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Abstract: The paper shows that characterizing the causal relationship between significant
events is an important but non-trivial aspect for understanding the behavior of distributed
programs. An introduction to the notion of causality and its relation to logical time is
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master the complexity of causal relationships.
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1 Introduction
Today, distributed and parallel systems are generally available, and their technology has reached a cer-
tain degree of maturity. Unfortunately, we still lack complete understanding of how to design, realize,
and test the software for such systems, although substantial research effort has been spent on this topic. It
seems that implementing distributed programs is still an art rather than an engineering issue; understand-
ing the behavior of a distributed program remains a challenge. One of the main reasons for this is the
nondeterminism that is inherent to such programs; in particular, it is notoriously difficult to keep track of
the various local activities that happen concurrently and may (or may not) interact in a way which is dif-
ficult to predict — leading to, for instance, potential synchronization errors or deadlocks.

For a proper understanding of a distributed program and its execution, it is important to determine
the causal and temporal relationship between the events that occur in its computation. For example, it is
often the case that two concurrent or causally independent events may occur in any order, possibly yield-
ing different results in each case. This indicates that nondeterminism is closely related to concurrency. In
fact, the effects of concurrency and nondeterminism play an important role in the process of analyzing,
monitoring, debugging, and visualizing the behavior of a distributed system.

Distributed systems are loosely coupled in the sense that the relative speed of their local activities is
usually not known in advance; execution times and message delays may vary substantially for several
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repetitions of the same algorithm. Furthermore, a global system clock or perfectly synchronized local
clocks are generally not available. Thus, it is difficult to identify concurrent activities in distributed com-
putations. In this paper, we show how the notion of concurrency can be based on thecausality relation
between events. The characterization and efficient representation of this relation is a non-trivial problem.
In the sequel, we survey several approaches for the analysis of the causality relation and related concepts
such aslogical time or global predicates which are crucial for the understanding of distributed computa-
tions.

1.1 System Model: Events, Time Diagrams, and Causality

We use a widely accepted model where adistributed system consists ofN sequential (i.e., single-
threaded) processesP1,…, PN communicating solely by messages1. The local states of all processes are
assumed to be disjoint, i.e., processes do not share common memory. The behavior of each process con-
sists of local state changes, and of the sending of messages to other processes; these actions are com-
pletely determined by a local algorithm which also determines the reaction to incoming messages. The
concurrent and coordinated execution of all local algorithms forms adistributed computation. For the
rest of this paper, we assume that communication between processes is point-to-point, and that message
transfer may suffer from arbitrary non-zero delays. We do not assume FIFO order of message delivery
unless explicitly stated. Furthermore, we do not assume the availability of a global clock or perfectly
synchronized local clocks.

The occurrence of actions performed by the local algorithms are calledevents. From an abstract
point of view, a distributed computation can be described by the types and relative order of events occur-
ring in each process. LetEi denote the set of events occurring in processPi, and letE = E1 ∪…∪ EN
denote the set of all events of the distributed computation. These event sets are evolving dynamically
during the computation; they can be obtained by collecting traces issued by the running processes. As we
assume that eachPi is strictly sequential, the events inEi are totally ordered by the sequence of their
occurrence. Thus, it is convenient to index the events of a processPi in the order in which they occur:
Ei = {ei1, ei2, ei3 …}. We will refer to this occurrence order as thestandard enumerationof Ei.

For our purposes, it suffices to distinguish between three kinds of events: send events, receive
events, and internal events. Asend event reflects the fact that a message was sent; areceive event denotes
the receipt of a message together with the local state change according to the contents of that message. A
send event and a receive event are said tocorrespond if the same message that was sent in the send event
is received in the receive event. We assume that a send event and its corresponding receive event occur
in different processes.Internal events affect only the local process state. Events are assumed to be
atomic. Thus, we do not have to bother with events that are simultaneous in real time, and an event can
safely be modelled as having a zero duration.

It should be noted that our model does not explicitly deal withconflicts, as is common practice in
Petri net theory or related concurrency theories [51, 56, 73]. This does, however, not imply that the local
algorithms are required to work deterministically, i.e., that the possibility of conflicts is excluded. Our
discussion merely refers to computations which have actually occurred (i.e., so-called singleruns or exe-
cutions); we do not discuss methods for the specification ofpossible runs. Thus, our model of computa-
tion does not preclude constructs such as CSP-likeguarded commands, or nondeterministic message
select statements in the underlying programming or specification language.

A convenient way to visualize distributed computations aretime diagrams.Figure 1 shows an exam-
ple for a computation comprising three processes, where the progress of each process is symbolized by a
directed line. Global time is assumed to move from left to right, and global time instances correspond to

1.  A fixed number of processes is assumed mainly for notational convenience; a generalization of our model to a dynamically
changing set of processes is straightforward. One could, for example, model dynamically created (or destroyed) processes as
being silently present throughout the computation, producing events only during their actual lifetime. Creating a new process
would then correspond to sending an activation message to a process already kept in reserve.
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vertical lines in the time diagram. Events are symbolized by dots on the process lines, according to their
relative order of occurrence. Messages are depicted as arrows connecting send events with their corre-
sponding receive events.

By examining time diagrams like Figure 1, it becomes obvious that an evente maycausally affect
another evente' if and only if there is a directed left-to-right path in the time diagram starting ate and
ending ate'. Thus, evente11 may affect eventse12, e13, ande14 which are local relative toe11, and also
non-local events such ase21 or e23. On the other hand, evente12 can neither influence event e11 occurring
earlier on the same process line, nor can it affect non-local events likee31 or e33. We can formalize this
observation by defining thecausality relation as follows:

Definition 1.1 Given the standard enumeration of Ei, thecausality relation→ ⊆ E × E is the smallest
transitive relation satisfying:

(1) If eij , eik ∈ Ei occur in the same process Pi, and j< k, then eij → eik.
(2) If s∈ Ei is a send event and r∈ Ej is the corresponding receive event, then s→ r.

Note that→ is irreflexive, asymmetric, and transitive; i.e., it is astrict partial order. By definition, the
causality relation extends the partial order defined by the standard enumeration ofE1, E2,…, and EN.
Informally, our reasoning about the causal relationship between events can be stated in terms of the cau-
sality relation as follows: An evente may causally affect another evente' if and only ife → e'.

The causality relation→ of Definition 1.1 is actually identical to the “happened before” relation
defined by Lamport in [36]. We prefer to use the term “causality” rather than “happened before” because
the relation defined in Definition 1.1 is causal rather than temporal. For example, evente33 in Figure 1
occurs at a later real-time instant than evente11, although they are not causally related.

If, for two events eande', neithere → e', nore' → eholds, then neither of them causally affects the
other. As we assume that there is no global real-time clock available, there is no way to decide which of
the events eande' took place first “in reality” — we do not know their absolute order. This motivates the
following definition ofconcurrency:

Definition 1.2 Theconcurrency relation || ⊆ E × E is defined as
e || e' iff ¬ (e→ e') and¬ (e' → e).

If e || e' holds, e and e' are said to beconcurrent.

Observation 1.3 The concurrency relation is not transitive.

For example, in Figure 1e12 ||e31 ande31 ||e22 hold, but obviouslye12 ande22 are not concurrent.

1.2 The Significance of the Causality Relation

Causality is fundamental to many problems occurring in distributed computing. For example, determin-
ing aconsistent global snapshot of a distributed computation [10, 24, 45] essentially requires to find a set
of local snapshots such that the causal relation between all events that are included in the snapshots is
respected in the following sense: ife' is contained in the global snapshot formed by the union of the local
snapshots, ande → e' holds, then e has to be included in the global snapshot, too. That is, consistent
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Figure 1: A time diagram of a distributed computation
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snapshots are subsets ofE that are left-closed with respect to the causality relation→. Thus, the notion of
consistency in distributed systems is basically an issue of correctly reflecting causality.

Causal consistency has many important applications. For example, determining consistent recovery
points is a well-known problem in the field of distributed database management. For determining dead-
locks or detecting the termination of a distributed computation [43], the global view of the computation
state must also be causally consistent in order to prevent so-called phantom deadlocks and false termina-
tion states. In distributed debugging, detecting global predicates is a key issue, and the causality relation
is of utmost importance [15, 27, 30, 41]. Again, the problem is to obtain a consistent view in order to cor-
rectly evaluate the global predicate. Analyzing the causal relationship between events is also helpful for
the detection of race conditions and other synchronization errors — one of the most difficult problems in
distributed programming. Another issue is the proper replay of concurrent activities in distributed sys-
tems for the purpose of debugging and monitoring. Here, the causal relation determines the sequence in
which events must be processed so that cause and effect appear in the correct order. When replaying
trace data, the amount of stored information can significantly be reduced by appropriately representing
the causal structure of the computation [50].

Causality plays also an important role in the exploitation of maximum parallelism, i.e., for distrib-
uted applications which are required to run “as asynchronous as possible”. An analysis of the causality
relation can therefore serve as an abstract concurrency measure of an algorithm [11, 20]. Note that all
events which are not causally related can be executed in parallel — at least in principle. Hence, a careful
study of causality could yield the “optimal parallelization” of a given set of events, and comparing this
with a sequential ordering may lead to a formal definition of the “inherent degree of parallelism” of the
underlying computation.

In distributed protocols, the relaxation of unnecessary synchronization constraints may permit a
higher degree of concurrency; a minimum requirement for synchronization is that the causal order of
events is respected. Communication protocols for point-to-point or multicast communications which
enforce only a causal delivery order (instead of insisting on synchronous delivery) are based on this idea
[6, 64]. Here, different communication activities can proceed in parallel, only the delivery of messages
has to be delayed according to causality constraints. For multicast operations, this technique was suc-
cessfully employed in the ISIS system [6, 8]. Causally ordered broadcast protocols are useful, for exam-
ple, for the realization of fault tolerant systems [7]. A similar idea is used in the implementation of
“causal shared memory” [2, 31], a weak form of shared virtual memory.

In the theory of distributed computing, causality has also been used for reasoning about the proper-
ties of asynchronous systems. In [53], for example, it is argued that in many cases causality can serve as
a more appropriate substitute for the traditional notion of real-time, and that reasoning based on the
causal rather than on the temporal structure of a system is the correct level of abstraction in a distributed
setting. This view, which has been advocated since a long time by the theory of Petri nets [59], is now
also shared by most researchers working on distributed operating systems as a recent debate among
experts shows [62].

2 Causal History and Vector Time
In this section, we aim at a practical method to determine the causal relationship between events. We
start with an easy-to-understand, but rather impracticable approach by assigning a completecausal his-
tory to each event, and we show that these histories accurately characterize causality. Some refinements
of the basic scheme will finally lead to a more practical concept generally known asvector time.

2.1 Causal Histories

In principle, we can determine causal relationships by assigning to each event e its causal history C(e),
whereC(e) is a set of events defined as follows:
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Definition 2.1 Let E = E1 ∪…∪ EN denote the set of events of a distributed computation, and let e ∈
E denote an event occurring in the course of that computation. Thecausal history of e, denoted C(e),
is defined as C(e) = {e'∈ E | (e' → e) } ∪ {e}.
Theprojection of C(e) on Ei, denoted C(e)[i], is defined by C(e)[i] = C(e)∩ Ei.

A causal history is a prefix-closed set of events under the causal ordering. C(e) contains all events which
causally precedee, i.e., which might have affectede. Note thate' causally precedes e if and only if there
is a directed path in the time diagram frome' to e. Thus,C(e) essentially contains those events that can
reach e along a directed path. For example, evente23 in Figure 1 is reachable bye11, e12, e13, e21, and
e22; hence,C(e23) = {e11, e12, e13, e21, e22, e23}. A discussion of further interesting properties of causal
histories may be found in [51, 57, 73].

Lemma 2.2 Let e, e'∈ E, e≠ e'. Causality and causal history are related as follows:

(1) e → e' iff e∈ C(e').
(2) e || e' iff e∉ C(e')∧ e' ∉ C(e).

Proof. This follows directly from the definition ofC(e). ❏

Lemma 2.2 states that the causal historiesC(e) andC(e') suffice to determine causality or concurrency of
two eventse ande'. Furthermore, there is a straightforward algorithm that assignsC(e) to every evente
of a distributed computation:

(1) Let Ei = {ei1, ei2,…, eik} denote the local events ofPi in standard enumeration, and define dummy
eventsei0 for i = 1,…, N such thatC(ei0) = ∅.

(2) If eij ∈ Ei is an internal event or a send event, andei, j-1 ∈ Ei is its local predecessor, then compute
C(eij) as follows: C(eij) = C(ei, j-1) ∪ {eij}.
Informally, eij  simply inherits the causal history of its immediate predecessor.

(3) If eij ∈ Ei is a receive event,s its corresponding send event, andei, j-1 ∈ Ei is the local predecessor
of eij , then computeC(eij) as follows: C(eij) = C(ei, j-1) ∪ C(s) ∪ {eij}.
Informally, eij  inherits the causal history of both of its immediate predecessors.

2.2 Vector Time

The scheme described above allows to determine causal histories on-the-fly during a distributed compu-
tation by maintaining sets of events at the processes and by piggybackingC(s) on the outgoing message
for each send events. However, the algorithm is only of theoretical interest, because the size of the
causal history sets is of the order of the total number of events that occur during the computation. Fortu-
nately, the basic scheme can be improved substantially based on the following observation:

Observation 2.3 Recall that C(e) = C(e)[1] ∪…∪ C(e)[N]. If Ek = {ek1,…, ekm} is given in standard
enumeration, then ekj ∈ C(e)[k] implies that ek1,…, ek, j-1 ∈ C(e)[k]. Therefore, for each k the set
C(e)[k] is sufficiently characterized by the largest index among its members, i.e., its cardinality.
Thus, C(e) can be uniquely represented by an N-dimensional vector V(e) of cardinal numbers, where
V(e)[k] = | C(e)[k] | holds for the k-th component (k = 1,…, N) of vector V(e)2.

As an example, the causal history of evente23 in Figure 1 can be represented byV(e23) = [3, 3, 0]
because the cardinality ofC(e23)[1], C(e23)[2], andC(e23)[3] is 3, 3, and 0, respectively. Figure 2 depicts
a distributed computation, with the associated vectors assigned to each event.

