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Abstract—We analyze fading interference relay networks
where M single-antenna source-destination terminal pairs
communicate concurrently and in the same frequency band
through a set of K single-antenna relays using half-duplex
two-hop relaying. Assuming that the relays have channel
state information (CSI), it is shown that in the large-M limit,
provided K grows fast enough as a function of M , the network
“decouples” in the sense that the individual source-destination
terminal pair capacities are strictly positive. The corresponding
required rate of growth of K as a function of M is found to be
sufficient to also make the individual source-destination fading
links converge to nonfading links. We say that the network

“crystallizes” as it breaks up into a set of effectively isolated
“wires in the air”. A large-deviations analysis is performed to
characterize the “crystallization” rate, i.e., the rate (as a function
of M, K) at which the decoupled links converge to nonfading
links. In the course of this analysis, we develop a new technique
for characterizing the large-deviations behavior of certain sums
of dependent random variables. For the case of no CSI at the
relay level, assuming amplify-and-forward relaying, we compute
the per source-destination terminal pair capacity for M, K →∞,
with K/M → β fixed, using tools from large random matrix
theory.

Index Terms—Amplify-and-forward, capacity scaling, crystal-
lization, distributed orthogonalization, interference relay network,
large-deviations theory, large random matrices, large wireless net-
works.

I. INTRODUCTION

THE CAPACITY of the relay channel [3], [4] is still un-
known in the general case. Recently, the problem has at-

tracted significant attention, with progress being made on several
aspects [5]. Sparked by [6], [7], analysis of the capacity1 scaling
behavior of large wireless (relay) networks has emerged as an
interesting tool [8]–[14], [2], [1], which often allows to make
stronger statements than a finite-number-of-nodes analysis. In
parallel, the design of distributed space-time codes [15]–[17], the
area of network coding [18], [19], and the understanding of the
impact of relaying protocols and multiple-antenna terminals on
network capacity [17], [20], [21] have seen remarkable activity.

This paper deals with interference fading relay networks where
M single-antenna source-destination terminal pairs communi-
cate concurrently and in the same frequency band through half-
duplex two-hop relaying over a common set of K single-antenna
relay terminals (see Fig. 1). Two setups are considered, i) the
coherent case, where the relays have channel state information
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1Throughout the paper, when we talk about capacity, we mean the capacity
induced by the considered protocols, not the capacity of the network itself.
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Fig. 1. Dense wireless interference relay network with dead-zones around
source and destination terminals. Each terminal employs one antenna.

(CSI), perform matched-filtering, and the destination terminals
cannot cooperate, and ii) the noncoherent case, where the relays
do not have CSI, perform amplify-and-forward (AF) relaying,
and the destination terminals can cooperate. In the coherent case,
the network operates in a completely distributed fashion, i.e.,
with no cooperation between any of the terminals whereas in the
noncoherent case the destination terminals can cooperate and
perform joint decoding.

A. Contributions and Relation to Previous Work

Our main contributions for the coherent case can be summa-
rized as follows:
• We consider two different protocols, P1 introduced (for the

finite-M case) in [1] and P2 introduced in [2]. P1 relies on
the idea of relay partitioning (i.e., each relay is assigned
to one source-destination terminal pair) and requires each
relay terminal to know its assigned backward (source to
relay) and forward (relay to destination) channel only. The
relays perform matched-filtering with respect to (w.r.t.) their
assigned backward and forward channels. P2 does not use
relay partitioning, requires each relay terminal to know all
M backward and all M forward channels, and performs
matched-filtering w.r.t. all M backward and M forward
links.
Previous work for the coherent case has established the
power efficiency scaling of P2 for M → ∞ with K =
M2 [2]; in [1] it was shown that for P1 with M fixed,
in the K → ∞ limit, network capacity scales as C =
(M/2) log(K) + O(1). The results in [1] and the corre-
sponding proof techniques, however, rely heavily on M
being fixed when K → ∞. When M,K → ∞, the
amount of interference (at each destination terminal) grows
with M . Establishing the corresponding network capacity
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scaling behavior, therefore, requires fundamentally new
techniques, which are developed in this paper. In particular,
we derive the network (ergodic) capacity scaling behavior
for M,K →∞ for P1 and P2 by computing a lower and
an upper bound on the per source-destination terminal pair
capacity, and by showing that the bounds exhibit the same
scaling (in M,K) behavior. The technique used to establish
the lower bound is based on a result found in a completely
different context in [22] and applied in [2] to derive the
power efficiency scaling of P2. For our purposes, we need a
slight generalization of the result in [22], which follows, in
a straightforward fashion, from a result on nearest-neighbor
decoding reported in [23]. For the sake of completeness,
we state, in Appendix E, the relevant inequality in the form
needed in the context of this paper. The matching upper
bound on the per source-destination terminal pair capacity
poses significantly more technical challenges and is based
on a large-deviations analysis of the individual link SINR
(signal to interference plus noise ratio) random variables
(RVs). In summary, we prove that in the large-M limit, pro-
vided the number of relay terminals K grows fast enough
as a function of M , under both protocols P1 and P2 the
network “decouples” in the sense that the individual source-
destination terminal pair (ergodic) capacities are strictly
positive. The corresponding minimum rates of growth are
K ∝ M3 for P1 and K ∝ M2 for P2, with the per source-
destination terminal pair capacity scaling (for M,K →∞)
given by CP1 = (1/2) log

