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Summary. This article studies characteristic properties of
synchronom and asynchronous message communications
in distributed systems. Based on the causality relation
between events in computations with asynchronous
communications, we characterize computations which are
realizable with synchronous communications, which re-
spect causal order, or where messages between two pro-
cesses are always received in the order sent. It is shown
that the corresponding computation classes form a strict
hierarchy. Furthermore, an axiomatic definition of distrib-
uted computations with synchronous communications is
given, and it is shown that several informal characteriza-
tions of such computations are equivalent when they are
formalized appropriately. As an application, we use our
results to show that the distributed termination detection
algorithm by Dijkstra et al. is correct under a weaker
synchrony assumption than originally stated.
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1 Introduction

Messages, their transmission modes, and the semantics of
communication play an important role in distributed sys-
tems since messages are the only means by which processes
can exchange data and can synchronize their actions.
A priori, communication in distributed systems is not
reliable — messages can be lost because of communication
failures, duplicated because of retransmissions, or their
contents can be garbled or destroyed. Sophisticated tech-
niques and protocols have been devised which cope with
these problems and guarantee reliable message delivery to
the application. However, even if one supposes that mess-
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age communication is reliable (as will be done in this
article), distributed systems may behave in different ways.
For example, messages may be transmitted synchronously
or asynchronously, and messages might be received in the
order in which they were sent or received out of sequence.

In order to help the programmer to implement efficient
and well-structured distributed programs and algorithms,
distributed operating systems and programming languages
provide various communication mechanisms. Examples are
selective receive statements, which block the receiver until
a suitable message is available on one of several ports or
channels, or remote procedure call abstractions, which
block the sender until a return message is available. Non-
blocking send instructions, which do not force the sender to
wait until the message is delivered at its destination, are also
very common. Usually, non-blocking communication
mechanisms are called “asynchronous”, whereas blocking
communication mechanisms are called “synchronous”
[41]." We will call distributed computations that make
exclusive use of asynchronous send instructions A-computa-
tions, and computations where communication is done sol-
ely in synchronous mode S-computations. The distinction
between synchronous and asynchronous refers only to the
communication between processes; the underlying system
model we consider here is in all cases asynchronous in the
sense that we do not assume the existence of synchronized
clocks or fixed communication delays.

[t is widely accepted that neither of the two commun-
ication modes “synchronous” and “asynchronous™ is
generally superior to the other. While asynchronous com-
munication is less prone to deadlocks and often allows
a higher degree of parallelism (since the sender can proceed
while the message is still being delivered), its implementa-
tion requires complex buffer management and flow control

! Sometimes, however, a difference between the two notions “block-

ing” and “synchronous” (or “non-blocking” and *“asynchronous”,
resp.) is made in the literature. This is the case, for example, flor the
MPI message passing interface which is becoming a de facto stan-
dard for message-based communication [24]. Here, a hlocking send
primitive does not return until the message has been copied out of the
sender’s buffer, whereas a non-blocking send can return immediately
[16]. Since we abstract from implementation aspects such as message
buffering, we are not concerned with this issuc here.
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mechanisms. Furthermore, algorithms making use of
asynchronous communications are often more difficult to
develop and to verify than algorithms working in a syn-
chronous environment. It is a well-known fact, however,
that it is possible to simulate one mode with the other. In
synchronous mode, explicit buffers or intervening buffer
processes can be used to decouple the sender of a message
from the receiver, thus simulating asynchronous mode.? In
asynchronous mode, synchronous mode can be simulated
by waiting for an explicit acknowledgement immediately
after asynchronously sending a message.

The control of A-computations usually requires more
sophisticated algorithms than the control of S-computa-
tions. This is due to their higher degree of parallelism
and non-determinism, and due to messages that can be in
transit in A-computations. Examples of control problems
for distributed computations include achieving mutual
exclusion, termination or deadlock detection, computing
consistent snapshots, and collecting garbage objects.
Two naturally arising questions of practical importance
are:

1. Are control algorithms that are correct for A-com-
putations in general also correct for the control of
S-computations?

2. And, conversely, is it possible to adapt distributed
control algorithms for S-computations to A-computa-
tions?

Informally, S-computations are often regarded as
a special case of A-computations, namely computations
where the communication channels always appear to be
“empty”. Thus, one would expect that a distributed algo-
rithm designed for the asynchronous case remains indeed
correct when executed on a synchronous system or applied
to an underlying S-computation. Formally, an assertional
proof of the algorithm (showing an invariant implying its
correctness) remains valid if the proof rules for A-compu-
tations are replaced by proof rules for S-computations (see
Schlichting and Schneider [38]). However, one should be
aware of the fact that an algorithm working correctly in
the asynchronous case might deadlock in the synchronous
case. We will indeed show that not all A-computations are
realizable under synchronous communication.

Clearly, the safety properties of a synchronous algo-
rithm are usually not preserved when the algorithm is
executed in an asynchronous environment (see Gribomont
[23]). A good example is the well-known distributed termi-
nation detection algorithm of Dijkstra, Feijen, and van
Gasteren [197]. This algorithm is safe if message commun-
ication of the underlying computation is synchronous,?
but fails if it is asynchronous because it does not consider
messages in transit. Hence, disregarding the deadlock
problem, it seems that A-computations are more general
than S-computations in the sense that a distributed algo-
rithm designed for an asynchronous environment will

* True simulation requires an unbounded amount of buffer storage,
however.

*The authors use the term “instantancous” instead of “syn-
chronous”.

work in a synchronous environment but not necessarily
vice versa.

The preceding observations show that for the theory
of distributed algorithms a precise characterization of
synchronous and asynchronous communication modes
and an analysis of their relations is of great interest. This
article should contribute to the understanding of those
fundamental concepts and relations. In particular, we will
formally define the notion of a distributed computation
(Sect. 3.1) and demonstrate that the hierarchy of S-compu-
tations and A-computations indicated by the preceding
remarks can be refined in a sensible way. Besides FIFO
and non-FIFO message passing disciplines, we will con-
sider in particular so-called causally ordered computations
(Sect. 3.2). These computations respect the causality
relation between send events and receive events in a
similar way than do S-computations but they can be
implemented without blocking. It will be shown that they
lie between S-computations and FIFO-communication
based computations in the hierarchy of distributed
computation classes (Sect. 3.3). We will give different
characterizations of causally ordered computations and
prove their equivalence (Sect. 3.4). However, it is equally
interesting to characterize S-computations accordingly
(Sect. 4), to formally define the semantics of synchronous
communications (Sect. 5), and to analyze the conditions
under which A-computations can be realized in syn-
chronous mode.

Parts of this article consist of a structured synthesis of
known (but sometimes unproven) results, put into
a unifying formal framework. Only with such a framework
it is possible to axiomatically characterize and formally
compare various distributed computation and commun-
ication models. Even then, however, some proofs remain
non-trivial and require a certain amount of technical
subtleties. They show, on the other hand, that intuitive
arguments (such as “message arrows in space-time
diagrams of S-computations are vertical”) have a formal
justification.

Besides this, we also present several original results.
Among other things we prove that a simpler and apparent-
ly stronger “message order” property is equivalent to the
classical causal order property (Sect. 3.4), we give a new
criterion (the “crown criterion”, Sect. 4.3) to decide
whether a distributed computation can be realized with
synchronous communications, and we show that a well-
known termination detection algorithm remains correct
under weaker communication requirements than origin-
ally stated (Sect. 6). Before we do all this on a more formal
basis, we shall first introduce in the next section some
fundamental concepts and characterize S-computations
and A-computations from an informal point of view.

2 Distributed computations: an informal view

The intention of this section is to provide an intuitive
understanding of the main characteristics of synchronous
and asynchronous message transmissions. The basic
notions and main features discussed in this article are
introduced in an informal manner, using diagrams and
examples. Formal definitions and proofs as well as



more precise further characterizations are found in later
sections.

2.1 Events and space-time diagrams

A distributed system consists of sequential processes com-
municating solely by messages. The behavior of each pro-
cess is controlled by a local algorithm which determines
the local sequence of actions and the reaction of the
process to incoming messages. The concurrent (and coor-
dinated) execution of all local algorithms forms a distri-
buted computation.

In an abstract setting, a distributed computation is
determined by the types and the relative order of atomic
actions called events occurring at the processes. Usually,
events are classified into three types according to Lamport
[28]: send events, receive events, and internal events.
A send event causes a message to be sent, and a receive
event causes a message to be received and the local state to
be updated by the content of the message. A send event
s and a receive event r are said to correspond if the same
message, sent by s, is received by r. Internal events cause
only a change of the local process state — they are not of
major concern here since we are mainly interested in the
causal relation of events on different processes, which is
caused by the exchange of messages.

Lamport [28] pointed out that distributed computa-
tions can be visualized using space-time diagrams, of which
Fig. 1 shows an example.* The events of each process are
depicted as dots located on a process line. On such a line,
an event e is drawn to the left of an event ¢’ if and only if
e “happens before” ¢’ on the corresponding process. Thus
“time” runs from left to right on a process line. Messages
are depicted as arrows connecting send events with their
corresponding receive events. In an A-computation (where
send events are decoupled from their corresponding
receive events) it seems obvious that the execution of an
event e can causally affect another event e’ if and only if
there is a path in the diagram from e to ¢’. This path must
follow the direction of the arrows and run from left to right
on process lines. The existence of such a path induces
a causal relationship on the set of events. Since this causal-
ity relation is transitive and cycle-free (it is not possible
that two events mutually depend on each other), it forms
an irreflexive partial order which will be denoted as “<”.
Appropriately, e<¢’ can be read “e can causally affect e'”,
“¢’ potentially depends on e¢”, “e happens before ¢'”, or
“e’ knows about e”.