The use of vectors can be generalized in a straightforward way to represent an arbitrary prefix-closed
event setX ⊆ E, again by taking the locally largest event index:V(X)[k] = | X ∩ Ek |. For notational con-
venience, let thesupremum sup{v1,…, vm} of a set {v1,…, vm} of n-dimensional vectors denote the vec-
tor v defined asv[i] = max{v1[i],…, vm[i]} for  i = 1,…, n. The following lemma is the key to an efficient
implementation of the above algorithm:

2.  If the number of processes N is not fixed, thenV(e) can be represented by the set of all those pairs (k, |C(e)[k]|) for which
the second component is different from 0.
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Lemma 2.4 Let e, e'∈ E denote events, let C(e), C(e') denote their causal histories, and let V(e),
V(e') denote the corresponding vector representations, respectively. The vector representation of the
union C(e)∪ C(e') is V(C(e)∪ C(e')) = sup{V(e), V(e')}.

Proof. This follows immediately from the definition ofC(e), V(e), and Observation 2.3.❏

Applying Lemma 2.4, and translating the set operations on causal histories to the corresponding opera-
tions on vectors yields an improved version of our above-mentioned algorithm which maintains vectors
instead of sets. In fact, the resulting algorithm is essentially the same as the one given in [17] or in [44].
There, the vectors defined as in Observation 2.3 are calledtime vectors, and the general concept is called
vector time3. We state the operational definition from [44] here:

Definition 2.5 Let P1,…, PN denote the processes of a distributed computation. The vector time Vi of
process Pi is maintained according to the following rules:

(1) Initially, Vi[k]:= 0 for k = 1 ,…, N.
(2) On each internal event e, process Pi increments Vi as follows: Vi[i]:= V i[i] + 1.
(3) On sending message m, Pi updates Vi as in (2), and attaches the new vector to m.
(4) On receiving a message m with attached vector time V(m), Pi increments Vi as in (2).

Next, Pi updates its current Vi as follows: Vi:= sup{Vi, V(m)}.

Let V(e) denote the vector time Vi which results from the occurrence of event e in process Pi. V(e) is
said to be thevector timestampof event e. Accordingly, V(m) denotes the vector timestamp attached
to message m.

It should be clear that the rules of Definition 2.5 specify a simplified version of the above-mentioned
algorithm for the computation of the causal historyC(e) of an evente. Instead ofC(e), the associated
vectorV(e) is determined according to Observation 2.3. Obviously, this version of the algorithm can be
realized more efficiently than the original scheme that manipulates sets of events. The application of
Definition 2.5 is demonstrated in Figure 2 which illustrates that timestamps of messages propagate the
knowledge about vector time (and thus about causally preceding events) along the directed paths of a
time diagram. Since a simple one-to-one correspondence between vector timeV(e) and causal history
C(e) exists for all e∈ E, we can determine causal relationships solely by analyzing the vector timestamps
of the events in question.

We conclude our discussion of vector time with a “knowledge-based” interpretation. Informally, the
componentVi[i] of Pi’s current vector time reflects the accurate logical time atPi (measured in “number
of past events” atPi), while Vi[k] is the best estimatePi was able to derive aboutPk’s current logical

3.  Actually, the concept of vector time cannot be attributed to a single person. Several authors “re-invented” time vectors for
their purposes, with different motivation, and often without knowing of each other. To the best of our knowledge, the first
applications of “dependency tracking” vectors [70] appeared in the early 80’s in the field of distributed database management
[21, 74]. In [17] and [44], however, vector time is introduced as a generalization of Lamport’s logical time, and its mathemat-
ical structure and its general properties are analyzed.
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clock valueVk[k]. Thus, if V(e) is the vector timestamp of an event occurring inPi, thenV(e)[k] is the
number of events inPk whiche “knows about”, where “x knows about y” is synonymous to “y is in the
causal history of x”.

Postulating an idealized global observer who is instantaneously informed about the occurrence of all
events yields another interesting interpretation of vector time. This “omniscient” observer could main-
tain a vector clockΩ defined asΩ[i] = Vi[i] (for i = 1,…, N), thus having perfect knowledge of all past
events at any time. Clearly,Pi’s “current knowledge” about each process (represented byVi) is only a
subset of the omniscient observer’s knowledge sinceΩ = sup{V1, …, VN}. However, it should also be
evident that at any timeVi represents the best possible “approximation” of global knowledge thatPi is
able to obtainwithin the system.

3 Causality and Time
Having introduced the concept of vector time, we now study its relation to causality and real time.

3.1 Characterizing Causality with Vector Time

Vector time has several interesting properties, for example, its mathematical structure is similar to
Minkowski’s relativistic space-time [49] in the sense that causal histories correspond to light cones [44].
Most interestingly, however, the structure of vector time is isomorphic to the causality structure of the
underlying distributed computation. In this section, we prove this fact by rephrasing Lemma 2.2 in terms
of time vectors.

Definition 3.1 Let E denote the set of events of a distributed computation, and let (S,<) denote an
arbitrary partially ordered set. Letφ: E → S denote a mapping.

(1) (φ, <) is said to beconsistent with causality, if for all e, e'∈ E
φ(e)< φ(e') if e→ e'.

(2) (φ, <) is said tocharacterize causality, if for all e, e'∈ E
φ(e) < φ(e') iff e→ e'.

For a givenφ which satisfies (1) or (2) we say for short that (S,<) is consistent with or characterizes
causality.

Note that a partial order (E, <) on the set E of events which is consistent with causality represents an
extension of (E, →) (in particular, alinear extension if < is a total order), and that any partial order (S, <)
which characterizes causality represents an isomorphicembedding of (E,→).

Let V = {V(e) | e ∈ E} denote the set of vector time values assigned to the events of a distributed
computation according to Definition 2.5. We aim at a computationally simple relation < defined on time
vectors, such that (V, <) characterizes causality.

Definition 3.2 Let u, v denote time vectors of dimension m.

(1) u ≤ v iff u[k] ≤ v[k] for k = 1,…, m.
(2) u< v iff u ≤ v and u≠ v.
(3) u ||v iff ¬ (u < v) and¬ (v < u).

We will now show that (V, <) in fact characterizes causality:

Theorem 3.3 For two events e and e' of a distributed computation, we have

(1) e→ e' iff V(e)< V(e').
(2) e || e' iff V(e)|| V(e').

Proof. (1) Suppose thate → e' holds. According to Lemma 2.2, e ∈ C(e'); from Definition 2.1 and the
fact that→ is transitive, it follows that causal histories are left-closed with respect to→, hence we
conclude thatC(e) ⊆ C(e'). Thus,C(e)[k] ⊆ C(e')[k], and thereforeV(e)[k] = | C(e)[k] | ≤ | C(e')[k] | =
V(e')[k] for k = 1,…, N. That is,V(e) ≤ V(e'). Because→ is a strict partial order,e' ∉ C(e). Thus,C(e)
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⊂ C(e'), and it follows thatV(e) ≠ V(e').
Conversely, supposeV(e) < V(e'). From Observation 2.3, we learn thatC(e)[k] ⊆ C(e')[k] for
k = 1,…, N, i.e.,C(e) ⊆ C(e'). FromV(e) ≠ V(e') it follows that e ≠ e'. But e ∈ C(e) ⊆ C(e'), and
therefore e→ e' must hold according to the definition ofC(e').
Property (2) follows immediately from (1) and the definition of concurrency.❏

Theorem 3.3 offers a convenient method to determine the causal relationship between events based on
their vector times. In fact, instead of comparing whole time vectors, the necessary computations can
often be reduced even further, according to the following lemma. A proof is straightforward and may be
found, for example, in [27].

Lemma 3.4 For two events e∈ Ei and e' ∈ Ej, e≠ e', we have

(1) e→ e' iff V(e)[i] ≤ V(e')[i].
(2) e || e' iff V(e)[i] > V(e')[i] and V(e')[j] > V(e)[j].

Lemma 3.4 states that we can restrict the comparison to just two vector components in order to determine
the precise causal relationship between two events if their originsPi andPj are known. The intuitive
meaning of the lemma is easy to understand. If the “knowledge” of evente' in Pj about the number of
local events inPi (i.e.,V(e')[i]) is at least as accurate as the corresponding “knowledge”V(e)[i] of e in Pi,
then there must exist a chain of events which propagated this knowledge from e at Pi to e' at Pj, hence
e → e' must hold. If, on the other hand, evente' is not aware of as many events inPi as is evente, and e
is not aware of as many events inPj as ise', then both events have no knowledge about each other, and
thus they are concurrent. Clearly, the converse arguments are equally valid for both cases.

3.2 Real Time and Lamport Time

The analysis of causality is closely related to temporal reasoning. As everyday experience tells us, every
cause must precede its effect. Names such as “happened before” [36] and “is concurrent with” for rela-
tions which are causal rather than temporal reflect this fact. However, such a terminology — although
quite suggestive — is somewhat misleading. In this section, we briefly discuss the relationship between
time and causality.

Let t(e) denote the real-time instant at which event eof a given computation takes place. Obviously,
idealized real time (t, <) is consistent with causality; it does not, however,characterize causality,
becauset(e) < t(e') does not necessarily imply e → e'. An additional problem is that a set of synchro-
nized local real time clocks, i.e. a proper realization of an idealized “wall clock”, is generally not avail-
able in distributed systems. Fortunately, it is possible to realize a system oflogical clocks which
guarantees that the timestamps derived are still consistent with causality. This was shown by Lamport in
[36].

Definition 3.5 The Lamport time is a mapping L: E→ N which maps events to integers, defined
recursively as follows:

(1) If e is an internal event or a send event, and e has no local predecessor, then L(e) = 1; if e
has a (unique) local predecessor e', then L(e) = L(e') + 1.

(2) If r is a receive event and s is the corresponding send event, and r has no local predeces-
sor, then L(r) = L(s) +1;
if r has a (unique) local predecessor e', then L(r) = max{L(s), L(e')} +1.

Figure 3 shows a distributed computation with Lamport timestamps assigned to the events. Lamport time
can be implemented easily with a scheme similar to the one of Definition 2.5, but with simple integers
instead of vectors [36]. One can easily see that by construction, Lamport time (L, <) is consistent with
causality. However, as Figure 3 shows, it does not characterize causality:L(e11) < L(e22) althoughe11
ande22 are causally independent. Hence, although Lamport time implies a natural partial order on the set
of events (by defining that an event e precedes an evente' iff L(e) < L(e')), this order is different from
→. We can, however, easily define a linear extension of this implied order, for instance by the following
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definition.

Definition 3.6 Let e∈ Ei, e' ∈ Ej, and let L(e), L(e') denote their Lamport timestamps. Thetotal event
order⇒ ⊆ E × E is defined by

(1) If L(e)< L(e'), then e⇒ e'.
(2) If L(e) = L(e') and i < j holds, then e⇒ e'.

Clearly, (L, ⇒) is consistent with causality (i.e.,→ ⊆ ⇒). Hence, if we order all events by⇒, then an
event will not occur prior to any other event that might have caused it. Therefore, this ordering can be
regarded as an acceptable reconstruction of the linear sequence of atomic actions that actually took place
during the distributed computation. However, if two events eande' are concurrent, then⇒ determines
justone of several possible, causally consistent interleavings of the local event sequences. Note that even
if t(e) < t(e') actually holds for two concurrent events eande' — which is, of course, not known within
the system —L(e) > L(e') is still possible, as the eventse32 ande11 in Figure 3 demonstrate. Interest-
ingly, this is not possible for vector time. IfV(e) < V(e') holds, then we necessarily havet(e) < t(e'),
whereas nothing about the real-time order can be derived fromL(e) < L(e').

To summarize our discussion, we remark that Lamport time induces an interleaving of the local
event streams which isconsistent with causality. Thus, although not necessarily consistent with real time,
Lamport time may serve as an adequate substitute for real time with respect to causality. However, both
real time and Lamport time are insufficient tocharacterize causality and can therefore not be used in
general to prove that events arenot causally related. This, however, is quite important for the analysis of
distributed computations. Stronger concepts like vector time are required for that purpose.

4 Efficient Realizations of Vector Time
In the previous section we saw that vector time characterizes causality. Furthermore, provided that the
vector timestamps of all events are available, Lemma 3.4 offers a convenient method to compute the
relations→ and ||. The major drawback of vector time is the size of the time vectors. This might pose
problems for massively parallel computations. In this section, we present some techniques for an effi-
cient realization of vector time in distributed computations.

4.1 Compressing Message Timestamps

According to Definition 2.5, all messages of a distributed computation have to be tagged with a times-
tamp of sizeN to maintain vector time. IfN, the number of processes, is large, the amount of timestamp
data that has to be attached to each message seems unacceptable. Two observations may lead to a sub-
stantial improvement of the basic technique to maintain vector time:

Observation 4.1 In a distributed computation, we typically observe the following:

P1

P2

P3

Figure 3: Events with their associated Lamport timestamps
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(1) Even if the number N of processes is large, only few of them are likely to interact fre-
quently by direct message exchange.

(2) If we compare an event e with its local successor e', only few entries of the time vector
V(e') are likely to differ from those of V(e).

The first observation motivates the second, since, if two processes never directly or indirectly interact,
they will never receive new knowledge about each other’s causal histories, and hence the corresponding
vector entries remain unchanged.

Based on Observation 4.1, Singhal and Kshemkalyani [65] propose an improved implementation
technique for vector clocks which typically saves communication bandwidth at the cost of slightly
increased storage requirements. Their idea is to append only those entries of the local time vectorVi to a
message sent toPj which have changed since the last transmission toPj. For this purpose, each process
Pi maintains two additional vectorsLSi (“last sent”) andLUi (“last update”).LSi[j] is set to the “local
time” Vi[i] whenPi sends a message toPj. LUi[j] is set toVi[i] whenPi updates entryVi[j], which (for i ≠
j) can only appear on receipt of a message. Instead of timestamping each message withV(m) = Vi when
sending a message toPj (see Definition 2.5), processPi behaves as follows after incrementingVi[i] and
settingLUi[i] to Vi[i]:

(1) Fork = 1,…, N, if LUi[k] > LSi[j] then a pair (k, Vi[k]) is added to an (initially empty) setS(m).
(2) The messagem is sent together withS(m) to its destinationPj, andLSi[j]:= Vi[i].