(
1 + Θ

(
K/M3

))
and CP2 =

(1/2) log
(
1 + Θ

(
K/M2

))
, respectively. The protocols P1

and P2 thus trade off CSI at the relays for the required
(for the network to decouple) rate of growth of the number
of relays. We hasten to add that an ergodic-capacity lower
bound for P2 was previously established in [2]; this bound is
restated (and reproved under slightly different assumptions)
in this paper for the sake of completeness. It appears,
however, that [2] does not establish the minimum rate of
growth of the number of relays for the network to decouple.

• We analyze the network outage capacity behavior induced
by P1 and P2 using a large-deviations approach. More
specifically, we show that the growth rates K ∝ M3 in
P1 and K ∝ M2 in P2 are sufficient to not only make
the network decouple, but also to make to the individual
source-destination fading links converge to nonfading links.
We say that the network “crystallizes” as it breaks up into
a set of effectively isolated “wires in the air”. Each of the
decoupled links experiences distributed spatial diversity
(or relay diversity), with the corresponding diversity order
going to infinity as M →∞. Consequently, in the large-M
limit, time diversity (achieved by coding over a sufficiently
long time horizon) is not needed to achieve ergodic capacity.
We obtain bounds on the outage capacity of the individual
source-destination links, which allow to characterize the
“crystallization” rate (more precisely a guaranteed “crys-
tallization” rate as we do not know whether our bounds
are tight), i.e., the rate (as a function of M,K) at which
the decoupled links converge to nonfading links. In the
course of this analysis, we develop a new technique for

characterizing the large-deviations behavior of certain sums
of dependent RVs. This technique builds on the well-known
truncation approach and is reported in Appendix A.

• For P1 and P2, we establish the impact of cooperation at
the relay level on network (ergodic) capacity scaling. More
specifically, it is shown that, asymptotically in M and K,
cooperation (realized by vector matched filtering) in groups
of L relays leads to an L-fold reduction in the total number
of relays needed to achieve a given per source-destination
terminal pair capacity.

Previous work for the noncoherent (AF) case [1] demonstrated
that for M fixed and K → ∞, AF relaying turns the fading
interference relay network into a fading point-to-point multiple-
input multiple-output (MIMO) link, showing that the use of
relays as active scatterers can recover spatial multiplexing gain
in poor scattering environments. Our main contributions for the
noncoherent (AF) case are as follows:
• Like in the coherent case, the proof techniques for the

noncoherent (AF) case in [1] rely heavily on M being
finite. Building on results reported in [24], we compute
the M,K → ∞ (with K/M → β fixed) per source-
destination terminal pair capacity using tools from large-
random-matrix theory [25], [26]. The limiting eigenvalue
density function of the effective MIMO channel matrix
between the source and destination terminals is charac-
terized in terms of its Stieltjes transform as the unique
solution of a fixed-point equation, which can be transformed
into a fourth-order equation. Upon solving this fourth-
order equation and applying the inverse Stieltjes transform,
the remaining steps to computing the limiting eigenvalue
density function, and based on that the asymptotic network
capacity, need to be carried out numerically. We show that
this can be accomplished in a straightforward fashion and
provide a corresponding algorithm.

• We show that for β →∞, the fading AF relay network is
turned into a fading point-to-point MIMO link (in a sense to
be made precise in Section V), thus establishing the large-
M,K analog of the result found previously for the finite-M
and K →∞ case in [1].

B. Notation

The superscripts T , H , and ∗ stand for transposition, conjugate
transpose, and element-wise conjugation, respectively. |X | is
the cardinality of the set X . log(x) stands for the logarithm
to the base 2, and ln(x) is the natural logarithm. I[x] = 1 if
x is true and I[x] = 0 if x is false. δ[k] = 1 for k = 0
and 0 otherwise. The unit step function u(x) = 0 for x < 0
and u(x) = 1 for x ≥ 0. E and Var denote the expec-
tation and variance operator, respectively. dxe stands for the
smallest integer greater than or equal to x. arg(x) stands for
the argument of x ∈ C. A circularly symmetric zero-mean
complex Gaussian RV is a RV Z = X + j Y ∼ CN (0, σ2),
where X and Y are independent identically distributed (i.i.d.)
N (0, σ2/2). An exponentially distributed RV with parame-
ter λ is a real-valued RV X with probability density func-
tion (pdf) given by fX(x) = λ exp(−λx)u(x). A Rayleigh-
distributed RV with parameter α2 is a real-valued RV X with
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pdf fX(x) = (x/α2) exp
(
−x2/(2α2)