Message arrows need not be drawn in such a way that
receive events are necessarily located to the right of their
corresponding send events. Such a drawing, however, is
always possible by introducing a global time frame and

It is true that there are certain implicit dangers in using such
graphical representations, because in every geometrical diagram time
appears to be misleadingly spatialized. On the other hand, such dia-
grams, provided we do not forget their symbolic nature, have a definite
advantage ...” This philosophical critique by Mili¢ Capek [13] on
Minkowski’s relativistic space-time concept and its simplified models
also applies here; as Lamport observes [28], those models are indeed
structurally very similar to space-time diagrams as we use them,
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Fig. 1. A space-time diagram of a distributed computation

drawing a time axis in parallel to the process lines. The
vertical projection of an event on the time axis then repre-
sents the time at which the event is executed. Since the
sending of a message never occurs later than its receipt,
message arrows do not go from right to left in such
diagrams.

2.2 Synchronous and causally ordered computations

In general, it is not immediately clear from a space-time
diagram whether it depicts a computation with syn-
chronous communications (i.e., an S-computation) or
a computation with asynchronous communications (i.e.,
an A-computation). But what, in fact, is the difference
between “synchronous” and “asynchronous” here? Lit-
erally, “synchronous” signifies “at the same time” which
would mean that in an S-computation a send event should
always happen simultaneously with its corresponding re-
ceive event. But this is not possible in reality for physical
reasons.” Therefore, in order to characterize S-computa-
tions we confine ourselves to “approximate” instantaneous
message transmission in the sense that a computation
which exhibits (or which could exhibit) a phenomenon that
cannot be observed if message transmission were instan-
taneous is not “synchronous” and hence not called an
S-computation. This rules out the computation of Fig. 1: if
message transmission were instantaneous, the first mess-
age sent by P, (event ¢) must be received at P, (event f)
before a later message sent by P, to P, (event g) is received
(event h). As a matter of fact, non-FIFO-computations are
therefore not S-computations.

Consider now a distributed computation formed by
two main processes P; and P, and a control process Ps,
connected as depicted in Fig. 2. Assume that P, counts the
messages it sends to P, and P, counts the messages it
receives from P;. If message transmission were instan-
taneous, the two counters should show the same value at
any instant in time. Therefore, if P; first asks P, for the
current value of its send-counter S and then (after receipt
of the reply) P, for the value of its receive-counter R, one
would expect that (if message transmissions between
Py and P, were instantaneous) all messages sent by
P, when it replies to P; have been received at P, when
P, receives Py’s request message. Hence, P; should always

* We quote again Mili¢ Capek [12]: “There is an upper limit to the
transmission of any causal action: this is the speed of electromagnetic
waves. This is, as Paul Langevin said, the speed limit of causality. Thus
there are no instantaneous transmissions in nature ... the effect is never
contemporaneous with its cause.”
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Fig. 3. A computation that is not causally ordered

observe § < R (note, however, that § =R cannot be
guaranteed).

If message transmission is not instantaneous, however,
P; could observe S > R in the above-mentioned scenario.
Figure 3 explains this phenomenon. The request message
my sent after the receipt of the reply message m, (sent after
message m,;) arrives at P, before m;. Thus, indirect com-
munication via P; was faster than direct communication
between Py and P, — the computation violates the “triangle
inequality”, so to speak. A distributed computation which
does not show the effect that a message is indirectly (or
directly) bypassed by a chain of other messages, is called
a causally ordered computation (or CO-computation for
short). This notion will be defined formally in Sect. 3.2.

Obviously, causal order is a generalization of FIFO in
the sense that a CO-computation is always a FIFO-com-
putation (but not vice versa as Fig. 3 shows). In CO-
computations, messages (i.c., their delivery sequences at
the receiving processes) respect the (possibly indirect)
causality relation among their send events. This is of
importance to many practical applications where causal
consistency (in the sense of consistent views or snapshots)
must be guaranteed. Renesse [36] presents a collection of
such applications and also discusses the use of a general-
ization of the causal order principle to broadcast commu-
nications.

[t should be emphasized that in a non-CO-computa-
tion there exists a single message that is overtaken by
another message or a chain of messages (see Fig. 3 where
my is overtaken by m,/m;). As the S-computation depicted
in Fig. 4 shows, it is quite possible that a chain of messages
between two processes Py and P, is “overtaken” by a mess-
age (or another chain of messages) even if message trans-
mission is instantaneous. The reason is that the interven-
ing process Py may buffer the messages for an arbitrary
time and therefore essentially simulate asynchronous
message transmission between Py and P,.

Returning to the system of Fig. 2, $ > R should also be
unobservable in an S-computation if P; first asks P, and
then (without waiting for P,’s reply) P, to take a local
snapshot of their counters. If later these snapshots are
compared, the value of the snapshot of S should always be
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)
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P

Fig. 5. A causally ordered computation

smaller than or equal to R’s snapshot (because P; and
P, receive Py’s request message instantaneously). The
space-time diagram of Fig. 5 depicts a scenario which
should therefore not happen in an S-computation: the
snapshot of S would be 1 (when the “snapshot event”
ry happens, the send event s3 of the message from P, to
P, did already happen locally) but R’s snapshot would be
0 (the receive event r; of the message did not yet happen
when the snapshot event r, of process P, happens). Notice
that (if one abstracts from process names) Fig. 5 looks
similar to Fig. 3, but because events s; and r; are swapped,
there are no indirect message overtakings. Hence Fig. 5
depicts a CO-computation which is nevertheless able to
produce an effect not observable with S-computations.
The reason for the non-synchronous behavior is that in
some sense (namely in “real time order™) r, is “later” than
r, although the order is reversed for the corresponding
send events (i.e., s; happens earlier than s,). This “message
crossing” is disclosed by the message from P, to P, which
is transmitted between the two receive events rs, ry.

Even without having yet precisely defined S-computa-
tions, our discussion indicates that the hierarchy S-
computations = CO-computations < FIFO-computations
general A-computations is strict. We will come back to this
further down in Sect. 3.

2.3 Cycles and schedules

In order to characterize S-computations more precisely,
we shall now look at a definition given by Bouge [10]: “4
system has synchronous communications if no message of
a given type can be sent along a channel before the receiver is
ready to receive (that is, in a state where the next action may
be a reception of ) a message of this type on the channel. For
an external observer, the transmission then looks instan-
taneous and atomic. Sending and receiving a message corres-
pond in fact to the same event.”

If the computation of Fig. 3 would be executed on
a system with synchronous communications as character-
ized by Bouge, s, could not take place, because P, is not
ready to receive the message. Process P, must first execute
r3, but this event depends on s;, which depends on r,,
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which depends on s,, which in turn depends on s,. Hence,
we have a deadlock situation — no message can be sched-
uled first because m; can only be scheduled after mj;,
my can only be scheduled after m;, and m, can only be
scheduled after m,. The scheduling of entire message trans-
missions (rather than individual events) seems to be
a natural consequence of the atomicity of a send and its
corresponding receipt. A message schedule implies
a schedule of events in which the corresponding commu-
nication events are executed consecutively, without being
separated by other events. The two events thus simulate
a single communication event,® distributed over sender
and receiver. This notion will be formalized in Definition
3.6 (“RSC-computations™).

The computation of Fig. 5 exhibits the same cyclic
dependency on messages as the computation of Fig. 3 (des-
pite the fact that events s; and r; are swapped) and is
therefore also not realizable in synchronous mode. Figure
6 depicts yet another (rather typical) deadlock situation.
Here, all processes are blocked in a send instruction since
no process is ready to receive a message before it has sent
its message. It should be noted, however, that the compu-
tations depicted in Fig. 3, 5, and 6 are not deadlocked
when communications are asynchronous. For example,
breaking the atomicity of m, in Fig. 3 yields sy, 5, 12, 83,73,
ry as a possible global schedule of events for the computa-
tion.

Interestingly, for all three space-time diagrams just
considered, it is possible to construct the same cyclic
dependency r;<s,<r,<s3<r;<s;=<r; on events by re-
versing the direction of appropriate message arrows (e.g.,
m; in Fig. 3) and swapping the associated send-receive
events. [t should be clear that if a cycle can be constructed
in this way, there is no first message transmission which
can be scheduled as a whole. Hence, space-time diagrams
containing such cycles are invalid in the synchronous
mode. Conversely, if such a cycle cannot be constructed, it
should be possible to find a message schedule. We there-
fore come to the conjecture that an A-computation is
realizable in synchronous mode (i.e., there exists an equi-
valent S-computation with the same events and messages)
if and only il no such cycle can be formed. Notice that

® Bacten and Weijland [3], for example, define a synchronous com-
munication as the result of the simultaneous execution of two corres-
ponding actions, together forming a single communication action.
This view is also implicd by the semantics of CCS [32] and CSP [25]
where the meaning of two matching communication actions (a and
@in CCS, or ple and g?x in CSP) is given by a single “atomic” action
(the silent action 7 in CCS and the assignment statement x:= ¢ in
CSP),
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a schedule of messages is consistent with the causal preced-
ence order “<” on events defined earlier. In fact, a message
schedule directly yields a linearization of “<” such that
the direct successor of a send event is its corresponding
receive event. We shall come back to these characteriza-
tions of S-computations in later sections; in particular we
will introduce the notion of a “crown” (Definition 4.1)
which formalizes the idea of message scheduling cycles.

3 Distributed computations

In this section various classes of distributed computations
are formally defined. Furthermore, it is shown that differ-
ent requirements on the message transmission disciplines
with respect to the preservation of the causality relation
yield a hierarchy of distributed computation classes. As
mentioned before, we consider reliable distributed systems
only.

3.1 Computations with asynchronous communications

A distributed system consists of processes Py, ..., P,, com-
municating only by exchanging messages. We do not make
any assumption on the relative speed of processes or on
message transmission delays, hence we consider only so-
called “asynchronous systems”. A computation on such
a system basically consists of a tuple of local computa-
tions, one for each process, and a causality relation on the
set of events, which is induced by the exchange of message.
Each process P; runs a sequential program, whose execu-
tion is modeled by a finite sequence C; of events. This
sequence is called a local computation (of P;). A computa-
tion C of a distributed system is composed of local compu-
tations Cy, ..., C, performed by Py, ..., P,, respectively.
We write a ~ b to denote that events a and b take place at
the same process, i.e., a ~ b if there is an i such that a € C;
and be C,.