According to rule (1) above,S(m) contains exactly those entries ofVi which have been updated since
their last transmission toPj — the only entries which may cause a change ofPj’s local vectorVj. Thus, it
is obviously sufficient to just sendS(m) instead ofV(m) in order to maintain the local time vector. Note,
however, that FIFO channels are required; otherwise, the information inS(m) might be insufficient for a
proper update of the receiver’s time vector. Figure 4 shows an example of how the technique works.

For large systems, the proposed method can result in substantial savings in communication band-
width. However, it suffers from a slight deficiency, as mentioned by Meldal et al. in [47]. By compress-
ing the message timestamps, we lose immediate access to some information about the causal relationship
between different messages sent to the same receiver. In particular, it is no longer possible to decide
whether two such messages (or, more precisely, their corresponding send events) are causally dependent
solely by comparing their (compressed) timestamps. This is illustrated in Figure 5. In both scenarios
shown,P3 receives messagesm1 andm2 at timesV(r1) = [1, 0, 1] andV(r2) = [2, 3, 4], respectively; the
compressed message timestamps areS(m1) = {(1,1)} andS(m2) = {(2, 3)}. However, in the first scenario
m1 andm2 are causally unrelated, while in the secondm2 causally depends onm1 because the send event
of m1 causally precedes the send event ofm2. FromP3’s point of view, the two different scenarios are
indistinguishable. Note that if messages were equipped with the full vector timestamps, then the receiver
P3 would know whetherm1 andm2 are causally unrelated ([1, 0, 0] || [0, 3, 0] in the first scenario) or not
([1, 0, 0] < [2, 3, 0] in the second scenario). In particular,P3 would then be able to determine that it

P1

P2

P3

{(2,1), (3,2)}

{(2,1)} {(2,1), (3,3)}

Figure 4: Singhal’s and Kshemkalyani’s method to maintain vector time
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receivedm1 “out of causal order” if in the second scenariom1 is delayed such that it arrives afterm2.
With compressed timestamps, this is impossible if only compressed message timestamps are taken

into account. In principle, however, no information is actually lost because the compression scheme only
suppresses those parts of a message’s timestamp which are already known to the receiver. That is, each
process may recover the original, uncompressed timestamps, but this would require the collection of
some additional information about the local vector time at which the compressed timestamps were
received, and about the components of the local time vector which were last updated. Thus, in applica-
tions like, e.g., causally ordered message delivery protocols [8, 14, 64] where such detailed knowledge is
required, some additional book-keeping and computational effort is needed to locally restore the sup-
pressed information. An approach to recover the full timestamp of each message requiring O(N2) space
at each process may be found in [65].

4.2 Reconstructing Time Vectors

In the previous section, it was shown how message timestamps can be efficiently coded so as to save
communication bandwidth in typical cases. The technique is especially valuable if the numberN of pro-
cesses is large. The main disadvantage, however, is that the size of the message timestamps is still linear
in N in the worst case; also, three vectors per process are needed instead of just one as in the basic
approach. In this section, we try to further reduce the amount of data that has to be attached to each mes-
sage in order to maintain vector time. However, this comes at the cost of an increased computational
overhead for the calculation of the time vectors assigned to events. In most cases, this overhead is proba-
bly too large for an on-line computation because this would slow down the distributed computation in an
unacceptable way. The methods described here might be used, however, for a trace-based off-line analy-

Figure 5: Loss of information about the causal relationship between messages
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sis of the causality relation.
Recall that the vector timestamp is just a compact notation for the causal history of an event. That is,

in principle we can determine the vector timestamp of an event e by simply computing the set of all
events in the time diagram that can reach e via a directed path. Note that a time diagram is basically a
directed acyclic graph; for example, Figure 6 shows the graph resulting from the time diagram depicted
in Figure 4. There are several well-known algorithms which compute reachable vertices in directed
graphs. However, these algorithms do not efficiently exploit the peculiar structure of time diagrams, in
particular:

• In a directed acyclic graph derived from a time diagram, each vertex (i.e., each event) has at most
two direct predecessors.

• Vertices denoting events occurring in the same process are totally ordered and thus form a directed
path in the graph. That is, a graph that represents a distributed computation comprisingN processes
containsN local “chains”.

As a result, the general algorithms are too inefficient; the Floyd-Warshall algorithm, for example,
requires O(K3) steps to determine the reachability matrix for a directed, acyclic graph containingK verti-
ces [23, 72]. For the special case of time diagrams, more efficient solutions are feasible.

Figure 7 shows a simple recursive graph searching algorithm which determines the vector timeV(e)
of an event e ∈ E. Basically, the algorithm determinesV(e) by applying a recursive “backward search”
on the directed graph, and by counting the events belonging toC(e). Since GraphSearch is called exactly
once for each event inC(e), the complexity for determining the vector timestamp of a single event is lin-
ear in the number of events.

Figure 6: Directed graph corresponding to the time diagram of Figure 4

e13e11 e12 e14 e15

e21

e31

e22 e23

e32 e33

TimeVector  (e: Event)
/* Computes the vector time V(e) for event e */
Assign 0 to all components of V(e);
GraphSearch(e);
return  V(e);

end  TimeVector;

GraphSearch  (z: Event)
Mark z as visited;
Determine i such that z ∈ Ei ;
V(e)[i]:= V(e)[i] + 1;
if  z has an unmarked direct local predecessor x ∈ Ei ,

then  GraphSearch(x) endif ;
if  z has an unmarked direct non-local predecessor y ∈ Ej,  i ≠ j,

then  GraphSearch(y) endif ;
end  GraphSearch;

Figure 7: Simple algorithm for the reconstruction ofV(e)
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It should be noted that the algorithm is suited for an off-line computation of time vectors and causal
histories where the graph corresponding to the time diagram is available in the sense that each event can
provide a pointer to its non-local predecessor. Reconstructing time vectors and causal historiesafter the
distributed computation might be computationally expensive but it avoids the sending of vector times-
tamps in messages and the keeping of local time vectors during the execution of the application. It
clearly depends on the application whether such an approach is suitable or not.

The algorithm depicted in Figure 7 is linear in the “duration” of the distributed computation, because
|E| increases as the computation proceeds. Hence, it may take rather long to reconstruct the time vectors
of “late” events. Fortunately, the graph of a distributed computation consists ofN totally ordered chains
of events. Therefore, it suffices to know themost recent predecessor of evente with respect to each chain
in order to determineC(e); indexing all events in standard enumeration will yield the prefix of each
chain. To exploit this fact, it is required that a process keeps track of the most recent event in each pro-
cess which directly influenced it. As an example, in Figure 6 the events of each process whichdirectly
affected P1 most recently with respect to event e15 (namely,e14, e23 ande32) are depicted as white dots.
By maintaining at runtime a vectorD, such thatD(e)[k] denotes the index of the event inPk which most
recently (with respect toe) sent a message to e’s process, we can deriveV(e) with even less effort than is
required by the algorithm depicted in Figure 7.

The approach described here is due to Fowler and Zwaenepoel [24]. Basically, their “time vectors”
only reflectdirect dependencies, while vector time takes into account alsotransitive dependencies. By
ignoring indirect causal relationships, it suffices to attach only a single event index (i.e., a scalar instead
of a vector) to each message that is transmitted. As a disadvantage, transitive causal dependencies must
be re-computed for each event. More specifically, each processPi maintains adependency vector Di as
follows:

(1) Initially, Di[j]:= 0 for all j = 1,…, N.
(2) On each event occurrence inPi, Di is incremented:Di[i]:= Di[i] + 1.
(3) On sending a messagem, Pi attaches (the incremented) valueD(m) = Di[i] to m.
(4) On receiving messagem sent byPj with attached valueD(m), Pi updatesDi:

Di[j]:= max{Di[j], D(m)}.

Let D(e) denote the dependency vector associated with an event e, and more particularly, let Di(k) denote
the dependency vectorDi which results from the occurrence of thek-th event in processPi. As withVi[i],
Di[i] serves as an event counter for the local events inPi, i.e.,Di(k)[i] = k. For i≠ j, Di(k)[j] denotes the
sequence number of the most recent event inPj (actually, a send event) thatdirectly influenced thek-th
event inPi. Figure 8 depicts the distributed computation of Figure 4 with the resulting dependency vec-
tors. If we compare Figure 4 with Figure 8, we observe thatD(e) ≤ V(e) for all e, which is obviously true
in general.

Figure 8: Maintaining direct dependency vectors
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In order to determine thetransitive causal dependencies necessary for the full time vectors,V(e) is
derived fromD(e) by recursively retracing thedirect dependencies, i.e., by computing the transitive left-
closure of the direct dependence relation. In [24], Fowler and Zwaenepoel present a simple procedure
which transformsD(e) into the correspondingV(e). Their method is very similar to the simple graph
searching algorithm presented in Figure 7; the main difference is that the events on which an evente
directly depends are not retraced, but can be addressed immediately via their index stored inD(e).
Figure 9 depicts the graph of Figure 6 with the dependency vectors attached to each event; obviously, the
entries of the vectors serve as pointers to the most recent events which potentially had influence on the
process. By performing a depth-first walk along each dependence path, using the indices ofDi as point-
ers to the next relevant predecessor events, Fowler’s and Zwaenepoel’s method reconstructs the left-
closure of the direct dependence relation in at most O(M) steps, whereM denotes the total number of
messages sent during the computation. The details of their algorithm and a derivation of its complexity
bound may be found in [24].

Recently, Baldy et al. [4] proposed an improved variant. Basically, their idea is to apply breadth-first
retracing to all dependence paths in parallel instead of following each single path in a depth-first manner
as was proposed by Fowler and Zwaenepoel. Figure 10 shows the resulting algorithm. A formal proof of
its correctness may be found in [4]; here, we merely present an informal correctness argument.

Initially, the algorithm starts withD(e) as a first approximation ofV(e). Consider the first iteration of
the algorithm’s outer loop. What the algorithm actually does is to visit alldirect causal predecessors of
evente. These predecessors are directly accessed in the inner loop by interpreting the components of

Figure 9: Dependency vectors as pointer arrays
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VectorTime  (e: Event)
/* Computes V(e) for event e in a system of N processes */
V(e):= D(e);
repeat /* outer loop: executed at most N times */

old_V := V(e);
for  k := 1 to  N do /* inner loop: executed N times */

V(e) := sup( V(e), D k(old_V[k]) ); /* N comparisons */
endfor

until old_V = V(e)  endrepeat;
return V(e)

end  VectorTime;

Figure 10: Algorithm for the conversion ofD(e) to V(e)according to Baldy et al.
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D(e) as pointers, as shown in Figure 9. The components provided by those predecessors’ dependency
vectors — i.e., pointers to their respective predecessor events — are taken into account by considering
sup{ D(x) | x is pointed at by a component ofD(e)} and by updating the approximationV(e) accordingly.
As noted earlier,Di(k)[i] = k. Therefore, after one iteration of the outer loop, at least the indices of all
immediate predecessors have been incorporated intoV(e), andV(e) contains pointers to the predecessors
of e at indirection level 1. By a simple, inductive argument it is easy to see that after thel-th iteration of
the outer loop at least all predecessor events ofe at indirection levell-1 have been determined, and that
V(e) contains pointers to those predecessors at indirection levell. It remains to be shown that the outer
loop terminates after a finite number of iterations.

To see why this is in fact the case, recall that if we follow the dependence path of an evente ∈ Ei
back into the past starting at processPi , we can stop the retracing as soon as we come back to some event
e' ∈ Ei again — since the dependence paths do not contain cycles,e' is a local predecessor ofe and the
past ofe' is already contained in the past ofe. Therefore, as soon as the retracing of a dependence path
returns to a process which has already been visited before during the inspection of that path, we can
immediately stop its further retracing. As there are onlyN processes and every retracing step of the path
must jump to a process that has not been visited yet, the set of processes not visited so far is exhausted
after at mostN steps. Therefore, the maximum number of steps to complete the inspection of a single
dependence path isN. The algorithm depicted in Figure 10 inspects allN dependence paths originating at
e in parallel; it therefore requires at mostN iterations of its outer loop. Consequently, the number of exe-
cution steps required for the reconstruction of a single time vector is bounded by O(N3) which compares
favorably to the complexity derived for Fowler’s and Zwaenepoel’s original scheme. In fact, according
to Baldy et al. an even more efficient algorithm is feasible which reconstructsV(e) in at most O(N2) steps
by combining vector timestamps and Lamport timestamps, but it requires a more involved and less intu-
itive derivation. Essentially the same scheme was independently developed by Masuzawa and Tokura.
The interested reader is referred to [4, 42] for further details.

Like Fowler’s and Zwaenepoel’s method, the O(N2) reconstruction algorithm requires random
access to all local event streams. If events occur rarely, and a large amount of data has to be recorded for
each event anyway, then a reconstruction approach might be advantageous; a typical example is depen-
dency tracking in distributed databases. On the other hand, if events occur very frequently, then it might
be impossible to record the complete event traces which are required for a reconstruction of all vector
timestamps, even in cases where state-saving techniques such as those described in [46] are applicable.
In such cases, vector time has to be maintained on-the-fly by the classical scheme described earlier. Typ-
ically, on-line monitors belong to this type of applications; there, complex reconstruction schemes are
prohibitive anyway because they are too time expensive.

Finally, it should be noted that Fowler’s and Zwaenepoel’s original aim was to computecausal dis-
tributed breakpoints rather than vector time. Informally, the causal distributed breakpoint corresponding
to an event e is defined as the earliest consistent global state that containse. That is, in order to guarantee
minimality and consistency, the breakpoint reflects the occurrence of an evente' if and only ife' ∈ C(e).
Hence, causal distributed breakpoints and causal histories are equivalent. Since according to Observation
2.3C(e) is isomorphic toV(e), this explains why Fowler’s and Zwaenepoel’s algorithm and the algorithm
depicted in Figure 10 actually compute vector time.

