replaces the name of the trusted party in the multiparty computation specification
by p. Whenever a structure is partitioned, this partition is not made explicit, but can easily be derived
from the three resulting structures.

Step 1: Divide Z into three partitions and set

zl = {{p17p47p6}’ {PQaPSaPG}, {PlaPZaP6}1 {p17p27p5}! {p27p47p5}}1
52 = {{p17p47p6}’ {PQaPSaPG}, {PlaPZaP6}1 {p17p37p5}! {p17p27p37p4}}1
Z3 = {{p1,p2,p5}, {P2,P4,P5}, {P1,P3,P5}, {P1,P2,P3,Pa}}
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Step 2: Construct(; toleratingZ;.

Step 2.1: Divide Z, into three partitions and set

Z11 = {{p1,p4,p6}, {2, 3,6}, {P1, P2, P6}},

Z19 = {{p1,p4,p6}, {P1,P2,P5}, {P2, 1,5} },

Z13 = {{p2,p3, 6}, {P1, P2, P6}, {P1, P2, P5}, {P2, 1, 5} }
Step 2.2: ConstructG; toleratingZ,;. This is achieved byps].

Step 2.3: ConstructG';; toleratingZ1,. This is achieved byps].
Step 2.4: ConstructG3 tolerating Z 5.
Step 2.4.1: Divide Z 3 into three partitions and set
Z131 = {{p2,p3, 06}, {P1, 02,06}, {P1,P2,P5}},
Z132 = {{p2, 3,06}, {P2,P1,P5}},

2133 - {{p17p27p6}’ {PlaPQaP5}1 {£27p47p5}}'
Step 2.4.2: Construct;3; toleratingZ;3;. This is achieved bipa].

Step 2.4.3: ConstructG 3, tolerating Z3,. This is achieved bjp, ].
Step 2.4.4: ConstructG 33 tolerating Z33. This is achieved bjps].
Step 2.4.5: G13 = [p4, p1,p3] is Z13-secure.

Step 2.5: G = [ps, p3, [p4, p1, p3]] is Z1-secure.
Step 3: ConstructG, tolerating Zs.

Step 3.1: Divide Z, into three partitions and set

Zo = {{p1,p4,p6}, {p2, 3,6}, {P1, P2, 6 }},

Z92 = {{p1,p4,p6}, {P1,p3,P5}, {P1, P2, 3, Pa}},

Za3 = {{p2,13,06}}, {plaanpﬁb {p1,p3,p5}, {P1, P2, P3, P4 }}-
Step 3.2: ConstructGy; toleratingZ5;. This is achieved byps].

Step 3.3: ConstructGy, tolerating Z,s.
Step 3.3.1: Divide Z, into three partitions and set
Zoo1 = {{p1,p4, 06}, {P1,P3,05}},
Z922 = {{P1,p1,P6}, {P1,P2,P3,P1}},

§223 = {{P1,P37P5}, {P1,P2,P3,P4i}-
Step 3.3.2: ConstructGes; toleratingZ42;. This is achieved bip,].

Step 3.3.3: ConstructGags tolerating Zs2. This is achieved bips].
Step 3.3.4: ConstructGq3 tolerating Z423. This is achieved bips].
Step 3.3.5: Gao = [pa, s, ps] IS Zoz-s€CUrE.
Step 3.4 ConstructGy; tolerating Zo3.
Step 3.4.1: Divide Z,3 into three partitions and set
Zoz1 = {{p2, 3,06}, {P1,02,p6}, {P1,13,P5}},
Za32 = {{p2, 3,06}, {P1,p2,p6}, {P1, P2, 3, p1}},

2233 = {{plap3ap5}a {plaanp3ap4l}-
Step 3.4.2: ConstructGes; toleratingZ43;. This is achieved bipy].

Step 3.4.3: ConstructGas, tolerating Z,32. This is achieved bips].
Step 3.4.4: ConstructGqs; tolerating Z,33. This is achieved bjps].
Step 3.4.5: Gas = [p4, ps, ps] is Zo3-S€CUrE.
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Step 3.5: G2 = [pSa [p23p53p6]a [p4ap5ap6]] iS §2'Secure-

Step 4: ConstructG; tolerating Z3. This is achieved byps)].
Step 5: The protocol generator

G = [[p5ap3a [p4aplap3”a [p5a [anp5ap6]a [p4ap53p6” ap6:|
IS Z-secure.

Figure 3 illustrates this protocol generator. Rememberghtdr : < 0 refers to a virtual processor
and does not explicitly appear in the above description.

y

Pe

Figure 3: An example of recursive processor simulation.

5 Adversary Structures without Efficient Protocols

The goal of this section is, informally, to prove that there exists a family of adversary structures for which
the length of every resilient protocol grows exponentially in the number of processors.