)
u(x). U (a, b) denotes

the uniform distribution over the interval [a, b]. δ(x) is the Dirac
delta distribution. The moment-generating function (MGF) of
a RV X is defined as MX(s) ,

∫∞
−∞ esxfX(x)dx. (x)+ = x

for x > 0 and 0 otherwise. For two functions f(x) and g(x),
the notation f(x) = O(g(x)) means that |f(x)/g(x)| remains
bounded as x → ∞. We write g(x) = Θ(f(x)) to denote
that f(x) = O(g(x)) and g(x) = O(f(x)). For two func-
tions f(x) and g(x), the notation f(x) = o(g(x)) means that
|f(x)/g(x)| → 0 as x →∞. Matrices and vectors (both deter-
ministic and random) are denoted by uppercase and lowercase,
respectively, boldface letters. The element of a matrix X in the
nth row and mth column and the nth element of a vector x are
denoted as [X]n,m and [x]n, respectively. λi(X), λmin(X), and
λmax(X) stand for the ith, the minimum, and the maximum
eigenvalue of a matrix X, respectively. X ◦Y is the Hadamard
(or element-wise) product of the matrices X and Y. ‖x‖ denotes
the `2-norm of the vector x. <z and =z designate the real and
imaginary part of z ∈ C, respectively. C+ , {z ∈ C | =z > 0}.
For any n, m ∈ N, m ≥ n, [n :m] denotes the natural numbers
{n, n + 1, . . . ,m}.

C. Organization of the Paper

The rest of this paper is organized as follows. Section II
describes the general channel model and the parts of the signal
model2 that pertain to both the coherent and the noncoherent
case. Sections III and IV focus on the coherent case exclusively:
Section III contains the large-deviations analysis of the indi-
vidual link SINRs for P1 and P2. In Section IV, we present
our ergodic-capacity scaling results, discuss the “crystallization”
phenomenon, and study the impact of cooperation at the relay
level. In Section V, we present our results on the asymptotic
network capacity for the noncoherent (AF) case. We conclude in
Section VI. The new technique to establish the large-deviations
behavior of certain sums of dependent RVs is presented in
Appendix A. Appendix B summarizes a set of (union) bounds
used heavily throughout the paper. Appendices C and D contain
the proofs of Theorems 1 and 6, respectively. The result from [23]
needed for the proof of the ergodic capacity lower bounds for P1
and P2 is summarized in Appendix E. Appendix F contains some
essentials from large-random-matrix theory needed in Section V.
In Appendix G, we detail part of the solution of the fixed-point
equation underlying the main result in Section V.

II. CHANNEL AND SIGNAL MODEL

In this section, we present the channel and signal model and
additional basic assumptions. We restrict ourselves to the aspects
that apply to both coherent and noncoherent networks and to both
protocols considered in the coherent case. Relevant specifics for
the coherent case will be provided in Sections III-A and III-B
and for the noncoherent case in Section V.

2The motivation for the channel model considered in this paper can be found
in [1].
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Fig. 2. Two-hop wireless relay network setup.

A. General Assumptions

We consider an interference relay network (see Figs. 1 and 2)
consisting of K + 2M single-antenna terminals with M desig-
nated source-destination terminal pairs {Sm,Dm} (m ∈ [1 :M ])
and K relays Rk (k ∈ [1 :K]). We assume a “dead-zone” of
non-zero radius, free of relays, around each of the source and
destination terminals, no direct link between the individual
source-destination terminal pairs (e.g., due to large separation),
and a domain of fixed area (i.e., dense network assumption).
Transmission takes place in half-duplex fashion (the terminals
cannot transmit and receive simultaneously) in two hops (a.k.a.
two-hop relaying) over two disjoint time slots. In the first time
slot, the source terminals simultaneously broadcast their informa-
tion to all the relay terminals (i.e., each relay terminal receives a
superposition of all source signals). After processing the received
signals, the relay terminals simultaneously broadcast the pro-
cessed data to all the destination terminals during the second time
slot. Our setup can be considered as an interference channel [27]
with dedicated relays, hence the terminology interference relay
network.