4.3 About the Size of Vector Clocks

Vector time is a powerful concept for the analysis of the causal structure of distributed computations.
However, having to deal with timestamps of sizeN seems unsatisfactory — even if we take into account
the improvements suggested in the previous sections. The question remains whether it is really necessary
to use time vectors of that size. Is there a way to find a “better” timestamping algorithm based on smaller
time vectors which truly characterizes causality?

As it seems, the answer is negative. Charron-Bost showed in [12] that causality can be characterized
only by vector timestamps of sizeN. More precisely, she showed that the causal order(E, →) of a distrib-
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uted computation ofN processes has in generaldimension N. This induces a lower bound on the size of
time vectors because a partial order of dimensionN can beembedded in the partially ordered set (Rk, <)
of real-valued vectors only ifk ≥ N. We summarize Charron-Bost’s results:

Definition 4.2 A partial order (X,<') is said to beisomorphically embedded into a partial order
(Y,<) if there exists a mappingφ: X → Y such that for all x, y∈ X, φ(x) < φ(y) iff x <' y.

Note that according to Definition 3.1, (X, <' ) characterizes causality iff (E, →) can be isomorphically
embedded into (X, <' ).

Definition 4.3 Let (X,<) denote a partial order. Arealizer of (X, <) is a set of linear extensions of
(X, <) such that the intersection of all extensions is equal to (X, <). The cardinality of a smallest real-
izer of (X, <) is called thedimension of (X, <), denoted dim(X, <).

We cite Ore’s characterization of the dimension of a partial order from [12]:

Theorem 4.4 (Ore) A finite partially ordered set (X,<') can be isomorphically embedded into
(Rk, <) if and only if k≥ dim(X,<').

The following theorem is the key result of [12]:

Theorem 4.5  For every N there exist processes P1,…, PN forming a distributed computation, and a
set E of events produced by that computation, such that dim(E,→) = N.

For a proof the reader is referred to [12]. What this theorem actually implies is that, if we represent logi-
cal time by integer-valued vectors and if we use the canonical vector order < of Definition 3.2 to com-
pare these vectors, then we need vectors of sizeN to isomorphically embed the→ relation, i.e., to
characterize causality — no matter what scheme is applied to maintain the time vectors. However, it
doesnot imply that vectors of dimensionN are mandatory! In fact, we can uniquely map each vector on
a (rather large) scalar value and vice versa. Typically, this will result in scalars which are at least as
“clumsy” as vectors are. But still, it is not immediately evident that — for a more sophisticated type of
vector order than < — a smaller vector could not suffice to characterize causality, although the result of
Charron-Bost seems to indicate that this is rather unlikely. At least we have the following fact [12]:

Corollary 4.6 Let T denote a set of an arbitrary kind of timestamps assigned to the events of arbi-
trary computations of N processes. Any partial order (T,<') that characterizes causality must have a
dimension dim(T,<') ≥ N.

Proof. (By contradiction). According to Theorem 4.5, choose a distributed computation ofN processes,
such that dim (E, →) = N. Suppose that dim(T, <' ) = k < N. Theorem 4.4 states that there exists a
mappingφ: T → Rk which embeds (T, <' ) into (Rk, <). If (T, <' ) characterizes causality, we have for
all e, e' ∈ E:

(1) T(e) <' T(e') iff e → e'.
(2) φ(T(e)) < φ(T(e')) iff T(e) <' T(e').

Putting (1) and (2) together, we obtainφ(T(e)) < φ(T(e'))  iff e → e'. Thus,(φ ° T) is a mapping that
embeds→ into (Rk, <), and according to Theorem 4.4 dim(E, →) ≤ k < N, which contradicts our
choice ofE. ❏

A definite theorem about the size of vector clocks would require some statement about the minimum
amount of information that has to be contained in timestamps in order to define a partial order of dimen-
sionN on them. Finding such an information theoretical proof is still an open problem.

5 Characterizing Concurrency with Concurrent Regions
In the previous section, we gave a brief survey of known techniques to characterize causality by times-
tamping the events of a distributed computation. Two main results were obtained:

• By using vector time, it is possible to faithfully represent causality.
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• Although several refinements to the basic vector time approach are feasible, timestamps character-
izing causality seem intrinsically complex.

The latter insight is somewhat disappointing, because it might substantially limit the application of vec-
tor time in practice. Therefore, it is not surprising that alternative ways to assess causality were pursued.
In this section, we will investigate a popular approach, namely the concept ofconcurrent regions.

5.1 Concurrent Regions and Concurrency Maps

For some applications like, for example, the detection of race conditions in concurrent computations, it is
sufficient to know whether two arbitrary events e ande' occurred concurrently or not; if e || e' does not
hold, then the exact causal relation (i.e., e → e' or e' → e) is irrelevant. One might suspect that it is
cheaper to supply only this restricted form of “concurrency information” instead of the full causality
relation.

Consider, for example, eventx of the distributed computation depicted in Figure 11. All events
occurring in the shaded segments of the time lines ofP1 andP2 are causally independent fromx, and
therefore, according to Definition 1.2, concurrent withx. These segments formconcurrent regions with
respect tox. If it were possible to identify such regions with only little effort, then detecting concurrency
would be simple!

For a first step towards this aim, it might be useful to visualize concurrent regions with aconcur-
rency map. This approach was proposed by Stone, who suggested the use of concurrency maps to sup-
port the visual analysis of concurrent processes [68, 69]. To this end, the local event streams of a
distributed computation are partitioned into so-called dependence blocks. The underlying idea is that all
events contained in a dependence block can be regarded as a single, atomic “super event”, i.e., if one of
these events is concurrent with a non-local evente, then all the other events occurring in that dependence
block are concurrent withe, too. More formally, let us define an equivalence relation (Ei , ~) on the set of
events local to a processPi as follows:

Definition 5.1: For x, y∈ Ei , the relation x ~ y holds if and only if for all z∈ E \ Ei the following con-
ditions are satisfied:

x ||z iff y ||z ∧
x → z iff y → z ∧
z → x iff z → y

The dependence blockDB of an eventeij  can now be characterized as an equivalence class with respect
to (Ei , ~), i.e.,DB(eij) ::= {x ∈ Ei | x ~ eij}. Note, that this definition implies that the borders between two
dependence blocks on a time line necessarily lie after a send event and before a receive event

The causality relation on events induces dependencies between different dependence blocks. More
specifically, the first event (“successor event”) of some block may depend on the occurrence of the last
event (“predecessor event”) of another block on a different time line. That is, each send event is a prede-
cessor event, while the corresponding receive event is a successor event. The concurrency map is
obtained by partitioning the time diagram by vertical lines inhistory segments such that causally depen-
dent dependence blocks on different process lines occur in different segments, whereas dependence
blocks on different process lines appearing in the same segment are concurrent. Figure 12 shows a con-

P1

P2

x
P3

Figure 11: The concurrent regions with respect to eventx
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currency map of the computation depicted in Figure 11. For more details about the construction of con-
currency maps, the interested reader is referred to [69].

The following transformations which preserve the causal dependencies may be applied to concur-
rency maps:

(1) The horizontal size of a dependence block may be scaled up and down by any factor, as long as
blocks on the same time line do not overlap.

(2) The position of events within a dependence block may change, as long as their relative order
remains untouched.

(3) Dependence blocks may be moved to the right or to the left; they may even cross the boundary of a
history segment, with the following restriction: The dependence block of a predecessor event and
the dependence block of the corresponding successor event must always remain separated by a his-
tory segment boundary.

A concurrency map (together with its feasible transformations) implicitly represents all possible total
event orderings which are consistent with causality. In [67] it is shown that for every distributed compu-
tation the construction of a concurrency map is in fact possible, and that for two given events e ande', e
|| e' holds if and only if there is a transformation of the concurrency map such that e ande' occur in the
same history segment. For example, in Figure 12 eventx and event y are clearly concurrent, because
according to rule (2) we can movex one segment to the left, andy one segment to the right. Also,x andz
are clearlynot concurrent, because according to rule (3) they have to be separated by at least two seg-
ment boundaries.

5.2 Identifying Concurrent Regions with Region Numbers

Stone’s dependence blocks are good candidates for the construction ofconcurrent regions. All that is
needed is an efficient method for the identification of history segments and a tag for each block that tells
us which history segments the block may possibly enter. IfDB(x) may enter the same history segment as
DB(y), then the eventsx andy are concurrent, otherwise they are causally dependent.

Ideally, we would like to divide the time diagram of a given computation into contiguous regions
corresponding to dependency blocks, and we would like to assign some number to each region such that
two given eventsx andy are concurrent if and only if the numbers of their respective regions satisfy a
simple criterion. Can we assign appropriate region numbers and define a suitable binary relation that
characterizes concurrency in the sense of the following definition?

Definition 5.2 Let E denote the set of events of a distributed computation, let S denote an arbitrary
set, and let #⊆ S× S denote an arbitrary binary relation. Letφ: E → S denote a mapping. (φ , #) is

Figure 12: A concurrency map according to Stone
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said tocharacterize concurrency, if for all e, e'∈ E
e || e' iff φ(e) #φ(e').

For a givenφ, we say for short that (S, #) characterizes concurrency.

This definition should be compared to Definition 3.1 where the characterization of causality is defined.
Unfortunately, it can be shown that the problem of characterizingcausalityis essentially reducible to

characterizingconcurrency. Note that once we are able to characterize concurrency, we can determine
whether two given eventsx andy are causally dependent or not; if they turn out to be causally related, we
can simply use Lamport time to distinguish betweenx → y and y → x. This shows that region numbers
must have essentially the same complexity as time vectors. Therefore the results of Section 4.3 still
apply. That is, we cannot really hope to gain much by substituting region numbers for vector time.

For a formal proof of our informal reasoning, let us assume that we know a mappingφ: E → R, such
thatφ(e) denotes the region number of the region to which event ebelongs. Let us further assume that a
binary relation # exists, such that(φ , #) characterizes concurrency. In other words, suppose we are able
to identify concurrent regions with simple real-valued region numbers. If bothφ and # are computable,
then we can show that there exists an implementation of vector time which only requires vectors of
size 2:

Proposition 5.3 Letφ: E → R denote a mapping, and let# ⊆ R × R denote a binary relation such that
(φ, #) characterizes concurrency. Then there exists a mappingφ': E → R × N, and a partial order<'
on (R × N), such that (φ', <') characterizes causality.

Proof. Defineφ' as follows:

(1) φ'(e):= [φ(e), L(e)], whereL(e) denotes the Lamport time of evente.

Next, define <' as follows:

(2) φ'(e) <' φ'(e')  iff ¬ (φ'(e)[1] # φ'(e')[1]) ∧  (φ'(e)[2] < φ'(e')[2]).

According to Definition 5.2, we can restate (2) in terms of events and their Lamport times:

(2’) φ'(e) <' φ'(e')  iff ¬ (e ||e') ∧ (L(e) < L(e')).

We note that Lamport time is consistent with causality. Thus,e → e' impliesφ'(e) <' φ'(e'). If, on the
other hand, e → e' does not hold, it follows thate' → e holds implyingL(e') < L(e), or that e ||e' is
satisfied. In either case,φ'(e) <' φ'(e') does not hold according to (2'). As a consequence, (φ', <' ) char-
acterizes causality.❏

Actually, (φ', <' ) is an alternative realization of vector time. Note that <' can be computed with almost as
little effort as #. Only one additional vector entry is needed, and maintaining Lamport time does not
require any additional messages. Note that it is straightforward to extend Proposition 5.3 to the general
case where we take region numbers from the domainRk instead ofR. Hence, if there is a way to imple-
ment region numbers based on vectors of sizek which characterize concurrency, we can immediately
derive an implementation of vector timestamps of size (k+1) which characterize causality.

As we have seen in Section 4.3, there are good reasons to believe that vector time is inherently com-
plex to compute and requires vectors of dimensionN. Thus, Proposition 5.3 seems to imply that we can-
not hope for region numbers which identify concurrent regions smaller than of size (N-1). Anyhow,
whatever actual size of vectors is required for a realization of vector time, region numbers require vec-
tors of essentially the same size.

An approach for the detection of concurrency based on comparing the numbers of concurrent
regions is described by Spezialetti and Kearns in [66]. In their model, it is assumed that there exists an
event monitor which observes the local state changes (i.e., events) and determinesglobal state changes
by combining appropriate concurrent local events into so-calledglobal events. Consequently, the prob-
lem that has to be solved is to determine whether two given events are concurrent or not. To this end, so-
called regions are defined local to each process andregion numbers are attached to each of them, such
that two events e ande' are considered as concurrent if and only if their corresponding region numbers
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are equal. Interestingly, Spezialetti and Kearns base their notion of concurrency on (N, =), i.e., on integer
region numbers and on simple equality. According to Observation 1.3, however, concurrency is not an
equivalence relation; it follows that (N, =) cannot suffice to characterize concurrency. Consequently,
without going into the details of the detection algorithm presented in [66], our discussion reveals that
Spezialetti’s and Kearns’ notion of concurrency must be incomplete in some way or the other. In fact,
Cooper and Marzullo [15] present a simple scenario where the proposed algorithm fails to detect a global
event that actually occurred.

The discussion presented in this section supports our claim that detecting causal relationships in dis-
tributed computations is far from being trivial. Furthermore, it shows that it is important to have a clear
understanding of the fundamental characteristics of || and→ to avoid fundamental misconceptions in the
approach that is taken to tackle the problem.

6 Evaluating Global Predicates
It is often required to know whether for a distributed computation a certain property holds or does not
hold. Formally, properties are predicates of the global state. An important application domain for global
predicates is the field of debugging. Typically, the expected behavior or suspected misbehavior of the
system under test is specified as a global predicate, and debugging is done by checking whether this
predicate is satisfied at runtime or not. In order to be sensible, the underlying global states on which
predicates are evaluated must be causally consistent — if the effect of an event is reflected by the state,
then its cause must also be reflected by it. Or, to put it differently, an observer of the computation must
never observe an effect before its cause. However, as we shall see, it is possibly the case that different
observers see different, mutually exclusive consistent global states. It might thus happen that one
observer establishes the truth of a given predicate, while another observer does not. This seemingly para-
doxical situation gives rise to a more detailed analysis of the underlying notions and concepts. It turns
out that in distributed systems, a proper evaluation of global predicates requires a careful consideration
of the causal structure that the computation reveals. In this section, the impact of causality on global
predicate detection is discussed, and some detection schemes are surveyed.