For a given computation C, let I' = {(s,r) e C; x C;:s
corresponds to r} denote the set of corresponding pairs of
communication events. Since we model point-to-point
communications, where only a single message is either sent
or received in any communication event, we often also say
that r corresponds to s if s corresponds to r. We assume
that a process does not communicate with itself, i.e., cor-
responding send and receive events are located on different
processes.” With point-to-point communications, each
communication event has at most one corresponding com-
munication event. Since every message which is received
must have been sent, we will only consider n-tuples
C =(Cy, ..., C,) such that, for every receive event r in C,
there exists a send event s such that (s, r) e I'. If, in addi-
tion, for each send event there is a corresponding receive
event (i.e., send and receive events are in a one-to-one
correspondence), then there is no message in transit at the

" This does not exclude application of our results to algorithms
where processes send messages to themselves. Olten, however, one
would model such a message by a single internal event or a send
event immediately followed by the corresponding receive event thus
reflecting the usual implementation shortcut of sell-sends.
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end of the computation. Such computations are called
complete computations.

We shall now precisely define the causality relation
“<” of an n-tuple of local computations. As each P; is
a sequential process, the events of this process are totally
ordered by their occurrence in the sequence C;. This order,
which we denote by <;, implies a causal order on the
events of process P; in the sense that an earlier event may
affect a later event on the same process. Clearly, <; is an
irreflexive total order (on the events of a single process C;).
Causal dependencies between events at different processes
are induced by message exchanges. If (s, r) e I', then the
receive event r causally depends on the corresponding send
event s. All causal dependencies between the events of
C are induced by transitivity from the relations
<5 ..., <, and T, as formalized in the following defini-
tion originally stated by Lamport [28] for his “happened
before” relation.

Definition 3.1 (Causality relation). The causality relation
< in C is the smallest relation that satisfies the following
three properties.

AS1 If a<;b, then a<b.
AS2 If (s,r) e I', then s=<r.
AS3 If a<b and b<c, then a<c.

The reflexive closure of < will be denoted by <, i.e.,
a<b<>(a<b V a = b). Two distinct events are said to be
concurrent if they are not ordered by <.

When a distributed computation is executed, an
idealized global observer (who has an instantaneous glo-
bal view of the computation) can perceive the events only
in an order which is consistent with the causality relation.
In other words, if an event a could affect another event b,
then a must happen before b in “real time”. This explains
why the causality relation of a distributed computation
must be cycle-free and motivates the following definition.

Definition 3.2 (A-computation). A computation with asyn-
chronous communications (or an A-computation for
short) of a distributed system consisting of processes
Py,...,P,is an n-tuple C = (C,, ..., C,) of local computa-
tions together with a set I" of corresponding communica-
tion events, for which the causality relation < is a partial
order.

It should be observed that the set I' is essential for a suit-
able definition of A-computations. Without it, an A-com-
putation would just be a partially ordered set of events,
together with a partitioning into totally ordered subsets
C;. In that case, however, Fig. 3 and a similar but different
scenario where message m, is removed (and events s, and
r; thus replaced by internal events) would represent the
same computation. This also shows that space-time dia-
grams are more than just Hasse diagrams® of the causality
relation — it is in fact not possible to apply the so-called
transitive reduction scheme because this would possibly
remove messages and thus change the computation.

8 For a definition of Hasse diagrams we refer to appropriate text-
books on order theory (e.g., [17]).

The crucial point in the definition of an A-computation
is that the transitive relation <, as defined in Definition
3.1,is required to be a partial order. This guarantees that it
is cycle-free, a basic requirement for any sensible notion of
(potential) causality. It also guarantees that space-time
diagrams can be drawn in such a way that the process axes
and all message arrows go from left to right.

The term “asynchronous” in the definition of A-com-
putations is motivated by property AS2. This axiom is
responsible for the basic asymmetry between send events
and receive events — receive events depend on their corres-
ponding send events, but not vice versa. Hence, a receive
event is blocking — it cannot be executed before the corres-
ponding send event is executed. This is not the case for
a send event; send events can be executed without waiting
for the receiver. We will see in Sect. 5.1 that it is in fact only
axiom AS2 which has to be replaced by a symmetric
variant to formalize computations with synchronous com-
munications (i.e., S-computations) accordingly.

3.2 Order preserving properties and constraints

In practice, distributed computations are often “less asyn-
chronous” than allowed by Definition 3.2. This results
from imposing certain constraints on the sending or re-
ceipt of messages. For example, it might be the case that
a message can only be received if all messages sent earlier
along the same communication channel have already been
received, or a message might only be sent if the previously
sent message has been acknowledged.

Such constraints could arise at different levels: they
could result from a particular implementation of a com-
munication protocol (e.g., no buffering of messages), or
they could be imposed by the semantics of a distributed
programming language in order to simplify correctness
proofs of distributed programs. Interestingly, it turns out
that the most important and commonly used restrictions
can be neatly stated as properties of the causality relation.
This will be shown in the following, where we assume that
all computations are complete (i.e., for each send event
there is a unique corresponding receive event and vice
versa — there are no messages in transit at the end of the
computation).

In the design of distributed algorithms (e.g., the well-
known snapshot algorithm by Chandy and Lamport [14])
it is often assumed that any two messages exchanged
between the same two processes are received in the order
in which they have been sent. This assumption, referred to
as the FIFO (ie, “first-in, first-out”) assumption, is
modeled by the following condition.

Definition 3.3 (FIFO). A computation C is called a FIFO-
computation if for all (s,r) and (s', ) eI’

s~§

]u ~ J"
s=<s'

The FIFO-property can be strengthened by dropping the
s ~ s’ condition, thereby requiring that all messages sent to
the same process are received in an order consistent with
the causal order of the corresponding send events. The
order in which the messages are received may be arbitrary

=r<r



in case the send events of the messages are concurrent.
This property was called “causal ordering” by Schiper
et al. [37]; for broadcast communications it was defined by
Birman and implemented in the Isis system [6, 7].

Definition 3.4 (CO). A computation C is called a CO-
computation (Causally Ordered) if for all (s,r) and
(s, r'yerl’

re~T'
s=<s

One would expect that the CO-condition trivially holds
for executions where a receive event always happens simul-
taneously or “synchronously” (i.e., at the same instant)
with its corresponding send event. This is indeed the case,
computations which allow such (idealistic) executions are
called realizable with synchronous communication (or RSC
for short). Before we can formally define them, the notion
of an execution must be formalized.

Since events are abstractions of atomic actions, an
execution of a distributed computation can be modeled as
a feasible scheduling of the events of the computation,
which is a total order that extends the partially ordered set
(or poset, for short) (C, <). Note that this means that
instead of executing two causally unrelated events truly
concurrently, they can always be executed sequentially in
either order. In a natural way, an execution with instan-
taneous message transmission is modeled by an irreflexive
linear extension® where a receive event is the direct suc-
cessor of its corresponding send event, as stated in the
following definition.

} =r<r.

Definition 3.5 (Non-separated linear extension). A linear
extension (C, <) of an A-computation is called non-
separated if for each pair (s,r)el’ the interval
{xe C:s < x <r} is empty.

The property of computations where corresponding send
and receive events may happen simultaneously in an ex-
ecution is now formally defined in the following way.

Definition 3.6 (RSC). A computation C is called an RSC-
computation (Realizable with Synchronous Communica-
tion) if there exists a non-separated linear extension of the
poset (C, <).

Note that in such a linear extension two corresponding
communication events always appear either both later
than another event, or both earlier than another event.
With respect to <, corresponding communication events
thus have a common past and a common future — they
appear as if they occurred simultaneously.

3.3 The hierarchy of distributed computation classes

After having formally defined the most important compu-
tation classes, we now show that there is a strict hierarchy
RSC < CO < FIFO < A-computations, as already in-
dicated in Sect. 2.2. Indeed, the following theorem is an

% Recall that a linear extension of a partial order (C, <) is a total
order (C, <) such that a<b=a < b,
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immediate consequence of the various definitions given in
the previous section.

Theorem 3.7 (Hierarchy). C is RSC=C is CO=C is
FIFO.

Proof. First assume C is RSC. Consider (s, r), (s, r') € I for
which s<s". As C is RSC, there exists a non-separated
linear extension < of <. As < extends, we have s < r and
s <s. As <is total and non-separating, r <s' follows
(note that if conversely s* < r would hold, then (s, r) would
be “separated” by s'). Because s'<r', this implies r < #, and
as < extends < and events of one process are linearly
ordered, r ~ r’ implies r<r'. Thus C is CO.

Next assume C is CO. From Definition 3.3 and Defini-
tion 3.4 it follows directly that C is FIFO. [J

Theorem 3.8 (Strict hierarchy). There exist A-computa-
tions that are not FIFO. There exist FIFQ-computations
that are not CO. There exist CO-computations that are not
RSC.

Proof. Examples of such computations are shown in
Figs. 1, 3, and 5. It is left to the reader to verify that
these computations have (or do not have) the indicated
properties. []

3.4 Different characterizations of CO-computations

The only communication disciplines which are tradition-
ally considered for the design of distributed algorithms are
synchronous communications, FIFQO, and asynchronous
communications. Since the CO-computations fall between
FIFO-computations and computations which are realiz-
able with synchronous communications (i.c., RSC-compu-
tations), it is interesting to study the relevance of the
CO-property. In Sect. 6, where we shall consider the prob-
lem of termination detection as an example of a distributed
control problem, we will prove that the CO-property is in
fact sufficient for the correctness of a classical termination
detection algorithm originally designed for the class of
S-computations (which, as will be shown further down, are
in some sense equivalent to RSC-computations). This mo-
tivates further investigations of the CO-property, of which
some alternative characterizations will be discussed in this
section.