B. Channel and Signal Model

Throughout the paper, frequency-flat fading over the band-
width of interest as well as perfectly synchronized transmission
and reception between the terminals is assumed. For the finite-M
and K → ∞ case it has been shown in [28] that the perfect-
synchronization assumption can be relaxed, under quite general
conditions on the synchronization errors, without impact on the
capacity scaling laws. The input-output (I-O) relation for the
link between the source terminals and the relay terminals during
the first time slot is given by

r = (E ◦H) s + z (1)

where r = [r1, r2, . . . , rK ]T with rk denoting the signal received
at the kth relay terminal, E ∈ RK×M with [E]k,m =

√
Ek,m

where Ek,m denotes the average energy received at Rk through
the Sm → Rk link3 (having accounted for path loss and shadow-
ing in the Sm → Rk link), H ∈ CK×M with [H]k,m = hk,m

(k ∈ [1 : K], m ∈ [1 : M ]) where hk,m ∼ CN (0, 1) denotes
the i.i.d. complex-valued channel gains corresponding to the

3A → B signifies communication from terminal A to terminal B.
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Sm → Rk links, s = [s1, s2, . . . , sM ]T where sm is the zero-
mean Gaussian signal transmitted by Sm and the vector s is
i.i.d. temporally and spatially (across source terminals). Finally,
z = [z1, z2, . . . , zK ]T where zk ∼ CN (0, σ2) is temporally
and spatially (across relay terminals) white noise. The kth relay
terminal processes its received signal rk to produce the output
signal tk. The collection of output signals tk, organized in the
vector t = [t1, t2, . . . , tK ]T , is then broadcast to the destination
terminals during the second time slot, while the source terminals
are silent. The mth destination terminal receives the signal ym

with y = [y1, y2, . . . , yM ]T given by

y = (P ◦ F) t + w (2)

where P ∈ RM×K with [P]m,k =
√

Pm,k and Pm,k denotes
the average energy received at Dm through the Rk → Dm link
(having accounted for path loss and shadowing in theRk → Dm

link). Furthermore, F ∈ CM×K with [F]m,k = fm,k (m ∈ [1 :
M ], k ∈ [1 : K]) where fm,k ∼ CN (0, 1) denotes the i.i.d.
complex-valued channel gains corresponding to the Rk → Dm

links, and w = [w1, w2, . . . , wM ]T with wm ∼ CN (0, σ2)
being temporally and spatially (across destination terminals)
white noise. Throughout the paper, we impose a per-source-
terminal power constraint E

[∣∣sm

∣∣2] ≤ 1/M (m ∈ [1 : M ]),
which results in the total transmit power trivially satisfying
E
[
‖s‖2

]
≤ 1. Furthermore, we impose a per-relay-terminal

power constraint E
[∣∣tk∣∣2] ≤ Prel/K (k ∈ [1 :K]), which results

in the total power transmitted by the relay terminals satisfying
E
[
‖t‖2

]
≤ Prel. As already mentioned above, path loss and

shadowing are accounted for through the Ek,m (k ∈ [1 : K],
m ∈ [1 : M ]) (for the first hop) and the Pm,k (m ∈ [1 : M ],
k ∈ [1 : K]) (for the second hop). We assume that these
parameters are deterministic, uniformly bounded from above
(follows from the dead-zone assumption) and below (follows
from considering a domain of fixed area) so that for all k,m

0 < E ≤ Ek,m ≤ E < ∞ 0 < P ≤ Pm,k ≤ P < ∞. (3)

Throughout the paper, we assume that the source terminals Sm

(m ∈ [1 : M ]) do not have CSI. The assumptions on CSI at
the relays and the destination terminals depend on the setup
(coherent or noncoherent case) and the protocol (in the coherent
case) and will be made specific when needed.

A discussion of the motivation for the two scenarios analyzed
in this paper can be found in [1].

III. THE COHERENT CASE

In this section, we describe the two protocols P1 and P2 and
derive the corresponding SINR concentration results along with
the resulting bounds on the individual source-destination link
outage probability induced by P1 and P2. Note that the results
in this section do not require ergodicity of H and F.

A. Protocol 1 (P1)

The basic setup was introduced in Section II. We shall next
describe the specifics of P1. The K relay terminals are partitioned
into M subsets Mm (m ∈ [1 :M ]) with4 |Mm| = K/M . The

4For simplicity, we assume that K is an integer multiple of M . Moreover, in
the remainder of the paper all results pertaining to P1 implicitly assume K ≥ M .

relays in Mm are assumed to assist the mth source-destination
terminal pair {Sm,Dm}. This assignment is succinctly described
through the relay partitioning function p : [1,K] → [1,M ]
defined as

p(k) , m ⇔ Rk ∈Mm.