6.1 Computations, Observations, and Global States

In the previous sections, we used terms like “observer”, “observation”, or “global state” in a rather infor-
mal way. Before continuing our discussion, we need to elaborate these concepts a little further. Our dis-
cussion is based on some notions which have their origin in concurrency theory and in temporal logic. In
particular, the subsequent presentation shares many concepts with Katz’s and Peled’s work on interleav-
ing set temporal logic [33, 34], with Pratt’s geometric model of concurrency [56], and with Reisig’s cau-
sality based partial order semantics of non-sequential systems [60, 61]. It should be noted, however, that
most of these theories are based on more abstract models (where, for example, the notion of processes in
the sense of linearly ordered disjoint subsets of events does not exist), and that a different terminology is
used in most cases.

Informally, a distributed computation is an execution of a distributed program which consists of
communicating sequential processes. Because of the nondeterminism introduced by varying message
delays, a single distributed program usually allows several different computations. If we assume that
each event which appears in the course of a computation is timestamped with the real-time instant of its
occurrence, then each computation corresponds to a unique time diagram with real-time axes. Of course,
real time is generally not available, and anyobservation of the computation suffers from unpredictable
notification delays. Hence, observations will not preserve the real-time relation between the events; it is,
however, possible to preserve the causality relation, as will be sketched further down.

If we abstract from real time, then a distributed computation, i.e., a single execution of a distributed
program, allows differentviews in the sense of different but equivalent time diagrams, as is shown in
Figure 13. Two time diagrams are considered equivalent if one can be transformed into the other by
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stretching or compressing the process axes (or parts of them) without changing the relative order of
events. Hence, equivalent time diagrams always represent the same partial order of the causality relation.
It seems plausible to assume that each such time diagram represents an equally valid view of the compu-
tation, and that any observation which allows such a view is correct. Therefore, we postulate that an
observer is an entity which observes event occurrences in a strictly sequential manner, one after the
other. Typically, measures are taken to guarantee that the observed event sequence is consistent with cau-
sality, i.e., that cause and effect always occur in the correct order to avoid confusion. This can be done,
for example, by using a causal delivery order protocol as will be described in Section 7. Basically, such a
protocol ensures that the delivery of notification messages obeys the so-called triangle inequality [57],
requiring that direct notification paths are always “shorter” than indirect channels via some intermediate
process, such that the direct messages arrive first and that the event itself is observed before its effects.

Since any member of a class of equivalent time diagrams represents an equally valid view of the
computation, any vertical projection of the events of such a time diagram onto the hypothetical global
time axis represents a valid observation of the computation. Or, conversely, for a given causally consis-
tent observation (where the events are stamped with their “observation time”) it is possible to reconstruct
a valid view in the form of a time diagram, as shown in Figure 13. This motivates the following defini-
tion:

Definition 6.1 An observationof a distributed computation is a linear extension (E,«) of the causal-
ity relation (E,→), such that for all events e∈ E the set {e'∈ E | e' « e} is finite. An entity that is
capable of obtaining a specific observation is called anobserver.

The required finite cardinality of {e' ∈ E | e' « e} — the so-calledaxiom of finite causes [73] — ensures

P1
P2

Figure 13: Different but equivalent views of a single, distributed computation
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that, even for an infinite set of events, the observation isfair in the sense that every event on every pro-
cess is observed within finite time.

In general, many different observations of a single computation exist; a special case is a computation
consisting of only a single process, namely, a sequential program: Here, exactly one observation is possi-
ble. Interestingly, it follows from Szpilrajn’s theorem [71] that the intersection of all possible observa-
tions, i.e.,what all observations have in common, is precisely the causality relation (E, →) which is the
essence of the computation. This shows again that the possible observations are all equivalent with
respect to causality; none of them is superior in reflecting “reality” if global time is not available.

Usually, aglobal state of a distributed computation is defined as a collection of the local states of all
processesat a certain instant of time(for simplicity, we assume thatmessages in transit are appropriately
reflected by the local states of their senders and receivers). As global time is not available, we need an
adequate substitute for the notion of a real-time instant — a so-calledconsistent cut:

Definition 6.2 A finite subset C⊆ E is called a consistent cut,iff e ∈ C implies e' ∈ C for all e'→ e.

That is, a consistent cut is a subset ofE which is left-closed with respect to causality. It follows immedi-
ately that the causal history of an event (Definition 2.1) forms a consistent cut. We can depict a consis-
tent cut in a time diagram by drawing acut line which separatesC on the left fromE \ C on the right, as
shown in Figure 14. Note that a message can never cross the cut line of a consistent cut from right to left,
for that would imply that the receive event for that message belongs to the cut, while the corresponding
send event — which, of course, causally precedes the receipt — does not. Conversely, any line which is
consistent in the sense that it cuts the time diagram into a left part and a right part such that no message
crosses the line from right to left defines a consistent cut. Thus, consistent cuts and consistent cut lines
correspond to each other. Intuitively, a cut line can be interpreted as an instant of (logical) time that con-
sistently partitions a time diagram intopast andfuture. It should also be clear that for a given time dia-
gram with a cut line of a consistent cut there is always an equivalent time diagram where the cut line
forms a straight vertical line. This motivates again that consistent cuts are adequate substitutes for real-
time instants.

It is now possible to define consistent global states as “current” relative to consistent cuts, i.e., along
the corresponding cut line. Informally theglobal state S(C) of a consistent cutC consists of the local
states of all processes taken just after the last event of each processPi that belongs toC (i.e., the right-
most event left of the cut line), or the initial local state if there is no such event. More formally,S(C) is
the global state that is reached by successively executing alle ∈ C in some linear order that is consistent
with the causality relation, starting from the initial state. Clearly, causally independent (i.e., concurrent)
events can be executed in arbitrary order without affecting the final resultS(C).

As the events of an observation occur one after the other, the global state of the computation is
evolving over time. Each event occurrence denotes a global state transition. At every point of an obser-
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vation, the set of events that have been observed so far forms a consistent cut. Hence, every observation
induces a totally ordered sequence of consistent global states.

The set of all consistent cuts of a computation together with operations∪ and∩ has the mathemati-
cal structure of a lattice [32, 44, 51, 73]. Therefore, a convenient method to graphically represent the
consistent cuts of a distributed computation is anN-dimensionalstate lattice[13, 15, 44, 56] as shown in
Figure 14. In our two-dimensional example, each vertical line of the state lattice corresponds to an event
in P1, and each horizontal line represents an event inP2. An intersection pointp = [e1i, e2j] of two event
lines denotes the finite set {e11,…, e1i, e21,…,e2j} ⊆ E. Of course, this set is not necessarily a consistent
cut. For instance, the point with coordinates [e14, e21] denotes a set which contains the receive evente14,
but not the corresponding send evente23 preceding it. In the lattice of Figure 14, all intersections denot-
ing consistent cuts —valid intersection points, for short — are marked by dots. (Note that a zero coordi-
nate of an intersection point does not correspond to an event; one may, however, postulate a dummy
eventek0 for that purpose.) In general, a distributed computation comprisingN processes is represented
by anN-dimensional state lattice. The intersection points corresponding to an observed event sequence
form apath [33] in the lattice diagram:

Definition 6.3 Let L be the state lattice of a distributed computation comprising N processes, and let
C(p) denote the consistent cut that corresponds to a valid intersection point p.

(1) A sequence p0, p1, p2,… of valid intersection points is called a path through L, if
C(p0) ⊂ C(p1) ⊂ C(p2)…, and if |C(pi)| = i for all pi contained in the sequence.

(2) A path is calledcomplete, if for all e ∈ E some valid intersection point pi is contained in
that path such that e∈ C(pi).

As an example, Figure 14 shows a complete path which induces the sequence of consistent cuts∅,
{ e11}, { e11, e21}, { e11, e21, e12,},…, {e11, e21,…, e16, e25} = E. Note that every complete path through
the state lattice induces a sequence of eventse1, e2, e3,…, defined byei = C(pi) \ C( pi-1); for the path
shown in Figure 14 we obtaine11, e21, e12,…, e25. Obviously, this sequence defines a total order onE
which is consistent with causality. Furthermore, it is fair in the sense that every evente ∈ E has only a
finite number of predecessors with respect to that order. Hence, it satisfies Definition 6.1, and it follows
thatevery complete path corresponds to an observation (and vice versa).

Recall that every consistent global state corresponds to a consistent cut C(p) for some valid intersec-
tion pointp, and that there always exists some complete path containingp. In other words, every consis-
tent global state is observed by at least one observation (as we would expect). However, a single
complete path does typically not containall valid intersection points of the state lattice. That is, a single
observation will only reveal a subsetof all possible global states. As a consequence, two observers of the
same distributed computation may observe different sets of consistent global states. For example, state
S1 corresponding to cut line C1 in Figure 14 occurs in observation O1 = e11, e12, e13,…, but obviously
not in observationO2 = e11, e21, e12,… corresponding to the path marked in the Figure. This has serious
consequences.

Suppose, for example, that two observers simultaneously observe the computation shown in
Figure 14 to find out whether a given predicateΦ defined on the consistent global states of that computa-
tion is satisfied or not. Assume further thatΦ holds only for stateS1, but not for any other possible state.
Now, if the first observer makes observationO1, and the second observer makes observation O2, then the
first observer will conclude thatΦ holds, while the second will claim that the computation failed to sat-
isfy Φ. Which observation is “correct”?

Obviously, none of them! The decision whether a global state predicateΦ is satisfied in the course of
a distributed computation depends on the specific observation that it refers to. Therefore, an accurate
description of a predicate’s occurrence should be stated as follows: PredicateΦ holds for the set of obser-
vations {O1,…, Ok} of the given computation. That is, a specification ofΦ should comprise a qualifier
denoting the set of observations that it covers. The fact that in distributed systems the truth of a global
predicate depends on the observer might be surprising at the first sight — it is, in fact, a phenomenon that
is unknown in the sequential world where a computation has only a single valid observation and the
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validity of a predicate can thus safely be attributed to the computation.

6.2 Possibly and Definitely

In the previous section, we showed that the specification of a global state predicate is generally meaning-
less as long as it does not refer to a well-defined set of observations. In [15], Cooper and Marzullo
address this issue, and they introduce two useful predicate qualifiers, defined as follows:

Definition 6.4 Let Φ denote a predicate defined on the global states of a distributed computation, let
L denote the state lattice of that computation, and let “Φ holds atp” mean thatΦ holds for the con-
sistent state corresponding to intersection point p of lattice L.

(1) possibly Φ holds iff there exists a path P through L and an intersection point p on P such
that Φ holds at p.

(2) definitely Φ holds iff every complete path through L contains an intersection point p such
that Φ holds at p.

That is,possiblyΦ holds for a given computation if there existsat least one observation which reveals
the satisfaction ofΦ, and definitelyΦ holds if all observations observe thatΦ holds. Note that
definitelyΦ implies possiblyΦ (we may safely assume that the set of observations is not empty), and that
¬ possibly(¬ Φ) impliesdefinitelyΦ. Note further that the term “definitely” is somewhat misleading, as
it only refers to all observations ofone particular computation, but — due to possible nondeterminism —
not toall computations of a distributed algorithm.

Cooper’s and Marzullo’s predicate qualifiers are closely related to some modalities known from
modal and temporal logic [40]. For example, there is a direct correspondence between the two qualifiers
possibly anddefinitelyand the sequence quantifiersEF and AF of Katz’s and Peled’s interleaving set
temporal logic [33, 34]. Note, however, that we excluded conflicts from our conceptual framework.
Therefore, we only deal with asingle execution (E, →) of a distributed system and its possible observa-
tions. This differs from the approach generally taken in temporal logic; there,all possible executions of a
nondeterministic algorithm are considered, and predicates typically contain additional qualifiers denot-
ing the set of executions for which the predicate formula holds.

The predicatesdefinitelyΦ andpossiblyΦ are properties of a computation which do not depend on a
specific observation. Therefore, characterizing a computation by finding out whether certain predicates
canpossibly or will definitely hold is an important aspect of distributed debugging. Typically, we would
usedefinitelyto monitor predicates which specify mandatory states of the computation, for instance: “In
each process, the variableCountermust eventually decrease to zero”;possibly is suitable for the detec-
tion of constraint violations like, for example: “More than one traffic light shows ‘green’ at the same
time”. Recurrence to the Newtonian model of absolute global time4 may be helpful to give a pragmatic
meaning topossibly anddefinitely. Recall that it is generally impossible to decide whether an observa-
tion reflects the actual real-time order of event occurrences. Thus, if we assume that the events have an
immediate effect on some “global environment” (e.g., traffic lights on the traffic), then it is not clear
whether an observed sequence of global states is identical to the one that was actually experienced by the
environment. Withpossibly or definitely, however, we can simulate an “omniscient” observer by consid-
ering all possible observations — i.e., all feasible real-time orders of event occurrences — simulta-
neously. In our traffic light scenario, for example, most observers may observe a signalling sequence
where (just by chance) at most one traffic light shows ‘green’ at any instant of time, even though some
feasible real-time order of events would disclose a lurking bug in the traffic light synchronization.

Interestingly, modal operators like, for example,possibly or definitely are dispensable forstable
predicates.

Definition 6.5 A predicateΦ of a distributed computation is calledstableiff it satisfies the following
condition:

4.  As opposed to therelativistic point of view in modern physics where the existence of absolute time is denied.
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If Φ is satisfied at state S(C) corresponding to some consistent cut C of the computation, thenΦ is
satisfied at S(C') for all consistent cuts C' of the computation such that C⊆ C'.

Stable predicates have the following remarkable property (see also [33, 34, 13]):

Lemma 6.6 For a stable predicateΦ defined on the global states of a distributed computation,
possiblyΦ anddefinitely Φ are equivalent.