First, recall that the CO-property (Definition 3.4) was
derived from the FIFO-property (Definition 3.3) just by
dropping the s~ s’ condition, thus “globalizing” the
causality preserving property of FIFO communication
channels. One could now try to strengthen the CO-prop-
erty further by also removing the condition regarding the
location of the receive events. In order to obtain a signifi-
cant class of computations we allow two receive events on
different processes to be concurrent if their corresponding
send events are causally related. We require, however, that
these receive events are not ordered conversely to their
corresponding send events. The resulting type of computa-
tions will be referred to as “message ordered”.

Definition 3.9 (MO). A computation C is called an MO-
computation (Message Ordered) if for all (s,r) and
(s',r')erl

s<s'="1(r'<r).
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Note that in Definitions 3.3 (FIFO) and 3.4 (CO) the term
r<r" on the right-hand side of the implication can be
replaced by —1(r'<r) (because by r ~ ' the receive events
are linearly ordered) thus emphasizing the formal sim-
ilarity of those definitions to the MO-definition.

Surprisingly, the class of computations defined by the
MO-property is identical to the class of CO-computations,
as shown by the following theorem.

Theorem 3.10 (MO=CO). A computation is CO if and only
if it is MO.

Proof. First assume C is a MO-computation. Consider
(s,r), (s',r") e I" for which s<s" and r ~ 1. As C is MO,
(' <r), but r ~ " implies r<r'V r'<r. Hence r<r’,
which implies that C is CO.

Next we shall show that if there are two messages
violating the order required for the MO-property, then
such a pair can be found for which the receive events occur
on the same process, showing in this manner that the
computation is not CO. Assume C is a CO-computation,
but C is not MO, i.e., there are two pairs (s, r) and (s, ') of
corresponding events such that s<s' and r'<r. It follows
from the definition of < that there exists a chain ay, ... , a,
of events, such that +' = ay, r = a;, and for each j <k,
a;<;a;+, for some i, or (a; aj,,) €.

1. If no (aj, a;+,) € I' occurs in this chain, then r' ~ r.
As Cis a CO-computation, this together with s<s" implies
r<r’, which contradicts the assumption.

2. Otherwise, let (a;, a;+,) = (0, p) be the last pair of
I in this chain. Thus p ~r and p <r, and from s<s’,
(s, r'ye I',and 1’ <o we obtain s<a. As Cis a CO-compu-
tation and p ~ r, this implies r< p, which contradicts p<r.

It follows that each CO-computation is also MO. []

The MO-characterization shows directly that in CO-
computations a single message (s, r) cannot be overtaken
by a chain of other messages, as already stated in Sect. 2.2.
The reason is that for any message (s', ') which belongs to
such a hypothetical bypass chain, one has necessarily
§=< 0 <L8'<r'<< --- <r which, by transitivity, contradicts
the MO-property. Conversely, if the MO-property does
not hold, then there exist two messages (s,r) and (s, 1)
with s<s" and '<r, and hence s<s'<1'<r. This means
that (s', r') is part of a chain which overtakes message (s, r).
[nformally, one could thus say that CO-computations are
characterized by the fact that indirect communications
always take longer than direct communications. The fol-
lowing corollary summarizes these findings.

Corollary 3.11 (Triangle inequality). A computation is CO
if'and only if no message is bypassed by a chain of other
messages.

As an application of this characterization consider a dis-
tributed program written in a synchronous message pas-
sing language. If the sender should be decoupled from the
receiver, one might add to each process an input buffer and
an output buffer both realized by a FIFO message queue.
A send event now corresponds to the insertion of a mess-
age into the output buffer, and a receive event to its
removal from the input buflfer. Clearly, because of the

FIFO property of the buffers and because message trans-
missions from the sender’s output buffer to the receiver’s
input buffer are synchronous, no (indirect) message
overtaking can take place. Hence, although from the ap-
plication level perspective the computation is no longer
guaranteed to be RSC, it still has the CO-property [31].

The definitions given above for FIFO, CO, and MO
(Definitions 3.3, 3.4 and 3.9) have a similar structure since
they all concern the relative order of receive events corres-
ponding to ordered send events. The definition of RSC
(Definition 3.6) has a quite different appearance, as it is
related to the existence of linear extensions of <. We shall
next prove a characterization (Proposition 3.13) of CO-
computations with a similar flavor, namely based on the
partial order (C, <) as a whole. An application of this
characterization will be a different demonstration that all
RSC-computations are CO. We shall also give an interest-
ing graphical interpretation of this characterization for
space-time diagrams (Observation 3.14). Subsequently
(Corollary 3.15) we shall derive that CO-computations are
precisely those computations where the “causal future” of
a send event is disjoint from the “causal past” of the
corresponding receive event.

The following definition and proposition shows that
CO is equivalent to the empty interval (EI) property, which
states that for no pair (s, ) € I" there are events “between”
s and r.

Definition 3.12 (EI). A computation C is called an EI-
computation (Empty Interval) if for each pair (s, ) € I" the
open interval {s,r) = {x e C:s<x<r} is empty.

Proposition 3.13 (EI=CO). 4 distributed computation C is
CO if and only if it is EI.

Proof. Itis first shown that if C is not CO, then it is not EI.
Assume that (s, r) and (s, ") are two pairs in I' such that
s<s8, r ~r, and ' <r. Since s'<r, we have s<s'<i'<r,
hence (s, r is not empty. It follows that EI implies CO.

It is next shown that if C is not EI, then it is not CO.
Let (s, 1) be a pair of I" such that {s, r> contains an event x.
As (s ~r) and ~ is transitive, 71(s ~ x) or —1(x ~ r)
holds. In either case there exists a chain aq,. ... . x, ..., q
with s = ag, r = @, a;<a;., for all j, and at least one pair
(aj, a;4 ) is a pair (o, p) of corresponding send and receive
events such that ¢ # s and p # r. Thus s<a, while p<r,
which shows that C is not MO; by Theorem 3.10 the
computation is not CO. It follows that CO implies EI. [

As an example, Fig. 3 depicts a computation which is
not EI: all four events s,, r,, s3, r3 are contained in the
interval {s;,ry). For the computations depicted in Fig.
5 and Fig. 6, however, all intervals formed by correspond-
ing send-receive events are empty. This seems to be obvi-
ous for those pairs where the events are connected by
vertical message arrows (since causality does not go from
right to left, there is no space left for an event between the
send event and the receive event), but one also readily
checks the condition for {sy, r; ).

The difference between EI and RSC consists in the
underlying order for which the intervals ¢s,r)> must
be empty. For EI the intervals of < itsell are empty,
while for RSC a linear extension must be found with empty



intervals. Clearly, if there exist events s, », and x such that
s=<x=<r, then for each linear extension < of < one has
s < x < r. Consequently, if there exists a linear extension
with empty intervals, then the corresponding intervals of
< are empty, too. This shows again that every RSC-
computation is EI and hence CO, as already stated in
Theorem 3.7.

The El-characterization of CO-computations has
a nice graphical interpretation. Note that for an empty
interval (s, r> of a given computation it is always possible
to find a linear extension < of < for which the corres-
ponding interval {xe C:s < x <r} is empty. Intuitively,
empty s, ry-intervals in a linear extension correspond to
vertical message arrows in space-time diagrams, because
one may move events s and r arbitrarily close together and
in fact assign the same real-time instant to them. Converse-
ly, a vertical message arrow from a send event s to a receive
event r in a space-time diagram where no message arrow
goes “backwards” implies that the corresponding {s, )
interval is empty with respect to < and <. This yields the
following characterization which is a consequence of
Proposition 3.13.

Observation 3.14 (Vertical message arrow criterion). A dis-
tributed computation C is CO if and only if for each message
m there exists a space-time diagram for C such that m can be
drawn as a vertical message arrow (and no other message
arrows do go from right to left).

An immediate consequence of this criterion is that for
each single message ol a CO-computation one can assume
that this message is transmitted instantaneously.'’
Clearly, such an instantaneous message cannot be by-
passed by another message or by a chain of messages, thus
showing again the triangle inequality (Corollary 3.11).

An example of a computation for which the criterion of
Observation 3.14 does not apply is again Fig. 3 — the arrow
for message m; cannot be made vertical without forcing
m, or m; to move backwards in time. Note also that it is in
general not possible to find a single linear extension where
all corresponding intervals are empty. An example is the
computation depicted in Fig. 5 — although (for different
space-time diagrams) each single message can be drawn
vertically, no diagram can be drawn with all messages
made vertical simultaneously, a property which is charac-
teristic for RSC-computations as we shall see further down

(Observation 4.5).
i The following corollary characterizes CO-computa-
tions by a so-called weak common past or weak common
future property. It is merely a different formulation of
Proposition 3.13 which, however, looks rather similar to
Definition 3.9 (MO), in particular if one observes that the
implication in Definition 3.9 can be stated equivalently as
F=<r="1(s<s").

Corollary 3.15 (Weak common past/future). A distributed
computation C is CO if and only if for each pair (s, r) € I" and
for each xe C

x<r="(s<x) (WCP)

' This does not necessarily apply to any other message in that
specific view, however.
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or, equivalently, if and only if

s<x="1(x=<r). (WCF)
It should be noted that the stronger properties
x<r=-x<s and s<x=r<x do usually not hold, not
even for RSC-computations. (An example is the RSC-
computation depicted in Fig. 4.) We will see in Sect. 5,
however, that an important role in the axiomatization of
distributed computations with synchronous communica-
tions (i.e., S-computations) is in fact played by such
“strong” common past and common future properties,
where the whole “causal future” (or “causal past”, resp.) of
a communication event is included in the “causal future”
(“causal past”, resp.) of its corresponding event. Obviously,
the converse implications x<s = x<r and r<x=s<x of
the “strong” common past and common future properties
are trivially true for every computation because of AS2
(s<<r) and AS3 (transitivity).