We assume that the kth relay terminal has perfect knowledge
of the phases arg(hk,p(k)) and arg(fp(k),k) of the single-input
single-output (SISO) backward (from the perspective of the re-
lay) channelSp(k) → Rk and the corresponding forward channel
Rk → Dp(k), respectively. We furthermore define h̃k,p(k) ,
exp
(
j arg(hk,p(k))

)
and f̃p(k),k , exp

(
j arg(fp(k),k)

)
. The

signal rk received at the kth relay terminal is first cophased
w.r.t. the assigned backward channel followed by an energy
normalization so that

uk = dP1,k h̃∗k,p(k) rk (4)

where

dP1,k ,
√

Prel

[
K

M

M∑
m=1

Ek,m + Kσ2

]−1/2

(5)

ensures that the per-relay power constraint E
[∣∣uk

∣∣2] = Prel/K
is met. The relay terminal Rk then computes the transmit signal
tk by cophasing w.r.t. its assigned forward channel, i.e.,

tk = f̃∗p(k),k uk (6)

which, obviously, satisfies E
[∣∣tk∣∣2] ≤ Prel/K with equality and

hence meets the total power constraint (across relays) E
[
‖t‖2

]
=∑K

k=1 E
[∣∣tk∣∣2] = Prel. In summary, P1 ensures that the relays

Rk ∈ Mm forward the signal intended for Dm, namely, the
signal transmitted bySm, in a “doubly coherent” (w.r.t. backward
and forward channels) fashion, whereas the signals transmitted
by the source terminals Sm̂ with m̂ 6= m are forwarded to
Dm in a “noncoherent” fashion (i.e., phase incoherence occurs
either on the backward or the forward link or on both links). The
idea underlying P1 has originally been introduced in [1] (for the
finite-M case).

We shall next derive the I-O relation for the SISO channels
Sm → Dm (m ∈ [1 :M ]). The destination terminalDm receives
doubly (backward and forward link) coherently combined con-
tributions corresponding to the signal sm, with interfering terms
containing contributions from the signals sm̂ with m̂ 6= m as
well as noise, forwarded by the relays. Combining (1), (4), (6),
and (2), it follows (after some straightforward algebra) that the
signal received at Dm (m ∈ [1 :M ]) is given by5

ym = sm
1√
K

K∑
k=1

am,m
k︸ ︷︷ ︸

effective channel gain

+
∑

m̂6=m

sm̂
1√
K

K∑
k=1

am,m̂
k︸ ︷︷ ︸

interference

+
1√
K

K∑
k=1

bm
k zk + wm︸ ︷︷ ︸

noise

(7)

5The notation
∑

m̂6=m
stands for the summation over m̂ ∈ [1 : M ] s.t.

m̂ 6= m. If not specified, the upper limit of the summation is clear from the
context.
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SINRP1
m ,

∣∣∣ K∑
k=1

am,m
k

∣∣∣2/(∑
m̂6=m

∣∣∣ K∑
k=1

am,m̂
k

∣∣∣2 + σ2M
K∑

k=1

|bm
k | 2 + KMσ2

)
(15)

where

am,m̂
k , Cm,m̂

P1,k f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂ (8)

bm
k , Cm

P1,k f̃∗p(k),k fm,k h̃∗k,p(k) (9)

with

Cm,m̂
P1,k =

√
KdP1,k

√
Pm,kEk,m̂ (10)

Cm
P1,k =

√
KdP1,k

√
Pm,k. (11)

The normalization factor
√

K in (7), (10), and (11) is introduced
for convenience of exposition. Using (3), it now follows that

C ,

√
P EPrel

E + σ2
≤ Cm,m̂

P1,k ≤

√
P EPrel

E + σ2
, C (12)

c ,

√
PPrel

E + σ2
≤ Cm

P1,k ≤

√
PPrel

E + σ2
, c (13)

for all k ∈ [1 : K], m ∈ [1 : M ], and m̂ ∈ [1 : M ]. In the
following, it will be essential that the constants C, c, C, and c
do not depend on M,K.

Since we assumed that the destination terminals Dm

(m ∈ [1 :M ]) cannot cooperate, the Dm cannot perform joint
decoding so that the network can be viewed as a collection of M
SISO channels Sm → Dm, i.e., as an interference channel with
dedicated relays. We can see from (7) that each of these SISO
channels consists of a fading effective channel, fading interfer-
ence, caused by the source signals not intended for a given des-
tination terminal, and finally a noise term incorporating thermal
noise forwarded by the relays and thermal noise added at the des-
tination terminals. In the remainder of this section, we make the
conceptual assumption that each of the destination terminalsDm

has perfect knowledge of the fading and path loss and shadow-
ing coefficients in the entire network, i.e., Dm (m ∈ [1 :M ])
knows H,F,E and P perfectly. An immediate consequence of
this assumption is thatDm (m ∈ [1 :M ]) has perfect knowledge
of the effective channel gain (1/

√
K)
∑K

k=1 am,m
k , the interfer-

ence channel gains (1/
√

K)
∑K

k=1 am,m̂
k (m̂ 6= m), and the

quantity (1/
√

K)
∑K

k=1 bm
k . Conditioned on H and F, both the

interference and the noise term in (7) are Gaussian, so that the
mutual information for the Sm → Dm link is given by

I(ym; sm |H,F) =
1
2

log
(
1 + SINRP1

m

)
(14)

where SINRP1
m , defined in (15) at the top of the page, is the

effective SINR in the SISO channel Sm → Dm.
We conclude by noting that the large-deviations results in Sec-

tion III-C rely heavily on the assumption that Dm (m ∈ [1 :M ])
knows H,F,E, and P perfectly. The ergodic capacity-scaling re-
sults in Section IV will, however, be seen to require significantly
less channel knowledge at the destination terminals.