Proof. As remarked above,definitelyΦ impliespossiblyΦ. Conversely, suppose thatpossiblyΦ holds
for a given computation. Hence,Φ is satisfied at some intersection pointp of some pathP, wherep
corresponds to the consistent cutC(p). Consider an arbitrary complete pathP' through the state lat-
tice. AsC(p) is finite andP' is complete, there exists a pointp' onP' such thatC(p) ⊆ C(p'). Accord-
ing to Definition 6.2,C(p) is left-closed with respect to the causality relation, hence the events in
C(p') \ C(p) do not causally precede any event inC(p). Therefore, it is evident that successively
removing minimal elements (with respect to→) from the finite set C(p') \ C(p) and adding them to
C(p) yields a cut sequence which corresponds to a continuation of pathP from p to p'. From the sta-
bility of Φ it follows thatΦ must hold atp' on P'. As P' was arbitrarily chosen, the same argument
holds for any complete path through the lattice, which means thatpossiblyΦ implies definitelyΦ for
stable predicates. ❏

Lemma 6.6 shows that a stable property that holds insome observation will eventually hold inanyobser-
vation and is thus observer-independent. This fact can easily be understood by considering theN-dimen-
sional state lattice. Obviously, a stable property holds for all valid intersection points in an “upper-right”
N-dimensional subcube of the state lattice. If this subcube is not empty, then every complete path must
eventually enter that subcube; if it is empty, then neitherpossiblyΦ nordefinitelyΦ are satisfied. There
exists another class of predicates for which it is possible to generalize from one observer to all observers,
namely predicates which depend on a propertylocal to a single process [33, 34, 13]. An in-depth treat-
ment of such “observer-independent” predicates may be found in [13].

Because until recently only the detection of stable predicates was discussed in the literature,
Lemma 6.6 might explain why modal operators such aspossiblyor definitely were not considered there.
It should be noted, however, that detectingpossiblyΦ or definitelyΦ is quite different from the classical
stable predicate detection problem [10]. Whereas in the latter case it is usuallyrequired that the predicate
Φ be stable, and the problem is to detect the satisfaction ofΦ as soon as possible in the course of a com-
putation, the problem forpossiblyΦ anddefinitelyΦ is todecidewhether or not a distributed computa-
tion has these properties.

In [15], two algorithms based on vector time for the detection ofpossiblyΦ anddefinitelyΦ in finite
computations (i.e., computations whereE is finite) are presented. Let us call |C(p)| thelevel of intersec-
tion pointp. Basically, the algorithm fordefinitelyΦ iteratively computes the setsA0, A1, A2,… where Ai
denotes the set of valid intersection points at leveli, such that allp in Ai are accessible by a path not con-
taining an intersection point at a smaller level that satisfiesΦ. A0 contains the origin of the state lattice;
Ai+1 comprises those valid intersection pointsp for which there exists an immediate predecessorp' ∈ Ai
along some path (i.e.,C(p') ⊆ C(p) and the levels ofp andp' differ by 1) such thatΦ is not satisfied atp'.
If an Aj is reached which is empty, thendefinitelyΦ holds. If, however, the maximum levell = |E| of the
state lattice is reached and all elements ofAl do still not satisfyΦ (in fact,Al contains exactly one ele-
ment), then a path through the state lattice exists such thatΦ never holds, and thereforedefinitelyΦ is
not satisfied.

The algorithm forpossiblyΦ is similar; as soon asAi contains a member for whichΦ holds,
possiblyΦ is satisfied and the algorithm terminates. Otherwise,Ai+1 is computed as above. Both algo-
rithms are based on an efficient enumeration of the valid intersection points (essentially a breadth-first
search through the lattice), thus they are linear in the number of valid intersections. Unfortunately, this
can be of orderΟ(KN), whereK is the maximum number of local events per process, andN is the number
of processes. The use of vector time and the immense number of valid intersections render an on-the-fly
application of the above algorithms almost prohibitive.



— 26 —

As a final remark, it should be noted thatpossibly anddefinitely can be defined without referring to
complete paths, i.e., observations. In [52], Ochmanski introduces the concept ofinevitable global states
— an equivalent todefinitely — and extends this notion even to systems for which an observation in the
sense of Definition 6.1 does not exist; it is, however, doubtful, whether an efficient algorithm for the
detection ofinevitability in non-observable systems is feasible. Furthermore, such systems seem to be of
little practical relevance.

6.3 Navigating through the State Lattice

DecidingdefinitelyΦ conceptually requires the inspection ofall paths — or at least all consistent global
states — of the state lattice in the worst case. It is therefore computationally expensive. While in general
the situation forpossiblyΦ is not much better, there exist certain predicatesΦ for whichpossiblyΦ can
be detected quite efficiently. Garg and Waldecker give a more formal characterization of these predicates
in [26]; in essence, their definitions comprise global predicates which are decomposable into locally
detectable parts — such as conjunctions or disjunctions of local predicates — whose validity can be
established in isolation. In the following we restrict our attention to such predicatesΦ, and we present a
simple algorithm for the detection ofpossiblyΦ.

The basic idea is to navigate through the state lattice, searching for an intersection point whereΦ
holds. For an efficient realization, it is desirable to restrict the search to only one “dimension” of the lat-
tice as long as possible, and to change the direction of search only if absolutely necessary. That is, we
execute the events of one specific process until we “hit” a local state that may contribute to the satisfac-
tion of Φ, or until causality constraints force us to interrupt the execution of that particular process; next,
we freeze that process’ local state and continue with a different process. By executing the computation in
such a sequential fashion, we reduce the computational complexity of the detection scheme from O(KN)
to O(KN), or more precisely, to O(E). Approaches similar to the one sketched here are described in [13,
26, 39].

Executing a computation in the proposed manner is, however, somewhat difficult to achieve in a dis-
tributed system where computations are typically nondeterministic. Blocking all processes but one to
obtain the required sequential execution would generally cause an unbearable distortion of the system’s
“normal” behavior. That is, the so-calledprobe effect [25] induced by such a method may lead to a com-
pletely abnormal behavior of the system which would render the conclusions drawn from its observation
almost irrelevant. One way to overcome the problems induced by observing the processesduring execu-
tion might be to collect event-traces in an otherwise undisturbed run of the system, and to apply the algo-
rithm sketched aboveafter the execution. For instance, one could put all traced events in event queues,
one for each process, and fetch the next event from the respective queue instead of performing an execu-
tion step of a single process. This approach was taken, for example, by Garg and Waldecker [26]. The
number of relevant events produced in the course of a distributed computation could be quite substantial,
however, and therefore the queues may rapidly grow. Furthermore, in a large distributed system the man-
agement of all process queues is likely to become a bottleneck, and tracing all events may already lead to
an intolerable probe effect.

In order to avoid undue distortions during the original execution, one solution is to re-execute the
computation, and to generate the events “on demand” onlyduring replay. Since distributed computations
are usually nondeterministic, an identical reproduction of the system’s behavior requires special precau-
tions. One might, for example, try to employ a deterministic scheduling discipline to enforce reproduc-
ibility of the execution. Unfortunately, centralized scheduling is not appropriate in a distributed setting as
it would severely limit the potential for parallelism. Therefore, a better solution is to provide an execu-
tion replay facility [37, 38]. This mechanism is based on a trace of the outcome of all nondeterministic
steps which each process took during an original execution of the distributed system (e.g., the selection
of an incoming message, or reading some volatile data). During replay, each process simply consults its
trace records whenever a nondeterministic decision has to be taken. Thus, by forcing all processes to
reproduce their exact sequence of nondeterministic execution steps, the original behavior of the system
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— including its communication pattern — is preserved. Tracing only “nondeterministic events” (instead
of all events which may affectΦ) diminishes the probe effect, reduces the amount of trace data, and
allows to detect global predicates during replay with virtually no (logical) detection delay [39]. More-
over, during replay the execution speed may be reduced in order to match the observer’s processing
capacity, and on each re-execution the observer may concentrate on particular aspects, thus reducing the
space requirements for each analysis.

Execution replay is particularly valuable for the evaluation of global predicates which typically
causes substantial overhead in communication and computation. For the subsequent discussion, we will
therefore assume that either some kind of deterministic replay of the original computation, or at least a
facility for the collection of event traces is available, such that we can safely study the effect of the
events of each process in isolation, without changing the observed overall behavior of the system. It
should be noted, however, that the problem of replaying distributed computations is difficult in its own
right, and may require substantial computational effort. For a more detailed discussion, see [37, 38].

To continue our discussion of the navigation scheme sketched above, consider, for example, the dis-
tributed computation depicted in Figure 14 and the global predicateΦ ≡ ((x = 1)∧ (y = 1)), wherex and
y are local variables ofP1 andP2, respectively. Note thatx = 1 andy = 1 are two predicates whose truth
can be established locally. To detectpossiblyΦ, any assignment to the variablesx or y is a significant
event that may affectΦ. We propose the following algorithm which detects whetherpossiblyΦ holds for
such a “locally decomposable” predicateΦ:

(1) Put the system in its initial state.
(2) Check ifΦ is satisfied for the current global state. If so, the detection algorithm terminates with

possiblyΦ ≡ TRUE.
(3) Select some executable processP (i.e., a process whose next execution step does not causally

depend on the occurrence of a non-local event that has not yet been executed and thus blocks fur-
ther local execution) according to the following preferences:

a)select a process that fails to satisfy its local predicate5, or else
b)select a process that is causing the blocking of some other process.

If no selectable process exists, the detection algorithm terminates, yieldingpossiblyΦ ≡ FALSE.
(4) Execute the next step of the selected processP, and continue until one of the following conditions is

met:
a) P’s local predicate holds, or
b) P becomes blocked at a receive event, waiting for the corresponding send event to occur, or
c) P terminates.

In case a), continue with step (2). In case b), continue with step (3). Otherwise (case c), the detec-
tion algorithm terminates, yieldingpossiblyΦ ≡ FALSE.

Note that in step (3) of the algorithm, we may be forced to select a process which already satisfies its
local predicate. However, should such a situation arise, this means that there exists some process which
is currently blocked and still has not reached its local predicate. Under these circumstances, we have no
other choice but to continue with the process that causes the blocking, even if the local predicate of that
process is then invalidated. The preferences for the selection of an executable process stated in step (3)
ensure that the algorithm will detect the satisfaction ofpossiblyΦ at the earliest possible “logical
moment”, i.e., at a minimal consistent cut which satisfiesΦ.

Figure 15 illustrates the application of the algorithm for the computation depicted in Figure 14. In
terms of the state lattice, we select a path through the lattice such that we move in one dimension (to the
right, say) as long as we can, until we findx = 1 to hold. Next, we move in an upward direction untily = 1
holds. Only if there is no valid intersection in the current direction, then we are forced to circumvent the
barrier (i.e., the shaded areas in Figure 15), and change the current direction. The generalization of this

5.  It is assumed that each process whose local state does not affect the truth ofΦ has a local dummy predicate which is
always satisfied but does not contribute to the satisfaction ofΦ.



— 28 —

method forN-dimensional lattices is straightforward, and interpreting the algorithm as a directed walk
through the state lattice guarantees that it is free of cycles and will eventually terminate. It should also be
noted that one could easily derive a more sophisticated navigation scheme, where several processes that
fail to satisfy their local predicate are executed in parallel. We leave this optimization to the interested
reader.

For simple global predicates like the one used in the example above, our algorithm is quite efficient.
Provided we are able to execute the computation in the required deterministic fashion, no message times-
tamps and no time vectors are needed. Using execution replay, there is no need to explicitly construct the
state lattice, which would require too much space in general; the required causality information is implic-
itly represented by the specific way in which the global state evolves. In the simple example shown in
Figure 14 and Figure 15, the navigation algorithm will inevitably lead us to the global state (e15, e25)
whereΦ holds.

One drawback of the navigation algorithm is that it can only check for one global predicate at a time.
Another, more important restriction of this approach is that it will fail for slightly more sophisticated
predicates, as shown in Figure 16. Here, each process reaches a local state which may contribute to the
desired predicateΦ. However, the local states are contradictory with respect toΦ, i.e., they mutually
exclude each other for the predicate to hold. Thus, as soon as we reachx = 1 inP1 and y = 2 inP2, we
have to decide which process should be continued next. If we resumeP1, thenΦ will never hold, but if
we resumeP2, then the predicate is eventually satisfied. The example shows that the simple navigation
approach is not generally applicable for the detection ofpossiblyΦ for arbitrary global predicatesΦ.

6.4 Currently Φ
The discussion in the previous sections revealed that useful modalities such aspossiblyare in general
computationally intractable. Except for some special cases where we were able to derive quite efficient
detection schemes, we have to resort to the general algorithm proposed by Cooper and Marzullo, as the
scenario of Figure 16 indicates. The fact that their algorithm considers all possible observations and may
therefore require an immense number of steps rules out the detection ofpossiblyΦ in many practically

Figure 15: Detectingpossibly ((x = 1)∧ (y = 1)) in the computation of Figure 14
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relevant situations. If we consider such intractable predicates, we have to confine ourselves to simpler,
although maybe less powerful modalities. In [15], Cooper and Marzullo propose a modality which is
based ona singleobservation, the real-time observation of the computation, which we define as follows:

Definition 6.7 The total order (E, <) of the events of a distributed computation ordered according to
their real-time occurrence is called thereal-time observationof the computation.

Note that the real-time observation is an observation in the sense of Definition 6.1. In Section 6.1, we
pointed out that fromwithin the system, the real-time observation is indistinguishable from any other
observation of the computation; however, as a distributed computation usually affects its global external
environment, anexternal observer might nevertheless be able to identify the real-time order of all events.
Of course, implementing an external real-time observer might be difficult or even impossible if one has
no control over the observed system. It might, on the other hand, be possible that the observer is able to
force the system to produce events only in such a way that they are faithfully observable. This, of course,
raises the question to what degree such an influence of the observer on the observed system is tolerable
— we would certainly not accept a central scheduler that forces a synchronized sequential execution of
the computation. In [15], a qualified global predicate called currentlyΦ is defined as follows:

Definition 6.8 The global predicatecurrently Φ defined on the local process states of a distributed
computation is said to hold, ifΦ is still satisfied at the moment at which it is reported by some dedi-
cated monitoring process.

Thus, monitoringcurrentlyΦ addresses both detection accuracy and detectiondelay; it aims at a reliable
on-the-flydetection of a global predicateΦ, such that the unavoidable notification delay will not allowΦ
to vanish before it is recognized. In this respect,currently Φ is superior topossiblyΦ which may be
detected long afterΦ was first satisfied. To match its intended meaning,currentlyΦ should eventually be
satisfied ifΦ holds at some global consistent state occurring in the real-time observation of the computa-
tion.