4 Characterizations of RSC-computations

Like CO-computations, RSC-computations can be
characterized in various ways, and in this section several
equivalent characterizations are presented and compared.
Insight in properties satisfied by RSC-computations may
help to find distributed control algorithms for this class
which are simpler and more efficient than algorithms that
cannot rely on these properties. Furthermore, efficiently
determining whether a computation is RSC is sometimes
of practical importance, for example when replaying a dis-
tributed computation for debugging purposes. Unfortu-
nately, testing whether a computation is RSC by checking
all linear extensions of the underlying partially ordered set
according to Definition 3.6 is very expensive and thus not
practical.

Therefore, two different characterizations of RSC-com-
putations are given in this section. The first characteriza-
tion is based on occurrences of a substructure called
“crown”, and the main result of this section (Theorem 4.4)
is that a computation is RSC if and only if it does
not contain a crown. We will show that efficiently checking
the existence of a crown is possible by considering a
simple binary relation on pairs of corresponding commun-
ication events (i.e., messages) and checking whether
the graph of this relation is cycle-free. The second charac-
terization, based on message scheduling, follows from
the first one and has a simple graphical interpretation
(Observation 4.5) — a computation is RSC if and only if it
has a space-time diagram where all message arrows are
vertical.

4.1 Crowns in distributed computations

Crowns capture the idea of cyclic dependencies of mess-
ages. We shall motivate their definition with two simple
observations.

First, in a computation which is not CO, hence not
RSC, there always exist two pairs (s, r) and (s', ') of corres-
ponding send and receive events such that s<s" and " <r.
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Fig. 7. Crowns of size 2 and 3

As 5'<7’, by transitivity of < we get the symmetric prop-
erty

s<r' and s'<r.

This, however, is the typical “deadlock situation” con-
sidered in Sect. 2.3 which disallows the schedule of whole
messages.

Second, consider Figs. 5 and 6 which show CO-compu-
tations that are not RSC, and Fig. 3 which shows a
non-CO-computation. For all these three examples of
non-RSC-computations we have
51 =<2,

8, <r3, S53=<ry.

If here we “identify" corresponding send and receive events
S, i, Which is the intuition behind the idea of scheduling
whole messages or considering single communication
events in the synchronous case, we get again a cyclic
dependency.

Generalizations of these two cases suggest the follow-
ing definition.

Definition 4.1 (Crown). Let C be a computation. A crown
(of size k) in C is a sequence {(s;, r;), i € {1, ..., k})> of pairs
of corresponding send and receive events such that

5112, $2<r3, e, S <Fpy <1y

Examples of “canonical” crowns with a characteristic
wrapped-around zigzag shape responsible for their name
are given in Fig. 7. Figures 3 and 5 show, however, that not
all crowns have this typical geometrical shape and that the
send events (or the receive events) do not necessarily lie on
different processes. Besides the crowns of size 3 indicated
above, both computations also have crowns of size 2. (For
Fig. 3,5, <r; and s,<r,; and for Fig. 5, s, <r, and s;<r,.)

The first observation at the beginning of this subsec-
tion shows that every non-CO-computation necessarily
contains a crown of size 2. Notice that the computation of
Fig. 6 does not contain a crown of size 2 and is therefore
CO. Computations which contain a crown of size 2, how-
ever, can be CO as Fig. 5 proves. As indicated above, one
can easily verify that every computation that contains
a crown is non-RSC. The main result of this section is that,
conversely, any computation with no crown is RSC, as
stated in the Theorem 4.4 further down. Hence, the exist-
ence of a crown fully characterizes non-RSC-computa-
tions. The proofl of this crown criterion relies on several
auxiliary results which we shall prove next.

4.2 The reduction lemma

In this section we show that the internal events of a com-
putation can be ignored in the crown criterion (Theorem
4.4). Let C be a computation and define a computation C,
called the reduced computation of C, by removing all inter-
nal events of C (ie., C is the subset of send and receive
events). Corresponding pairs in C are the same as in C.
Clearly, the causality relation on C is the reduction on C of
the causality relation defined on the computation C, and
C is a computation according to Definition 3.2.

Lemma 4.2 (Reduction lemma). The reduced computation
C of C is RSC if and only if C is RSC.

Proof. A linear extension L of C defines a linear extension
L of C by removing all internal events from L. If L is
a non-separated linear extension of C, then L is a non-
separated linear extension of C. Thus, if C is RSC, then C
is RSC.

Conversely, suppose that C is RSC; let L = (s,
Iis... Sy I'p) be a non-separated linear extension of (C, <).
To extend L to a non-separated linear extension of C, we
first partition the internal events in C by combining suc-
cessive internal events of a process which lie between two
communication events. Inductively define the sets S,, and
R, forme{l,...,p} and E; forie {1,...,n} by

Sn={xeC\C:(x ~ s,) and (x<s,)
and (X¢ Uy <k < m-1(SkURY)}
R, = {xeC\C:(x ~r,) and (x<r,)
and (X¢ U1 <k < - 1(SkURY)}
and the set of final local events
E; = CA\C\(S;u =+ US)U(R U

Informally, the set S,, (R,,, resp.) is formed by the internal
events located on the same process as s, (r,, resp.), just
before s, (ry, resp.) and which have not yet been con-
sidered in the preceding sets S,,...,S,-, and
Ry,..., R, . Internal events that occur in C; after the last
send or receive event performed by P; are combined into
E;

Each of these sets is totally ordered by the relation <.
The sequence L is obtained from L by insertion of the
internal events as follows. Before s, (for each me {1, ..., p}),
insert first S, and then R,,, and after r,, add E,, ... , E,. We
claim that L is a non-separated extension of (C, <).

We shall first show that L is an extension of (C, <). To
this end we must show that the events of each process
appear in L in the correct order, and that corresponding
send and receive pairs appear in the correct order. Con-
sider events a and b satisfying a<;b. We may assume that
there is no event between a and b in P;. The following four
cases are exhaustive:

- UR,).

I. If a and b are both a communication event, then
a and b appear in L in the same order as in L, thus
a appears before b.

2. If a and b are both an internal event, they are in the
same set (S, R,, or E;) and appear in L in the correct order.



3. If a is an internal event and b is a communication
event, then a is in the set S,, or R,, corresponding to b and
appears in L before b by the construction of L.

4. If a is a communication event and b is an internal
event, then b belongs to S, R, or E. In the latter case
(be E;), b appears after a in L by construction of L. If
beS, or beR, then b is in the set corresponding to
a communication event ¢ for which a<b<c. Now b ap-
pears in L before ¢, and (as a<c), a appears before c¢. By
construction of L, the only possible communication event
between b and ¢ (in L) is the event corresponding to ¢. But
@ and ¢ are not a corresponding pair, because a ~ b ~ c.
Thus a appears before b in L.

For a pair (s, r) of corresponding send and receive events, it
follows from the construction of L that s appears before
rin L (because s appears before r in L). Consequently, L is
a linear extension of (C, <).

Second, we must show that L is non-separated. If (s, r)
is a pair of corresponding send and receive events, then
s, r € C, and the pair is not separated in L. As the insertion
of the internal events does not separate corresponding
pairs, the pair is not separated in L. []

4.3 The crown criferion

If a computation is RSC, then there exists a linear exten-
sion of < such that corresponding communication events
are consecutive (cf. Definition 3.6). This means that it
should be possible to schedule whole messages at once, as
discussed in Sect. 2.3, and consequently there must be no
cyclic dependency on messages. In this section, we show
that a cyclic dependency relation on messages is precisely
captured by the existence of crowns whose existence can
easily be checked with a simple algorithm.

For a given computation C, consider the decomposi-
tion of its reduced computation C into ordered pairs [s, r]
of corresponding send and receive events (with s<r) and
a relation <] on these pairs (i.c., messages) induced by the
partial order < on C. That is, [s, r]<][s’, '] if and only if
s<s or s=<) or r<s' or r<r'. Since s<r and s'<, this
disjunction is equivalent to s<r'. Let G denote the asso-
ciated directed graph whose vertices are the pairs [s, r] and
which contains an arc from [s, ] to [¢, '] if and only if
[s, r]1<[s’, r']. Then the relation <] on the set of ordered
pairs [s,r] is a partial order if and only if G has no
directed cycle.

Lemma 4.3. G, has a directed cycle if and only if the
computation C has a crown.

Proof. G4 has a directed cycle [sy,ri], ..., [Sw 1l [S1: 1]
if and only if C has k pairs of corresponding send and
receive events such that for all i (modulo k), s;<r; ., which
is a crown. [

We can now state and prove the main result of Sect. 4
which yields a simple characterization of RSC-computa-
tions:

Theorem 4.4 (Crown criterion). A computation C is RSC if

and only if C contains no crown.
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Proof. Let C be a computation. Form the reduced compu-
tation C by removing all internal events of C. By Lemma
4.2, C is RSC if and only if C is RSC. By definition, C is
RSC if and only if (C, <) admits a non-separated linear
extension, that is, a linear extension which is a concatena-
tion of pairs [s; r;] of corresponding send and receive
events.

Such a linear extension exists if and only if the set of
ordered pairs of corresponding send and receive events
together with the relation <] is a partial order. But this is
equivalent to the condition that the associated graph
G 4 has no directed cycle. By Lemma 4.3 G has a directed
cycle if and only if C contains a crown. It follows that C is
RSC if and only if C contains no crown. []

Since there exist linear time algorithms which check
whether a given graph contains a crown (see, e.g.,
Bouchitte and Habib [9]), Theorem 4.4 provides an
efficient RSC-criterion.

4.4 Message scheduling

Since <] is a relation on corresponding send and receive
events, it captures the idea of scheduling whole messages
at once. Informally, such a schedule is possible if during
the execution of the computation there is always a pair
of corresponding communication events which do not
depend on “later” communication events that must be
executed first.