B. Protocol 2 (P2)

The only difference between P1 and P2 is in the processing at
the relays. Whereas in P1 the K relay terminals are partitioned
into M clusters (of equal size) with each of these clusters assist-
ing one particular source-destination terminal pair, in P2 each
relay assists all source-destination terminal pairs so that relay
partitioning is not needed. In turn, P2 requires that each relay
knows the phases of all its M backward and M forward channels,
i.e., Rk needs knowledge of h̃k,m and f̃m,k, respectively, for
m ∈ [1 :M ]. Consequently, P2 requires significantly more CSI
at the relays than P1. The relay processing stage in P2 computes

tk = dP2,k

(
M∑

m=1

h̃∗k,m f̃∗m,k

)
rk (16)

where

dP2,k ,
√

Prel

[
K

M∑
m=1

Ek,m + MKσ2

]−1/2

ensures that the power constraint E
[∣∣tk∣∣2] = Prel/K and

hence E
[
‖t‖2

]
=
∑K

k=1 E
[∣∣tk∣∣2] = Prel is met.

Again, we start by deriving the I-O relation for the SISO
channels Sm → Dm (m ∈ [1 :M ]). Like in P1, the destination
terminal Dm receives doubly (backward and forward link) co-
herently combined contributions corresponding to the signal
sm, interfering terms containing contributions from the signals
sm̂ with m̂ 6= m, as well as noise forwarded by the relays.
Combining (1), (16), and (2), it follows that the signal received
at Dm (m ∈ [1 :M ]) is given by

ym = sm
1√

KM

K∑
k=1

M∑
m̃=1

am,m,m̃
k︸ ︷︷ ︸

effective channel gain

+
∑

m̂6=m

sm̂
1√

KM

K∑
k=1

M∑
m̃=1

am,m̂,m̃
k︸ ︷︷ ︸

interference

+
1√

KM

K∑
k=1

M∑
m̃=1

bm,m̃
k zk + wm︸ ︷︷ ︸

noise

(17)

where

am,m̂,m̃
k , Cm,m̂

P2,k f̃∗m̃,k fm,k h̃∗k,m̃ hk,m̂

bm,m̃
k , Cm

P2,k f̃∗m̃,k fm,k h̃∗k,m̃

with

Cm,m̂
P2,k ,

√
KMdP2,k

√
Pm,kEk,m̂ (18)

Cm
P2,k ,

√
KMdP2,k

√
Pm,k. (19)
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SINRP2
m ,

∣∣∣ K∑
k=1

M∑
m̃=1

am,m,m̃
k

∣∣∣2/(∑
m̂6=m

∣∣∣ K∑
k=1

M∑
m̃=1

am,m̂,m̃
k

∣∣∣2 + σ2M
K∑

k=1

∣∣∣ M∑
m̃=1

bm,m̃
k

∣∣∣2 + KM2σ2

)
(21)

Again, the normalization
√

KM in (17), (18) and (19) is intro-
duced for convenience of exposition and

C ≤ Cm,m̂
P2,k ≤ C, c ≤ Cm

P2,k ≤ c

for all k ∈ [1 : K], m ∈ [1 : M ], and m̂ ∈ [1 : M ] with the
constants C, c, C, and c not depending on M,K.

Recalling that we assume perfect knowledge of H,F,E,
and P at each of the destination terminals, Dm, the mutual
information for the Sm → Dm link in P2 is given by

I(ym; sm |H,F) =
1
2

log
(
1 + SINRP2

m

)
(20)

where SINRP2
m , defined in (21) at the top of the page, is the

effective SINR in the SISO channel Sm → Dm.

C. Large-Deviations Analysis of SINR

Our goal in this section is to prove that SINRP1
m and SINRP2

m

for m ∈ [1 :M ] (and, thus, the corresponding mutual information
quantities (14) and (20)) lie within “narrow intervals” around
their mean values with6 “high probability” when M,K → ∞.
The technique we use to prove these concentration results is
based on a large-deviations analysis and can be summarized as
follows:

i) Consider each sum in the numerator and denominator
of (15) and (21) separately.

ii) Represent the considered sum as a sum of independent
RVs or as a sum of dependent complex-valued RVs with
independent phases.

iii) Find the mean value of the considered sum.
iv) Employ a large-deviations analysis to prove that the con-

sidered sum lies within a narrow interval around its mean
with high probability, i.e., establish a concentration result.

v) Combine the concentration results for the separate sums
using the union bounds summarized in Appendix B to
obtain concentration results for SINRP1

m and SINRP2
m .