Similar to Spezialetti and Kearns mentioned earlier, Cooper and Marzullo define events as state
changes that might affectΦ, and they assume a dedicated central monitoring processM which does not
participate in the computation, but is only responsible for the predicate detection. In order to detect
currentlyΦ — i.e., to simulate a real-time observation — certain processes are temporarily blocked by
the monitorM. This may, of course, affect the behavior of the distributed computation. Therefore, the
monitor may cause the system to perform a computation that is very unlikely to occur in an unmonitored
execution, although the monitor’s intrusion willnever lead to a computation that is not feasible in princi-
ple in the unmonitored system. Thus, monitoring will only yield possible, although maybe improbable
cases. For application domains like, e.g., debugging, the effects of intrusion are clearly undesirable —
they are the price we have to pay for the efficiency of the detection algorithm. In cases, however, where
the detection of global states is an integral part of the system (e.g., in distributed reactive systems [29,
41] where the system itself is essentially a monitor receiving stimuli from its environment through a net-
work of sensors, and reacting to these stimuli through actuators) a moderate amount of intrusion may be
tolerable as long as sufficient potential for concurrency is retained. Cooper’s and Marzullo’s algorithm
for the detection ofcurrentlyΦ can be outlined as follows:

(1) Before the computation starts, the monitor is informed about the initial state of each process.
(2) Whenever a process executes an event e that could makeΦ true, it (asynchronously) sends the rel-

evant part of its current state to the central monitor. The monitor maintains the latest received state
information for each process of the distributed computation. This rule applies only ife is not an
invalidating event, see next rule.

(3) Whenever a process reaches an event e that could makeΦ false (a so-calledinvalidating event), it
first transfers the relevant part of its local state to the monitor and blocks before executing the
event. On notification, the monitor then flushes all links from the processes to the monitor, thereby
collecting the most recent local states of all processes. This is done by sending a REQ message to
all other processes and requiring an immediate ACK. IfΦ is not found to hold by the time all
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replies have returned, then the monitor releases the blocked process by sending an “unblock” mes-
sage and updates the recorded state of the blocked process to “undefined”. “Undefined” signifies
that the monitor must not draw any conclusions until it receives new state information from that
process. If, however,Φ holds, thencurrentlyΦ is reported and the algorithm terminates.

(4) On receiving an “unblock” message, a blocked process executes the event it was waiting at and
sends the relevant part of its new state to the monitor.

The details of the algorithm may be found in [15]. Interestingly, the monitorM does not actually perform
a real-time observation because, according to rule (2), the event notification messages are not necessarily
received in real-time order byM. However, by flushing all channels on every invalidating event, the
algorithm tries to retain allessential propertiesof a real-time observation with respect to the detection
of Φ.

Note that flushing the communication links with REQ - ACK pairs requires FIFO channels. Apart
from the rather high number of control messages, the proposed algorithm is computationally cheap — in
particular, it does not require vector time. Figure 17 shows an example of how the algorithm works. The
reason why a process is blocked when it tries to (potentially) invalidateΦ is to allow all other processes
enough time to send their latest local states to the monitor, thus to enable the detection of a temporary
holding ofΦ before it can vanish again.

Cooper’s and Marzullo’s method is highly intrusive and may substantially slow down the distributed
computation. The proposed algorithm tries to reduce the monitoring overhead by restricting the blocking
of processes to invalidating events. However, if predicates like, for example,Φ ≡ (x1 + x2 = 5) are con-
sidered, then each assignment tox1 or x2 which changes the value of the variable is an invalidating event.
Thus, invalidating events may occur very frequently, causing a lock-stepped execution with many con-
trol messages.

Besides these practical issues, there is an even more important conceptual objection to mention. The
proposed protocol is incomplete in that it can miss predicates that hold in a true real-time observation of
the computation. Figure 18 shows such a case whereΦ ≡ (x1 + x2 ≥ 5) occurs but is not detected. In the
given scenario,P2 changes its local state tox2 = 3 just after it has replied to a REQ message, but before
the invalidating eventx1:= 1 in processP1 occurs. For the short interval marked on the time line of the
monitor thecurrent state of the system isx2 = 3 and (still)x1 = 2; henceΦ holds, but is missed because at
that time the monitor has recorded “undefined” as the current state ofP1. One could try to “fix” the prob-
lem by immediately updating the recorded local state to the new value as soon as the “block” message
arrives at the monitor. But then again the algorithm misses certain predicates, as Figure 17 shows, if we
replace the initial assignmentx1 = 2 inP1 by x1 = 3.

Obviously, the deficiency remains whether the effect of an invalidating event is defined to occur
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Figure 17: Monitoringcurrently (x1 + x2 ≥ 5) according to Cooper and Marzullo
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already during or only after the interval in which the process is blocked. Avoiding this problem would
require to introduce some additional blocking. For example, one could block each process oneveryrele-
vant event — not just invalidating events as suggested in [15]; alternatively, each process could be
blocked after sending an ACK message, untilΦ has been decided. Both methods would, of course, mean
to substantially increase the intrusiveness of the algorithm. If such an overhead is unacceptable, we have
to pretend that the current state is “undefined” until the next state update is received after unblocking,
thus leaving the observer with a “blind spot” for some predicates which occur. This is exactly what Coo-
per and Marzullo do. Then, however, the notion of acurrently truepredicate becomes rather vague — if
currentlyΦ is not detected, then it might still be possible that a true real-time observation of the compu-
tation would yield the truth ofΦ. As a consequence, we do not reach sufficiently trustworthy and mean-
ingful conclusions by trapping predicate occurrences with the proposed algorithm.

In summary, thecurrently qualifier seems only to be appropriate if the underlying system already
comprises a (possibly distributed) monitor which is responsible for the collection of global state informa-
tion, and if the only global states of interest are those seen by this monitoring agent. If, however, our aim
is to analyze a given distributed system by making observations with a minimal impact on the system’s
“natural” behavior, then the detection ofcurrentlyΦ is too intrusive, and the occurrence ofcurrentlyΦ
(or the lack thereof) is probably not meaningful. The discussion ofcurrentlyΦ gives further evidence for
our claim that in general real time is not appropriate for the analysis of asynchronous distributed systems.

7 Detecting Behavioral Patterns
The approaches for global predicate evaluation discussed so far concentrated on properties of the global
state. Alternatively, we may focus our attention onstate transitions rather than on actualstates. Recall
that every event entails a transition from one global state to another. Thus, by detecting the satisfaction of
predicates describing the relative causal order in which certain events occur, we may gain sufficient
insight into the resulting system state.

Consider, for example, the distributed traffic lights control system sketched above, and let eventei
denote “lighti turns green”. If the predicateΦ = (e1 || e2) is satisfied at some instant of time during the
execution of the control system, then the system is unsafe because it fails to guarantee mutual exclusion,
even if theactual global state sequence which is observed by the environment is correct. For many appli-
cations — in particular, for the analysis of synchronization in concurrent systems — it suffices to deter-
mine the order in which certain events occur in a computation. Detecting such basic patterns of a
system’s behavior and combining them into high-level abstractions of activity is generally referred to as
thebehavioral abstractionapproach [5]. In practice, the detection ofbehavioral patterns and the detec-
tion of global states can be combined by enriching the events with appropriate local state information
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which is passed to a central monitor for evaluation. In fact, current approaches typically apply such
hybrid techniques [9, 48, 54].

One important step towards the detection of behavioral patterns appears in [48]. In this seminal
paper, Miller and Choi define a class ofdistributed predicates, and they present a detection algorithm for
that class. Their work is influenced by theevent description language EDLproposed by Bates and Wile-
den [5], but in contrast to EDL Miller’s and Choi’s specifications do not require global time. Further-
more, not only the relative order, but also the causal relationship between events can be expressed in
their formalism. However, conjunction and disjunction operators are restricted to combinesimple predi-
cates based only on the state local to a single process. So-calledlinked predicates that specify event
sequences ordered according to the causality relation can be specified, but concurrency of events cannot
be expressed. Thus, their algorithm can only detect a limited class of behavioral specifications. In fair-
ness to their work, it should be noted that Miller’s and Choi’s approach works on-the-fly and does not
require complex mechanisms such as vector time.

Haban and Weigel [27] address the problem of more sophisticated specifications. They aim at the
detection of arbitrary causal relations between events, and they assume that vector time is available.
Based on some primitive event specifications denoting local event classes of a single process, the authors
defineglobal event specifications recursively as follows:

(1) Every primitive event specification is a global event specification.
(2) If G1, G2, G3 denote global event specifications, thenG1 ∨ G2, G1 ∧ G2, G1 → G2, G1 || G2,

G1 @ G2, and @G3(G1, G2) denote globalalternative, conjunctive, happened-before, concurrent,
negation, andbetween specifications, respectively.

Note the difference betweenevent specifications which denote certain classes of events that may occur
repeatedly, andevents which belong to a specific event class and have a unique occurrence. For the rest
of this section, we use capital letters to denote event classes or specifications; if required, several
instances of the same event class are distinguished by usingupper indices, whilelower indices denote
different event classes or specifications.

The satisfaction of a specification is defined recursively. A primitive event specificationG is satisfied
if a local evente of classG has occurred, and the vector timeV(G) = V(e) is assigned toG. A specifica-
tion G1 ∨ G2 holds as soon as one of its operands is satisfied, and it inherits the timestamp of that oper-
and.G1 ∧ G2 requires both operands to be satisfied, and inherits the timestamp of the operand most
recently detected.G1 || G2 is treated in the same way, but additionally requires thatV(G1) ||V(G2) holds.
Likewise,G1 → G2 requiresV(G1) → V(G2) to hold, andV(G1 → G2) is defined to beV(G2). G1 @G2 is
satisfied ifG1 holds whileG2 does not; V(G1 @ G2) inherits the timestamp ofG1. And finally, @G3(G1,
G2) requires that G1 → G2 be satisfied, while noG3 exists which satisfies bothG1 → G3 andG3 → G2;
the timestamp inherited is that ofG2.

The details of the detection scheme may be found in [27]. An important aspect of the algorithm is its
requirement that each event may contribute to a global event specification at most once; i.e., as soon as
an event has been used to satisfy part of a specification, this event isconsumed with respect to that spec-
ification. It may, of course, contribute to the satisfaction of several, distinct specifications. This rule has
a pragmatic background: It reduces the number of event occurrences that have to be stored, and it pre-

P1

P2

Figure 19: Single detection of the global event specification(A → B)

A1 A2

B2B1

e21 e22 e11 e12



— 33 —

vents the detection of “redundant” event occurrences, as Figure 19 demonstrates, where only asingle
occurrence ofA → B is detected (i.e., A2 → B1 as soon asB1 occurs) instead of all four combinations of
Ai → Bj that hold.

Unfortunately, by consuming events and also by allowing theabsence of events to denote a global
event occurrence (i.e., by introducing the negation operator), the meaning of certain syntactically valid
specifications is defined in a counterintuitive way, as is shown in Figure 20, where the processesP1 and
P2 are observed by the monitorM. According to the definition given in [27], the specification @B(C, D),
which reads “there is no event of typeB between an event of typeC and an event of typeD” , is satisfied,
because the first occurrenceC1 of C is concealed by the second,C2. Nevertheless,C1 andD form an
interval such thatC1 → B andB → D hold, and therefore @B(C, D) should rathernot hold. The example
shows that the pragmatic decision to consume events may lead to situations where crucial events are sim-
ply ignored.

The transmission delays between the local processes and the event monitor raise another problem.
Consider, for example, the specification @F(E, G) in the scenario of Figure 20. Here,E → F → G holds
(hence, the specification is not satisfied), but thenotification of the event monitorM about the occurrence
of F suffers from a significant delay such that a direct transmission fromP1 to M takes longer than a
transmission fromP1 to M via P2, violating the triangle inequality mentioned in Section 6.1. Thus, as
soon asE → G is detected — andF is not detected in between — the monitor will reach the conclusion
that @F(E, G) holds, which is, of course, wrong.

Fortunately, this problem can be avoided by using acausal order delivery protocol to inform the
monitor about event occurrences. That is, if a notification about the occurrence of evente reaches the
monitorM, it must only be delivered after the notifications about all events belonging to the causal his-
tory C(e) have been delivered. In Figure 20, for example, the monitor should delay the delivery ofG until
F — which clearly belongs toC(G) — has been delivered. Causal delivery order atM guarantees that M
has always a consistent view of the global state [1, 63], i.e., that the sequence of observed events is a lin-
ear extension of the causality relation. There is a straightforward protocol which implements causal
delivery order [35, 58, 64]:

(1) For each process Pi, M maintains a counterobserved[i], initialized to 0.
(2) On receiving a notification messagem = (e, i) indicating the occurrence of evente at processPi

with vector timestampV(e), the delivery ofm is delayed untilm becomes deliverable.
(3) m = (e, i) is deliverable iff(observed[i] = V(e)[i] - 1) and (observed[j] ≥ V(e)[j] for all j ≠ i).
(4) If m = (e, i) becomes deliverable, it is actually delivered andobserved[i] := observed[i] + 1.

To understand why this algorithm is correct recall that according to Observation 2.3, the vector times-
tampV(e) is just a shorthand notation for the causal historyC(e) of evente. The vectorobserved main-
tained by the above algorithm counts the number of events at each process which have been observed so
far. What step (3) essentially requires is that all events of processPi locally precedinge have already
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been observed (thus implementing the FIFO property for notification messages), and that at least those
non-local events atPj belonging to the causal history ofe (i.e., ej1, …, ejV(e)[j]) have already been
observed, too. It follows by induction that this delivery rule ensures causal delivery order. It is also easy
to see that eventually every notification message becomes deliverable. Thus, by adding this algorithm to
the protocol described in [27], the satisfaction of specifications like @F(E, G) in Figure 20 can indeed be
correctly detected.