One advantage of the characterization of RSC by the
<]-relation is that it is easy to check whether <] is a partial
order. More precisely, given a computation C it is easy to
check whether C is RSC (i.e., whether it is crown-free) by
only considering the relation <] on the pairs of corres-
ponding send and receive events. The idea is to try to
construct a linearization by applying a topological sorting
scheme. If by successively removing minimal elements the
scheme will eventually terminate with the empty set, then
there exists a (non-separated) linear extension. Otherwise
there is a cycle which cannot be broken. Given a space-
time diagram of a finite distributed computation there is
an obvious algorithm which implements that scheme:

1. Remove all internal events.

2. While this is possible, take a pair [s,r] that is min-
imal with respect to <. That is, take a leftmost event on
one of the process axes which has a corresponding event
on another process axis that is also a leftmost event, and
remove both events.

3. The computation is RSCif and only if after step 2 all
events have been removed.

Examples are given in Fig. 1 (which is not RSC because
[g, ] cannot be removed before [e, /] and vice versa), Fig.
4 (which is RSC), and the structurally similar Figs. 3, 5, and
6 which are not RSC as already discussed in Sect. 2.3.
The message-scheduling characterization of RSC-com-
putations is of interest because it indicates again that in the
synchronous case a pair of corresponding send-receive
events can be regarded as a single combined communica-
tion event: whereas in general A-computations the events
must not form a cycle with respect to <, in RSC-computa-
tions the combined communication events must not form
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Fig. 8. An RSC-computation with vertical message arrows

a cycle with respect to <]. For a given space-time diagram
there is a simple way to determine whether <] is a partial
order. If (and only if) it is possible to form a cycle by
moving along message arrows in either direction, but al-
ways [rom left to right along process lines, then <] contains
a cycle and the computation is not RSC. This criterion is
again an immediate consequence of the previously men-
tioned definitions and results.

The above-mentioned algorithm for checking the
message scheduling criterion by successively removing
pairs of corresponding events gives rise to another, graphi-
cal characterization of RSC-computations. According to
Definition 3.6, an RSC-computation C has a non-separ-
ated linear extension and consequently there exists a map-
ping t: C — R such that!!

1. ¥(s,r)el:t(s)=t(r) and
2. ¥(a, by e C*\I":a<b = t(a) < t(b).

If t(m) denotes the value ((s) = t(r) for message m = [s, r],
then the above conditions imply that t(m) < t(m’) if m<]m'.
A possible interpretation of ¢(s) = (r) is that correspond-
ing send and receive events “happen at the same time” (i.c.,
message transmission is instantancous).

This result allows us to draw space-time diagrams of
RSC-computations in such a way that all message arrows
are vertical. In such a diagram, an event e is drawn to the
left of another event ¢’ if ¢’ causally depends on e and if
(e,e)¢l; Fig. 8 shows an example. By following the
“causality paths™ in the space-time diagram from send
events to receive events one can easily check that
my <|my<Imy <my and my<Jms. Messages m, and ms are
not related by <, i.e., 71 (my<]{ms) and =1 (ms<Imy).

Obviously, a computation for which it is possible to
draw a space-time diagram with only vertical message

“arrows admits a non-separated linear extension and is
therefore realizable under synchronous communication.
Hence, from an informal point of view a computation C is
RSC ifand only if in a space-time diagram of C all message
arrows can be made vertical by moving events along the
process lines without changing their relative order on such
a line (i.e., using only “clastic deformations™):

Observation 4.5 (All vertical message arrows criterion). A4
distributed computation is RSC if and only if its space-time
diagram can be drawn in such a way that all message arrows
are vertical,

' Here [ is used as the standard model of time. However, a similar
mapping into N can equivalently be required.

Comparing this to Observation 3.14 shows again that
all RSC-computations are CO (but not necessarily con-
versely). In the next section we shall see that the drawing of
space-time diagrams with vertical message arrows only is
in fact justified for all computations with synchronous
communications. This explains why in proofs of distri-
buted algorithms with synchronous communications one
may make use of the fact that there are no messages in
transit — an assumption which is usually wrong in the
asynchronous case where in invariant based proofs one
must in general take into account states where a message
has been sent but not yet received [23].

5 Computations with synchronous communications

In our model, a distributed computation is essentially
characterized by its space-time diagram (i.e., the sequences
of events C; and the set of pairs of send-receive events I).
Such space-time diagrams, however, must be feasible in the
sense that the causality relation does not contain cycles.
For A-computations, the causality relation is defined by
the three axioms AS1-AS3 (Definition 3.1), which reflect
the intuitive understanding of asynchronous message
transmissions. These rules, however, do not capture the
additional causal dependencies between events induced by
synchronous communications. For example, it secems to be
common understanding that in S-computations (i.e., com-
putations with synchronous communications) the actions
performed by a process after the sending of a message
m causally depend on the receipt of m. Hence, somewhat
different axioms must be found to suitably define S-
computations.

3.1 The axioms of synchronous communications

In the following, we shall try to axiomatize the causality
relation between events in S-computations. To this end,
the semantics of synchronous message passing must be
made precise. A common understanding of synchronous
communication is that the sending of a message is a block-
ing event, i.e., a message cannot be sent if its receiver is not
ready to receive it. As is the case with asynchronous
communication, receiving a message is also blocking. In
other words, if in synchronous mode a process P wants to
send a message to Q, and process Q wants to receive from
process P, both P and Q can achieve nothing until the
message has been exchanged. Thus an event that causally
depends on the sending of a message also depends on the
corresponding receipt (and vice versa). If < denotes the
causality relation in an S-computation C, this “strong
common future” condition can be stated more formally as
follows:

V(s,r)el',Vae C:s<a<=r<a.

Similarly, if a receive event or a send event depends on
some other event a, the corresponding communication
event cannot be executed before a — it also depends on a.
This is captured by the “strong common past™ property:

Vis,rel',Vae C:a<s<=a<r.



Fig. 9. A space-lime diagram and the corresponding relations <
and <

These two conditions replace property AS2 (V(s,r)e
I': s=<r) of asynchronous communications (see Definition
3.1). As it is the case for asynchronous communication (cf.
AS1 and AS3), causality should, in order to be meaningful,
respect the occurrence order of events within a process and
be transitive. This leads to the following axiomatization,
originally given by Fidge [21, 22].

Definition 5.1 (Synchronous causality relation). The syn-
chronous causality relation < in C is the smallest relation
that satisfies the following properties.

S1 If a<;h, then a<b.
S2 If(s,r)eI',thenVae C:a<ks<=a<rand s<a<r<a.
S3 If a<bh and h<(c, then a<€c.

Observe that in contrast to asynchronous communica-
tions, corresponding send and receive events are in general
not causally related by <. On the other hand, however, S2
is symmetric with respect to send and receive events. As an
example, Fig. 9 exhibits a computation together with the
graphs of the two relations < and <; the arcs induced by
the transitivity axioms AS3 or S3 are not shown. One
observes that the graph for < contains cycles, whereas the
graph for < does not.

S-computations are defined in a way similar to A-
computations (Definition 3.2); in particular, the causality
relation must not form cycles. This yields the following
definition.

Definition 5.2 (S-computations). A computation with syn-
chronous communications (or an S-computation for short)
of a distributed system consisting of processes P,, ..., P, is
an n-tuple C = (Cy, ..., C,) of local computations together
with a set I' of corresponding communication events, for
which the synchronous causality relation < is a partial
order.

As the example of Fig. 9 shows, a space-time diagram
depicts the sequences of local events C; and the “message
set” I, but it does not explicitly show the causality order
< or <. Of course, space-time diagrams do only represent
valid computations if the corresponding causality rela-
tions are free of cycles. There are, in fact, space-time
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diagrams which represent A-computations but not S-com-
putations (cf. Fig. 5, the reader may easily verify that
X1<KXx,, Xx,<Kx3, and x3<x,; holds, where x; stands for
s; and r;). Of particular interest are space-time diagrams
which represent both, A-computations and S-computa-
tions. This case will be considered next.

5.2 S-computations and RSC-computations

It is quite natural to compare the class of RSC-computa-
tions (based on asynchronous communications) to the
class of S-computations. In fact, the main justification for
Definition 3.6 (RSC) and Definition 5.2 (S-computations)
is given by the following “equivalence” theorem.

Theorem 5.3 (S-computations = RSC). Let C be an A-
computation. The following statements are equivalent:

1. Cis RSC;
2. C is an S-computation.

Note that in case 1 the causality relation is <, whereas in
case 2 it is <.

Proof. 1t has to be shown that < is a partial order if and
only if C is RSC. This will be done in the remainder of this
section with the help of some technical lemmas.

Let C be an A-computation and let < denote its
(asynchronous) causality relation. Because in S-computa-
tions corresponding send and receive events are symmetric
with respect to causality, we complement I' by the con-
verse relation

r'={@s):(s.r)el)

and we consider the smallest relation (denoted by <) that
satisfies AS1 and AS3 (with < replaced by <), and

AS2 V(s,r)eI':r<s.

Informally, a< b holds if in a space-time diagram b can be
reached from a via a path that runs from left to right on
process lines but follows “message arrows™ in the reversed
direction. Next define

R =(<u=<)*
R = (< U< )*\(I'uF).

Informally, aR’b holds if in a space-time diagram b can be
reached from « via a path that runs from left to right on
process lines but may follow message arrows in ecither
direction. R is similar to R’ but excludes corresponding
send and receive events and thus avoids cycles of length
two between corresponding communication events. We
shall use the following technical lemma several times.

Lemma 5.4. Let a and b be two events of a computation C.
If aRb, then a<<b or there exists a sequence {(s;r;),
iel{l,....k}> of pairs in I" such that

a=<.- -_<r]-2.s'1-< <1‘,~%S,—~<
“<*'f+1'25;+ =< o "<"k"23k"< v <h,
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Proof. This lemma is a straightforward consequence of the
definition of R and < and of the fact that the relations
< and < both satisfy AS1. O

For the proof of Theorem 5.3 it will first be shown that
1=-2. To this end we shall demonstrate that for RSC-
computations the relation R coincides with < (i.e., that it
is the smallest (Lemma 5.7) relation satisfying S1-S3
(Lemma 5.6)), and that it is cycle-free (Lemma 5.5). Assume
that C is an RSC-computation.