1) Chernoff bounds: Before embarking on a detailed discus-
sion of the individual Steps i–v above, we note that a well-known
technique to establish large-deviations results for sums of RVs
(as required in Step iv above) is based on Chernoff bounds. This
method, which yields the precise exponential behavior for the
tails of the distributions under question, can, unfortunately, not be
applied to all the sums in (15) and (21). To solve this problem,
we develop a new technique, which allows to establish large-
deviations results for certain sums of dependent complex-valued
RVs with independent phases where the RVs occurring in the
sum are s.t. their MGF does not need to be known. The new
technique is based on the well-known idea of truncation of RVs
and will, therefore, be called truncation technique. Even though
truncation of RVs is a standard concept in probability theory, and
in particular in large-deviations analysis, we could not find the

6The precise meaning of “narrow intervals” and “high probability” is explained
in the formulation of Theorems 1 and 2 in Section III-D.

specific approach developed in this paper in the literature. We
therefore decided to present the truncation technique as a stand-
alone concept and summarized the main results in Appendix A.
Before proceeding, we note that even though the truncation
technique has wider applicability than Chernoff bounds, it yields
weaker exponents for the tails of the distributions under question.

Although the proofs of the main concentration results, Theo-
rems 1 and 2 in Section III-D, are entirely based on the truncation
technique, we still discuss the results of the application of
Chernoff bounds (without giving all the details) in the following,
restricting our attention to P1, to motivate the development of the
truncation technique and to provide a reference for the quality
(in terms of tightness of the bounds) of the results in Theorems 1
and 2. Moreover, the developments below introduce some of the
key elements of the proofs of Theorems 1 and 2.

Following the approach outlined in Steps i–v above, we start
by writing SINRP1

m as

SINRP1
m =

∣∣S(1) + S(2)
∣∣2

S(3) + σ2MS(4) + KMσ2
(22)

and establishing bounds on the probability of large deviations of

S(1) ,
∑

k:p(k)=m

Cm,m
P1,k |fm,k| |hk,m| (23)

S(2) ,
∑

k:p(k) 6=m

Cm,m
P1,k f̃∗p(k),k fm,k h̃∗k,p(k) hk,m (24)

S(3) ,
∑

m̂6=m

∣∣∣ K∑
k=1

Cm,m̂
P1,k f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂

∣∣∣2 (25)

S(4) ,
K∑

k=1

(
Cm

P1,k

)2 |fm,k|2. (26)

We shall see in the following that the pdfs of the terms
in S(1), S(2), and S(4) have a structure that is simple enough for
Chernoff bounds to be applicable. We start with the analysis of
the simplest term, namely S(4). To avoid unnecessary technical
details and to simplify the exposition, we assume (only in the
ensuing analysis of the large deviations behavior of S(4)) that

Cm,m̂
P1,k = Cm

P1,k = 1 (27)

for all m, m̂ ∈ [1 : M ], k ∈ [1 : K]. Defining7 Xk ,
∣∣fm,k

∣∣2,
we have

S(4) =
K∑

k=1

Xk

where the Xk are i.i.d. exponentially distributed with parame-
ter λ = 1, i.e., fXk

(x) = exp(−x) u(x) and hence E
[
Xk

]
= 1.

For convenience, we centralize Xk and define Zk , Xk − 1.
The MGF of Zk is given by

MZk
(s) =

∫ ∞

0

es(x−1)e−xdx =
e−s

1− s
, <s ≤ 1. (28)

7For notational convenience, we shall omit the index m in what follows.
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Since the RVs Zk are independent, we obtain, using the standard
Chernoff bound (see, for example, [29, Section 5.4]), for x > 0

P

{
K∑

k=1

Zk ≥ x

}
≤ min

0≤s≤1
(MZk

(s))K
e−sx

= min
0≤s≤1

e−Ks−K ln(1−s)−sx. (29)

Because (MZk
(s))K exp(−sx) is convex in s [29, Section 5.4],

the minimum in (29) can easily be seen to be taken on for s =
x/(x + K), which gives

P

{
K∑

k=1

Zk ≥ x

}
≤ eK ln(x+K)−K ln(K)−x. (30)

The corresponding relation for negative deviations (x < 0) is

P

{
K∑

k=1

Zk ≤ x

}
≤

{
eK ln(x+K)−K ln(K)−x, x > −K

0, x < −K.