For a specificatiorfm, 7), a setP of processors, and an adversary structéiréet ¢ ((mo, 7), P, Z)
denote the length of the shortest protogolor P that Z-securely computegry, 7). Furthermore, let
(m«,7) denote the specification for the processprsand p» that reads one input of both processors,
computes the product, and hands ipto Finally, let P,, denote the sefp,, ... ,p,} of processors.
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Theorem 4 For both the passive and the active model there exists a famil\Zs;, ... of adversary
structures for the set®,, Ps, ... of processors, respectively, such that the Ien,gmr*,f), P,, Zn) of
the shortestZ,,-secure protocol fo(r,, 7) grows exponentially imn.

In order to prove the theorem we need an additional definition: An admissible adversary st&cture
for the setP of processors isaximalif Q@ (P, 2) (in the passive model) @@®)(P, ) (in the active
model) is satisfied, but any adversary structdfewith Z c 2’ (andZ # 2’) vioIatesQ(z)(P, Z"), or
QB)(P, '), respectively.

Proof. The proof proceeds in three steps: First we prove that in both models, the number of maximal
admissible adversary structures grows doubly exponentially in the numddqarocessors. In the second

step we show that for the given specification, ), for every maximal admissible adversary structure a
different protocol is required. Finally, we conclude that for some adversary structures the length of every
secure protocol is exponential in the number of processors.

1. First consider the passive model. Without loss of generality, assume tkatP| is odd, and
let m = (n + 1)/2. Fix a processop € P, and consider the sé that contains all subsets of
P\ {p} with exactlym processors, i.e3 = {Z C (P\{p}): |Z| = m}. For each subsé¥’ C 5,
we defineZz to be the adversary structure that contains all set$iplus all setsZ C P with
|Z] < n/2 and(P\Z) ¢ B. One can easily verify thaBz is admissible and maximal, and
that for two different subset8’, B” C B, the structuresZz and Zz~ are different. The size of
Bis [B| = ("-') = 2%, hence there arg”" different subsetss’ of B, and thus doubly
exponentially many different maximal admissible adversary structures for the passive model.

For the active model, consider an arbitrary maximal admissible adversary str@ckore for the
passive model, i. eQ(z)(P Z) is satisfied. Clearly, for an additional procesgaf P, the structure

Z U {{p}} for the setP U {p} is admissible for the active model (i. Q@B (PU{p}, ZU{{p}}),

and there exists a maximal adversary struct@ire (ZU {{p}}) for P U {p}. For two different
adversary structureg and Z’, alsoZ and 2’ are different (one can easily compugefor a given

Z). Hence, the number of maximal admissible adversary structures for the active model with
n processors is at least as large as for the passive modelnwithl processors, thus doubly
exponential im.

2. Let Z be a maximal admissible adversary structure, and ket a protocol thag-securely com-
putes(m,, 7). For the sake of contradiction, assume that for some other maximal admissible ad-
versary structureZ’ (whereZ’ # Z), the same protocet Z’-securely computegr,, 7). Thent
would (ZU Z')-securely computér,, 7). However, since botl® andZ’ are maximal admissible,

(Z U Z') is not admissible, and hence no such protocol exists (see Theorems 2 and 3). Hence,
for each maximal admissible adversary structdra different protocolr is required for securely
computing(m, 7).

3. There are doubly exponentially many maximal admissible adversary structures, and for each of
them, a different protocol is required, hence there are doubly exponentially many different proto-
cols. This implies that some of these protocols have exponential length. ]
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6 Conclusions and Open Problems

We have given a complete characterization of adversaries tolerable in unconditional multiparty compu-
tation. Corresponding results for the case of cryptographic security are given in [CDM98] where also an
alternative proof technique for the unconditional case based on span-program secret-sharing schemes is
presented. Our techniques also allow us to prove the natural generalization of the threshold-type results
in [RB89] for a model with a broadcast channel: unconditional multiparty computation is possible if and
only if no two sets in the adversary structure cover the full player set [HM97], [SS98]. More generally,
the simulation technique applies to most previously proposed unconditional multiparty protocols. Fur-
thermore, we believe that every reasonable protocol generator can be used in our construction, but we
have also given an example of an artificial protocol generator which can not (see footnote 16). Formu-
lating the exact condition for when a protocol generator can be applied in our construction is suggested
as an open problem. The player substitution techniques can also be applied in the cryptographic model
of multiparty computation, but the security of such composite protocols remains to be proven [Can98b],
[Bea91la], [MR91].

The efficiency of the proposed protocols is polynomial in the size of the basis of the adversary
structure to be tolerated. It is an open problem to find other general descriptions of structures for which
polynomial (in the number of players) protocols can be found (for a possible approach and some new
results see [CDM98]). A further open problem is to give general conditions on adversary structures such
that polynomial protocols exist. However, the number of maximal bases of structures satisf)@@)the
or theQ®) condition are more than exponential in the number of processors, and therefore a construction
of polynomial protocols can be found at most for some particular classes of structures.

The recursive construction of Section 4 has a large number of degrees of freedom in the partitioning
of the adversary structure. We did not investigated the problem of finding recursive partitionings with
high or optimal efficiency, nor the round complexity of our protocols.
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