Lemma 5.5. The relation R as defined for C is irreflexive.

Proof. Suppose that R is not irreflexive, i.e., there exists an
event a in C such that aRa. It follows from Lemma 5.4 that
there exists a chain

a< <=5 < <=L s <
<rip =<5 <o '<-"k'25k“_'< - <a.

" It follows that s;<r5,...,5:<Fis1,-.-,5.<rF;, hence the
sequence {(s;, r;), i€ {1,...,k}) isa crown. By Theorem 4.4
this is a contradiction to the assumption that the computa-
tion is RSC. Consequently, R is irreflexive. []

Lemma 5.6. The relation R satisfies S1-S3.

Proof:
Property S1. If a<;b then a<b and (a, b)¢ 'UT, hence
aRb.

Property S2. For the first part of S2 (“strong common
past”) let (s,#) e I', and assume that aRs. It follows that
aR’s. By the inclusion I' € R’ and the transitivity of R’ we
get aR'r. By the definition of I, (a, r) does not belong to I'.
If (@, r) belongs to I" then a = s, which contradicts Lemma
5.5. Hence aR'r and (a, r)¢ 'UT’, and consequently we have
aRr. Thus aRs=-aRr. The converse implication
aRr = aRs is proved similarly, and the second part of S2
(“strong common future”) is proved in the same way as the
first part.

Property 83. Let a, b, ¢ be three events in C such that aRb
and bRc. As R = R’ and since R’ is transitive we have aR’c.
To prove that aRc, it remains to show that (a, )¢ 'uI”
which will be done by contradiction, using that C is RSC.
Assume that (a, ¢) € I'UT. First consider the case a</b and
b<e¢. Then a<e,so (a, ¢) € I', and Proposition 3.13 implies
that C is not CO, contradicting the assumption that C is
RSC. Hence, Lemma 5.4 applies to the pair a, b or b, ¢ and
it follows that there exists a chain

a < - "_<-'|‘2"‘|'< "<*|"251‘<
<rip1=<Sps1 0 << - <Lc.

1. If (a, ¢) € I' then by denoting (a, ¢) = (so, ro) We get
that the sequence {(s; r;), i € {0, ..., k}> is a crown.

2. If (a, ¢) € I' then by denoting (a, ¢) = (ro, So) We have
< = $0=<rp and s,<r, = a<r,;. Hence the sequence
s 1), i€ {0,...,k}> is a crown.

In both cases C contains a crown, contradicting the as-
sumption that C is RSC (Theorem 4.4). Hence (a, c)¢
(I'ul') and thereby aRe. [J

Lemma 5.7. The relation R is the smallest relation that
satisfies SI-S3.

Proof. As <€ is the smallest relation that satisfies S1
through S3, and R satisfies S1-S3, one has < = R. To
prove R € <, it suffices to show that

(Ru=)* = <u(rul),

because of the following implication which holds for any
sets 4, B, and C:

A= BuC=A\B<C.

Clearly we have < € €u(l'ul) and< < Ku(I'url), so
it suffices to show that for two events @ and b in C such
that

a(<u<)*b and —1(a<b) and —1(a<b),

the relation a<b holds. For that, consider a shortest chain
A< <r<5< - <=L 5= -
<Fisy<si41< - <R=L< - <b

from a to b. In a shortest chain a %+ s; and b % r, and
Vie{l,...,k—1}:r; % risy. By the first part of S2 and
the inclusion < = < u(I'ul), these last relations show
that ry < --- <. The following three cases are exhaustive:

1. If b # s, we have r,<<b, because of the second part
of S2 and since b # r;. In the same way we have a<r; or
a =ry. In these two cases we conclude by S3 that a<b.

2. If b = s, and k = 2, then we have r, _ ;<b and there-
fore we get a<(b.

3. If k=1 and b = sy, it follows from —(a<b) that
a and r; are two distinct events. As a =+ s;, we deduce by
the second part of S2 that a<r, and hence a<bh. []

As R coincides with < and R is irreflexive, it can be
concluded that < is cycle-free, and hence C is an S-
computation.

Conversely, it will now be shown that 2=1 in
Theorem 5.3. Let C be an S-computation, and assume that
C is not RSC. By Theorem 4.4, C (with the asynchronous
causality relation <) contains a crown that we denote
{siy 7). i€ {1,...,k}>. Thus we have

51 ‘(f’z '2 .‘ig_'<?'3"2 2 ‘25.‘_ 1 "<f';'25;

<rig < - <1< 5<ry<s
By setting @ = s, and b = s, in the chain used in the proof
of Lemma 5.7, we get s, <s; which implies that < in C is
not cycle-free. This contradicts the fact that C (with <) is

an S-computation.
This concludes the proof of Theorem 5.3. [

6 A termination detection algorithm revisited

The termination detection algorithm by Dijkstra, Feijen,
and Van Gasteren [19] is an example of a well-known
distributed control algorithm which was proved to be



correct under the assumption of synchronous communica-
tions.'? In this section we shall demonstrate that this
assumption can be weakened. More precisely, we shall
show that the CO-property is sufficient for ensuring the
correctness of the algorithm.

6.1 Description of the algorithm

We briefly recall the algorithm by first describing the
problem of distributed termination detection, then the
wave mechanism used for the detection algorithm, and
finally the detection principle itself.

The Problem. Let Py, Py, ..., P,_, be n processes, each of
which can be either active or passive. Some processes might
be active initially, at the start of the computation. An
active process can become passive by itself, but a passive
process can only become active when it receives a so-called
basic message. Such messages can only be sent by active
processes, from which it follows that if all processes are
passive and no basic messages are in transit, the computa-
tion is terminated. The problem is to detect this termina-
tion state by a superimposed distributed control
algorithm.

The wave mechanism. The control algorithm is based on
a succession of waves, where each wave consists of a visit
event in each process. A wave is implemented by the
propagation of a token along a logical ring, to which end it
is assumed that process P;,, can send control messages to
process P; (all indices are modulo n). Basic messages are
not restricted to pass on the ring; a process may send
a basic message to any other process. A wave is initialized
by P, by sending the token to process P,_ ;.

The visit event happens at P; when P; sends the token
to its neighbor P;_,. (The ﬁi‘bt sendm;: of the token by
P, is left out ofconqndcrﬂtlon ) The i sendmg of the token
by P}, i.e., the visit of P; by the i'"" wave, is denoted by Sm
Thus the r"‘ wave is formally defined by the set of events
wo = (S5, ...,88 ).

The i™ receipt of the token by P; is denoted by RY.
A process may send the token only if it ho]ds the 1oken
This condition is formally expressed by RY’<;S!".

As the event S“ corresponds to the evem R’,_1 for
Jj >0, we obtain tlmt the visits of one wave are totally
ordered by causality:

> foss SIS (A)

As S( ’ corresponds to R,,_ , , the visits of subsequent waves
are ordered by causality:

Vi, j, k: S[”-R’S'“ bl (B)

In(A)and (B), i ranges over wave numbers and j and k over
process indices.

12 As remarked belore, the authors use the term “instantancous”

instead of “synchronous”.
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The Detection Principle. A basic message m = [s, r] from
P; to P, is said to cross wave W@ if s< ;S and S}’ <,
The detection principle relies on the following observation.

Lemma 6.1 (Termmanon after a wave). If for each j, P; is
passive when S occurs and there is no basic message Ihar
crosses wave W"‘ no process is ever active after its visit by
wave W@,

Proof. Call an event e of process P; a post-i event if
S¥< e, and assume there is a post-i event of the underly-
ing baszc computation. Choose among those events an
event that is minimal with respect to <. The minimality
and the fact that a process is passive when it is visited by
the wave imply that this event is a receive event. Again
from its minimality among post-i events it follows that the
corresponding send event is not a post-i event, hence the
corresponding message crosses wave W, ]

lt can easily be ensured that for each j, P; is passive when
S occurs, namely by requlrmg that a process sends the
token only when it is passive. A consequence of the lemma
is then that termination can be concluded if there is a wave
which is not crossed by a message. To detect whether
a message could have crossed the current wave, the algo-
rithm uses a simple coloring scheme.

At the initialization of each wave, the token implemen-
ting the wave is white. Process P; blackens the token in
wave W@ if and only if P; sent a (basic) message to
a process P, with k > j between the events S~V and 9. 1t
any process blackens the token during wave W, Ihen the
token remains black until the end of W'. Process
P, declares termination (at the end of wave W) when it
receives a white token and did not send a basic message
between S§ " and SYy. If the token returns black or
P, sent a basic message between S ) and SY, a new wave
is initiated.

6.2 Correctness proof with the CO-assumption

Dijkstra et al. [19] prove the correctness of this termina-
tion detection algorithm for S-computations by showing
its safety and liveness. The safety proof is based on invari-
ants and relies on a representation of a send event and its
corresponding receive event as a single atomic action (“the
activation of a machine by an active machine”). In contrast
to this, our proof for the CO-case does not rely on asser-
tions that remain invariant in each global state, but con-
siders the execution as a whole. However, invariant-based
proofs are also possible as was recently shown by Stoller
and Schneider [43].

The idea of our proofis that under the CO-assumption
a basic message cannot cross two (or more) waves
—a message that crosses a single wave, however, is detected
by the coloring scheme. Informally, the single wave cross-
ing property follows directly from the vertical message
arrow criterion for CO-computations: Consider a message
m that crosses a given wave. According to Observation
3.14 it is possible to draw a space-time diagram of the
computation in such a way that m is symbolized by a verti-
cal arrow. Since at any instance in time there exists at most
one wave (graphically represented by a “diagonal” chain of
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messages), such a vertical arrow cannot cross more than
one wave. The following theorem makes use of this argu-
ment in a more formal way.