There is a general problem with the occurrence of global events which are non-atomic — when,
exactly, does such an event “happen”? That is, what is the appropriate (logical) timestamp that should be
assigned to its occurrence? Consider, for example, Figure 21, and the specification (A ||B) → C. Is it sat-
isfied? If we suppose thatB is detected later thanA, then — according to the definition given in [27] — it
is not because the subexpression (A ||B) inherits the timestampV(B), which means thatV(A ||B) < V(C)
does not hold as required. If, however,B is detected beforeA, then V(A ||B) = V(A), and (A ||B) → C is
satisfied.

To exclude such ambiguities, Haban et al. [28] revised the original definitions of [27]. In particular,
they define V(A || B) = sup{V(A), V(B)} which means that (A ||B) → C does not hold in Figure 21 —
regardless of the order in whichA andB are detected. In this new version, however, the definition lacks
symmetry, because nowA → (B ||C) holds in the example above, whereas (A ||B) → C does not. Intu-
itively, the meaning of (A ||B) → C should probably be defined as (A ||B) ∧ ((A → C) ∨ (B → C)), or
maybe (A || B) ∧ (A → C) ∧ (B → C). Unfortunately, it is non-trivial to extend such definitions to arbi-
trary compound specifications in a meaningful way, and the resulting specifications tend to become
rather bulky.

The reason why timestamp inheritance yields counterintuitive semantics in some cases is because
global specifications do not generally describeatomic events; rather, they denote activities which have a
non-zero duration, as illustrated in Figure 21. Assigning a single timestamp to a behavioral pattern essen-
tially means to deny its non-atomic nature. Consequently, the timestamps ofall subexpressions should in
some way or the other affect the satisfaction of a global specification. This, however, rules out simple
timestamp inheritance such as those considered above.

The question of how to specify the occurrence of non-atomic events is addressed by Fidge in [18,
19]. Like Haban and Weigel, he aims at the detection of significant global state changes which are char-
acterized by specifications based on local (i.e., primitive) predicate expressions. However, instead of
assigning unique time instants to event specifications as in [27], he proposes to determine appropriate
state intervals instead. More specifically, two eventss andt are assigned to the occurrence of a primitive
specificationG (i.e., to a local state change of a single process which causes the satisfaction ofG);
s denotes the event that leads to the satisfaction ofG, andt denotes the next local event that invalidatesG
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again.G is said to besatisfied in the interval I(G) = [s, t]. Following this approach, [s, t] can safely be
regarded as denoting an interval of time — namely, [V(s), V(t)] — during whichG is satisfied. Note that
the intervals belonging to primitive specifications are strictly local to one process. It is straightforward to
define the following relations between local intervalsI1 = [s, t] andI2 = [u, v]:

• I1 precedes I2 ≡ t → u

• I1 includes I2 ≡ s → u ∧ v → t

• I1 andI2 may overlap≡ ¬ (I1 precedes I2) ∧ ¬ (I2 precedes I1)
Based on these relations, and given two primitive specificationsG1 andG2 with corresponding intervals
I(G1) andI(G2) during which the respective specifications are satisfied, we may now defineG1 → G2 ≡
(I(G1) precedes I(G2)), andG1 ||G2 ≡ (I(G1) andI(G2) may overlap). Similar definitions forG1 ∧ G2 as
well as forG1 ∨ G2 are feasible as long asG1 andG2 are primitive specifications local to the same pro-
cess. The details may be found in [18, 19].

Unfortunately, it is rather difficult — if not impossible — to extend the relations between primitive
specifications to arbitrary global specifications in a sensible way. In particular, assigning meaningful
intervals to compound specifications is an open problem. There is, for example, no obvious choice for
the interval which should be assigned toG1 → G2, given thatI(G1) andI(G2) are known local intervals.
Note, for instance, that the “natural” choice forI(G1 → G2) — the interval formed by the lower bound of
I(G1) and the upper bound ofI(G2) — may comprise logical time instants (between the upper bound of
I(G1) and the lower bound ofI(G2)) at which neitherG1 norG2 holds, which is different from what one
would typically expect. Another problem occurs if a compound specification leads to interval fragmenta-
tion. Consider, for instance, the specificationG1 ∧ ¬G2, in a situation where G1 andG2 are local to the
same process, withI(G1) including I(G2). Under these circumstances, one would expect that
I(G1 ∧ ¬G2) denotes not a unique interval, but should in general rather comprisestwo intervals, both of
which are contained inI(G1), adjacent toI(G2). But what ifI(G1 ∧ ¬G2) actually denotes two intervals
and occurs as a subexpression of a more complex specification? These examples show that it is generally
impossible to reasonably combine primitive specifications in order to obtain more general global specifi-
cations. It seems that such problems are inherent to all specifications based on atomic event occurrences,
even if time intervals instead of time instants are used.

Another approach to behavioral pattern detection is due to Hseush and Kaiser. They propose a for-
malism calleddata path expressions [30] which bears a strong resemblance to Haban’s and Weigel’s glo-
bal event specifications, but avoids most of their problematical aspects — in particular, negation (like,
e.g., Haban’s and Weigel’s @ operator) is excluded. (Negation is problematic because it is often difficult
or even impossible to define when exactly a negated event first “occurs”, in particular, if upper bounds
for transmission delays are not known.) Basically, data path expressions extend generalized path expres-
sions [9] with a concurrency operator such that both causal dependence and causal independence
between event occurrences can be expressed. However, instead of the “→” operator used by Haban and
Weigel, only the weakersequencing operator “;” is provided, with “A; B” defined as “A is animmediate
causal predecessor ofB”. As an example, Haban’s and Weigel’s specification (A → B → C) corresponds
to the equivalent data path expression “A; (A ∨ C)*;  B; (A ∨ B)*; C”, where “X*” denotes zero or more
occurrences of subexpressionX. Note that the transitive closure implicit in the causality relation must be
explicitly stated by the data path expression. Consequently, global event specifications are more compact
than their data path equivalent; an automated conversion from the former to the latter is, of course, feasi-
ble as long as a specification does not contain the negation operator. Dealing only with event sequences
prevents the need for interval specifications as have been proposed by Fidge.

For a given data path expression, Hseush and Kaiser construct an equivalentpredecessor automaton
which is able to recognize that expression. Predecessor automata are similar to, but extend the concept of
finite-state automata. In [30], a rule set for recursively transforming data path expressions into their rec-
ognizing automata is presented. For brevity, we do not further discuss the concept of predecessor autom-
ata and the recognition process. It should be noted, however, that predecessor automata can become quite
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complex; for example, if we have recognizers for the data path expressionsX andY which comprisen (or
m, respectively) internal states, then the predecessor automaton recognizing “X concurrent Y” requiresn
× m internal states. Ponamgi et al. have implemented a debugging tool for multithreaded programs based
on data path expressions and predecessor automata [54]. However, their prototype tool lacks support for
a more convenient specification of high-level patterns of behavior. In [54], it is also noted that an auto-
matic reduction of data path expressions would be desirable in order to obtain more compact predecessor
automata, thus making recognition more efficient. This is particularly important because the “→” opera-
tor is not supported directly, but has to be converted into a series of sequencing operators, yielding rather
complex expressions.

It should be noted that the scheme proposed by Hseush and Kaiser does not require vector time. In
particular, there is no need to assign time instants (or time intervals) to each specification as is required
by Haban and Weigel or Fidge. Furthermore, expressing causal dependence with only the sequencing
operator avoids ambiguities like the one depicted in Figure 19 (note that “A; (A ∨ C)*;  B” is matched
exactly once by “A1; A2; B1”), so there is no need for event consumption. And as Hseush and Kaiser
exclude negation from their formalism, they prevent the potential problems depicted in Figure 20. And
finally, defining “(A ||B); C” to require both “A; C” and “B; C” yields a symmetrical solution for the situ-
ation shown in Figure 21.

As a final remark, it should be noted that the detection of behavioral patterns requires ananticipation
of the system’s behavior, i.e., a pattern must be specified in advance to be observable. Unexpected
behavior — even if it has the same effect on the global state as the expected one — is not captured by the
observation. Thus, only selected aspects of the complex causality structure are revealed. This is quite dif-
ferent from the general global predicate detection techniques described in previous sections.

8 Conclusions
Distributed programs are difficult to develop and to analyze. This is due to their inherent characteristics
such as parallelism, nondeterminism, and the unavailability of global state and global time. The fact that
these aspects have still not been completely mastered at the conceptual level is one of the reasons for the
lack of adequate tools for the design and analysis of distributed systems. However, distributed computing
is almost ubiquitous today. Thus, there is an urgent demand for more powerful and more sophisticated
programming environments which are able to overcome the problems arising from distribution in order
to exploit its potential benefits like increased speed, availability, and reliability. Much work has been
dedicated to this issue, but surprisingly little has been achieved so far.

As we tried to show in this paper, the lack of practical realizations of adequate tools is — among
other reasons — due to the fact that we still lack appropriate methods to deal with the complex causality
structure of distributed programs which is the key to understanding their behavior. Fortunately, it seems
that the situation is improving now. At least from a theoretical point of view, causality in distributed
computations is being increasingly well understood. It is now widely accepted that the traditional Newto-
nian model of distributed computations, which is based on the notion of absolute global time, is insuffi-
cient to reflect the relativistic aspects of systems which are asynchronous, physically distributed, and
suffer from noticeable communication delays [55]. The partial order semantics of distributed computa-
tions expressed by the “happened before” relation [36] — as opposed to the traditional interleaving
semantics where an underlying total order of event occurrences (i.e., the “real-time order”) is implicitly
assumed — triggered major progress in the theory of distributed computing. As a result, different types
of logical clocks were proposed to capture some notion of causality, culminating in the advent of vector
time and a general definition of consistent global states. Unfortunately, the theoretical insight into the rel-
ativistic nature of distributed computations failed to entail a corresponding stimulus on the development
of actual tools. This reluctance to apply the new findings has several reasons.

First of all, there exists no well-established, agreed-upon formalism for reasoning about causality in
distributed systems, and the system models found in literature often lack conciseness and differ substan-



— 37 —

tially. This “ Babel of languages”  impedes the exchange of knowledge and experience, and makes pub-
lished results difficult to assess. As a consequence, the relativistic nature of the compound system formed
by the observer and the observed is not yet sufficiently understood by the computing community. There-
fore, many approaches suffer from slight misconceptions. For example, it is often not taken into account
that different observers typically observe different global states of the system; states and state transitions,
or atomic and non-atomic events are often confused, causing severe shortcomings. A second reason for
the lack of suitable tools is the complexity inherent to the causality structure, which leads to tool designs
dominated by efficiency considerations. In the past, this prevented, for example, the widespread use of
vector time, and provoked dubious “optimizations” like monitoring the absence of events, or consuming
event occurrences. Finally — and maybe most importantly — the theoretical insights gained so far are
almost discouraging. The intricacy of distributed computations exceeded common expectations. For
example, there seems to be no representation of causality more compact than vector time. Instead of sim-
plifying matters, the known results rather seem to muddy the waters, and the lack of global control in dis-
tributed computations, the inherent nondeterminism preventing their reproducibility, as well as the
overwhelming amount of information which is essential for their analysis further exacerbates the prob-
lems. Thus, current experience confirms our claim that distributed programming is still an art rather than
a well-established technique.

Our discussion indicates several possible directions of future work. One aim could be a relaxation of
the causality relation. Recall that→ indicatespotential, but notactual causal relationships. Events
occurring at the same process, for example, are totally ordered by the causality relation, although some
of them are presumably not causally related. One of the reasons why most contemporary work only con-
siders potential causality — or essential causality, as it is called in [33] — is that the order of events
within each process is uniquely determined by the local thread of control. It may therefore be argued that
although not causally enforced, the local event order is in fact total — all observers of a process will see
the same sequence of events. Another argument is that, from a technical point of view, causality tracking
and the problem of deciding whether two events are causally related is much more involved for actual
causality than for potential causality; hence one would expect that the conceptual and practical problems
discussed in this paper are even more intricate for actual causality. Nevertheless, it may be interesting to
investigate the potential benefits of actual causality (such as indicating potential intra-process concur-
rency and yielding more accurate debugging information on the cause for unexpected observed behav-
ior), and to find means to handle the more sophisticated structure of actual causality. In [3], Ahuja et al.
discuss these aspects and propose a timestamping scheme which reflects actual causality.

In contrast to these considerations, one might try to find a timestamping scheme which yields a par-
tial event order somewhat stricter than the order induced by vector time, but which relaxes the (total)
order of Definition 3.6 derived from Lamport time. The aim is to trade accuracy for ease of computation.
In [16], Diehl and Jard proposeinterval orders [22] as a means to obtain event timestamps of pairs of
integers with relatively little computational effort. If the causal structure of a distributed computation is
in fact that of an interval order, then their scheme yields timestamps which actually characterize causal-
ity. In general, however, this condition is not satisfied. Nevertheless, it might be fruitful to develop new
programming paradigms which induce causal orders that are guaranteed to be as easy to handle as, for
example, interval orders.

A different approach is pursued by Meldal et al. in [47]. Like Diehl and Jard, they aim at a more effi-
cient computation of the causality relation by restricting the problem domain. Their work is based on the
observation that for some applications causal relationships are only of interest for messages that are sent
to thesame destination process; furthermore, communication paths are often static and known at compile
time. Thus, by exploiting the logical structure of the computation, and also the physical structure of the
network on which the computation is executed, substantial savings in communication cost and storage
requirements are achievable. Only part of the causality information is required because somedynamic
causal relationships can be inferred from the givenstatic structures, while others are known to be irrele-
vant for the matter at hand. The feasibility of this technique depends, however, on the particular system
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under consideration.
In this paper, we surveyed some representative approaches to the problem of determining causal

relationships in distributed computations. The discussion shed some light on the main problems and
some fundamental limitations arising in this research area. We saw that none of the presented schemes is
sufficiently mature to serve as a general-purpose mechanism for the analysis of causality. Ideally, a tool
should combine the speed and reliability of automated detection with the human intuition and flexibility.
The problem of anticipating the relevant behavior, assigning meaningful semantics to general global
predicates, and finding correct and efficient algorithms for their detection, remains to be a challenge.

It seems that distributed computations are intrinsically difficult to understand, and perhaps a simple
way to describe their behavior does not even exist. Anyhow, the holy grail of causality analysis has not
been found yet.
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