Theorem 6.2 (Safety). If the combined computation of the
basic and the control computations satisfies the CO-prop-
erty, the distributed termination detection algorithm is safe.

Proof. Suppose P, detects termination at the end of W
and suppose that there is a message m = [s,r] sent by
P; and received by Py that crosses W . As m crosses W @,
we have s<S{ and S;”<r. Since the token remains white
during W® and P, did not send a message between
S6~ " and SY, either m is sent before SY~ ", or m is sent
between SY~ " and S\ and j > k. In the first case, we have
s<SY~". Using property (B) we obtain s=< 8 =<SP=<r,
which violates the El-property and hence contradicts the
CO-assumption. In the second case, using property (A) we
obtain s<S{’ <S8}’ <r, which again violates the EI-prop-
erty and hence contradicts the CO-assumption.

. Thus, by Lemma 6.1 the algorithm is safe if the compu-
tation satisfies the CO-property. [

The liveness of the algorithm is demonstrated by con-
sidering what happens after termination of the basic com-
putation; no basic messages are sent, sO no process is
blackened after termination. This implies that if a wave is
started after termination, at the end of that wave all pro-
cesses are white; during the next wave the token remains
white, and termination is detected at the end of that wave.
This argument, already given by Dijkstra et al., still applies
when CO-computations are considered instead of the syn-
chronous model.

Topor presents a similar termination detection algo-
rithm for synchronous communications (based on a con-
trol tree [46]), and claims that the algorithm is also correct
“provided the delay between sending and receiving a mess-
age is sufficiently small”. Katz [26] more precisely indi-
cates the meaning of “sufficiently small” by requiring that
“a basic message is sensed by the receiving process before
the wave can traverse the tree”. As shown above, this
aspect (called semi-synchrony by Katz) is indeed implied
precisely by the CO-property.

An immediate practical consequence of Theorem 6.2 is
that termination detection for CO-computations is not
more difficult than termination detection for S-computa-
tions, despite the increased level of non-determinism and
parallelism. However, it is easy to construct a scenario
showing that the algorithm is no longer safe when the
computations satisfy only the FIFO-property, but not the
CO-property: it suffices to consider a basic message, sent
via an edge not belonging to the control ring, that crosses
two or more waves. Thus the CO-property is the weakest
assumption of our hierarchy that implies the safety of this
algorithm.

To salely detect the termination of non-CO-computa-
tions, more sophisticated termination detection algo-
rithms must be used, which deal with in-transit messages
explicitly. Methods to ensure the absence of in-transit
basic messages include the use of send/receive counters
[18, 30], acknowledgements [33], timers [45], or special
marker-messages in case of FIFO-communication
[30, 45].

7 Further remarks and conclusions

In this section, we briefly discuss some implementation
aspects, mention some other communication schemes, and
summarize our main results in a graphical scheme.

7.1 Implementation

We now sketch how the various synchronism assumptions
considered in this article may be implemented on a reliable
distributed system with asynchronous communication.
We briefly describe possible communication protocols
that can be used by the processes in order to guarantee
that the resulting computations satisfy the FIFO, CO, or
RSC-assumption. Such a protocol constitutes a layer be-
tween the processes and the message passing system.
A process “sends” a message by handing it to the sender
protocol, and receives a message by “accepting” it from the
receiver protocol. We only sketch the main ideas, for the
details the reader is referred to the literature.

FIFO. The FIFO-property only imposes an order on the
receive events of messages exchanged between the same
two processes, and consequently can be implemented on
each communication line separately. A protocol which
uses sequence numbers is well known: The sender appends
a sequence number to each message. and the receiver
accepts only the “next” message from its input buffer.

Causal order. A protocol for enforcement of causal order
is more involved than the above-mentioned FIFO-proto-
col because it must also deal with the causal relation
between send events at different processes. In contrast to
the RSC-property, however, causal order message delivery
can be realized without blocking the sender, thus reducing
the possibility of introducing deadlocks.

A possible implementation, relying on sets of vector
timestamps, was described by Schiper, Eggli, and Sandoz
[37]. A slight variant which uses integer matrices of size
nxn (i.e, vectors of vectors of length n, where n is the
number of processes) was later given by Raynal, Schiper,
and Toueg [35]. In this protocol, each process P; has
such a matrix M; which is initialized to the null matrix.
When process P; sends a message to P, it increments
M;[i,j] and attaches M; to the message. Whenever a pro-
cess P; receives a message together with its attached matrix
M, M; is updated to the component-wise maximum of
M and M;. By that, the matrix of a message encodes the
knowledge of all send events (i.e., other messages) it
causally depends on: if M[i,j] =k, then it causally de-
pends on the first, the second,...,the k"™ sending of
a message from P; to P; (with possible exceptions of
reflexive dependencies).

A message that arrives “out of causal order” at some
process P; depends on a send event whose message has not
yet been received by P;. This can easily be detected by P; by
using a scheme that is a straightforward generalization of
the FIFO-protocol mentioned above. The message which
arrives “too early” is then simply delayed by the protocol
and only delivered when its receipt does not violate the
CO-property. (The related update of M; is likewise defer-
red.) More formally, let M denote the matrix attached to



a message sent by process P; to P;. The message is not
delivered to P; until'?

1. Yk =*i:M[k,j] < M;[k,j] and
2. M[i,j1= M;[i,j]1+ 1.

Clearly, (2) guarantees FIFO-order between P; and P
Delivery condition (1) essentially requires that (with re-
spect to all other potential senders) local vector time at
P; represented by the vector M;[x, j] be greater than the
vector timestamp M [*,j] of a message that is accepted
by P,

Note that if only messages directed towards a single
location must be causally ordered (e.g., to realize a causally
consistent monitor or causal memory [1]) or if causally
ordered broadcasts are considered [8, 37], then the matrix
can be reduced to a vector by simply “ignoring” its second
dimension.

Interestingly, causal order message delivery can also be
implemented without vectors or matrices by using input-
output message buffers that communicate by a handshake
protocol [31]. It should also be noted that if global (or
“real”) time is available (realized, for example, by suffi-
ciently well synchronized physical clocks) and if lower and
upper bounds on message transmission times are known,
then other means to guarantee causal order are feasible.
One such possibility consists in delaying all actions in such
a way that no direct or indirect message overtaking is
possible [27].

Synchronous communications. For point-to-point com-
munications with unconditional send-receive statements,
the RSC-property can be obtained by sending an acknow-
fedgement back to the sender for each message received
and block the sender until the corresponding acknow-
ledgement arrives (see, e.g., Martin [29] or Seitz [40]).
From the viewpoint of the sender, the sending of a message
is instantaneous since all its activities are frozen after the
start of the send operation, and it is only unfrozen when it
is known that the message has been received. Since the
sender is in a blocked state when the receiver sends the
acknowledgement, there is indeed an instant in time where
both processes are engaged in the communication opera-
tion simultaneously. Conceptually, one could imagine that
the message is sent instantaneously at that moment. The
enumeration of all events of the computation in the order
of their occurrence (with a send enumerated before its
corresponding receive) now gives a non-separated linear
extension of the causal order, hence by Definition 3.6 the
computation is RSC. In a less formal way this also follows
from Observation 4.5 since for computations with instan-
tancous messages it is possible to draw a space-time dia-
gram with only vertical message arrows.

7.2 Conclusions

In this article we have studied the structural aspects
of distributed computations, depending on the degree of

13 This is a slight optimization compared to the solution by Raynal
el al. where an extra vector is needed in every process.
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Fig. 10. The different computation classes and their characteriza-
tions

synchrony implied by the communication mechanism.'#
While usually only fully asynchronous, FIFO, and syn-
chronous communications are considered in the design of
distributed algorithms, our study reveals that the CO-
assumption is also useful.

In practice, it is often possible to mix different com-
munication mechanisms in a single distributed program.
For example, message passing libraries such as MPI [24]
support communication primitives with various synchro-
nization and message selection properties. The exact se-
mantics of their interplay, however, is usually not formally
defined and therefore often remains unclear (for a critique,
see Cypher and Leu [16]). Also, many distributed operat-
ing systems (see, e.g., Tanenbaum [44]) allow the use of
blocking or non-blocking send operations, and some dis-
tributed programming languages (see, e.g., Bal [4] and
Shatz [41]) provide synchronous as well as asynchronous
communication features. Using axioms AS2 or S2 when
appropriate, it should be possible to formally define the
causality relation for such general computations.

More communication and synchronization schemes
for distributed systems have been proposed in the litera-
ture. Examples include: flush channels as a weakening of
the FIFO-protocol [2]; channels with bounded buffering
capacity allowing a variable degree of synchronization
freedom from strictly synchronous to totally asyn-
chronous communication by adjusting the so-called syn-
chronization slack between two communicating processes
[29]; multiway rendezvous as a generalization of syn-
chronous message exchange where an arbitrary number of
concurrent processes participate in the execution of
a single event at the same time [15, 20]; remote procedure
call abstractions [5, 11, 34]; and various broadcast and
multicast schemes, ranging from weakly synchronized and
causally ordered variants to so-called atomic broadcasts
[8, 39]. Analyzing and discussing the semantics of those
mechanisms, however, is out of scope of this article, which

'+ A study with a similar goal [42] was published while our article
was under revision.
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concentrated on the more elementary and classical point-
to-point communication schemes.

To conclude, Fig. 10 gives an overview of the different
computation classes described in this article and their
various characterizations. Each class is represented by
a box with solid lines, and its most important characteriza-
tions are framed by dashed lines. Characterizations of the
same “flavor” are depicted at the same horizontal level.
A double arrow = indicates related characterizations in
the sense of the hierarchy; a single arrow — is used when
the underlying partial order is different. The scheme de-
picts again the hierarchy RSC = CO < FIFO of the com-
putation classes and clearly shows the relations and simil-
arities of their various characteristic properties.
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