(31)

Finally, setting x =
√

Kt, we get the desired concentration
result for the sum S(4) as

P
{

S(4) −K ≥
√

Kt
}
≤ eK ln(1+t/

√
K)−

√
Kt, t ≥ 0 (32)

P
{

S(4) −K ≤
√

Kt
}

≤

{
eK ln(1+t/

√
K)−

√
Kt, −

√
K < t ≤ 0

0, t ≤ −
√

K.
(33)

We now consider the case when K is large and t = o
(√

K
)

so
that

ln
(

1 +
t√
K

)
=

t√
K
− t2

2K
+ O

((
t√
K

)3
)

. (34)

If we omit higher (than second) order terms in (34), the bound
in (32) and (33) can be compactly written as

P
{∣∣∣S(4) −K

∣∣∣ ≥ √Kt
}
≤ 2e−t2/2. (35)

We can, therefore, conclude that the probability of large devia-
tions of S(4) decays exponentially.

Similar concentration results, using Chernoff bounds, can
be established for S(1) and S(2). The derivation is somewhat
involved (as it requires establishing upper bounds on the MGF),
does not provide insights into the problem and will, therefore,
be omitted. Unfortunately, the simple technique used above to
establish concentration results for S(4) (and applicable to S(1)

and S(2)) does not seem to be applicable to S(3). To see this, we
start by noting that S(3) contains two classes of terms (in the
sense of the properties of their pdf), i.e.,

S(3) = S(31) + S(32) (36)

with

S(31) ,
∑

m̂6=m

K∑
k=1

(
Cm,m̂

P1,k

)2

|fm,k| 2 |hk,m̂| 2 (37)

S(32) ,
∑

m̂6=m

K∑
k=1

∑
k̂ 6=k

Cm,m̂
P1,k f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂

× Cm,m̂

P1,k̂
f̃p(k̂),k̂ f∗

m,k̂
h̃k̂,p(k̂) h∗

k̂,m̂
. (38)

Now, there are two problems in applying the technique we have
used so far to S(3): First, it seems very difficult to compute the
MGFs for the individual terms in S(31) and S(32); second, the
individual terms in S(31) and S(32) are not jointly8 independent
across the summation indices. The first problem can probably
be resolved using bounds on the exact MGFs (as can be done
in the analysis of S(1) and S(2)). The second problem, however,
seems more fundamental. In particular, the individual terms
in S(31) are independent across k but not across m̂. In S(32), the
individual terms are independent across k but not across k̂ and m̂.
Assuming that the problem of computing (or properly bounding)
the MGFs is resolved, a natural way to overcome the second
problem mentioned above would be to establish concentration
results for the sums over k, i.e., for

Ŝ
(31)
m̂ ,

K∑
k=1

(
Cm,m̂

P1,k

)2

|fm,k| 2 |hk,m̂| 2 (39)

Ŝ
(32)

m̂,k̂
,

K∑
k=1

Cm,m̂
P1,k f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂

× Cm,m̂

P1,k̂
f̃p(k̂),k̂ f∗

m,k̂
h̃k̂,p(k̂) h∗

k̂,m̂
(40)

and to employ the union bound for sums (Lemmas 2 and 4
in Appendix B) to obtain concentration results for S(31) and
S(32). Unfortunately, this method, although applicable, yields
results that are very loose in the sense of not reflecting the
correct “order-of-magnitude behavior” of the typical deviations.
To understand why this is the case, we perform an order-of-
magnitude analysis as follows. For simplicity, we again assume
that the condition (27) is satisfied. Note that for any k̂, k ∈ [1 :K]
s.t. k̂ 6= k and any m̂ ∈ [1 :M ] s.t. m̂ 6= m, we have

E
[
f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂ f̃p(k̂),k̂ f∗

m,k̂
h̃k̂,p(k̂) h∗

k̂,m̂

]
= 0.

Chernoff bounding Ŝ
(32)

m̂,k̂
would, therefore, yield that

P
{∣∣∣Ŝ(32)

m̂,k̂

∣∣∣ ≥ √Kt
}

decays exponentially9 in t. Then, applying the union bound for
sums (Lemma 2) to S(32) =

∑
m̂6=m

∑
k̂ 6=k Ŝ

(32)

m̂,k̂
, we would

conclude that

P
{∣∣∣S(32)

∣∣∣ ≥ (M − 1)(K − 1)
√

Kt
}

(41)

decays exponentially in t. Even though the terms in S(32) are
not completely independent across k̂ and m̂, we will see in

8We write “jointly independent”, as opposed to “pairwise independent” here
and in what follows to stress the fact that the joint pdf of the RVs under
consideration can be factored into a product of the marginal pdfs. In several
places throughout the paper we will deal with sets of RVs that turn out to be
pairwise independent, but not jointly independent.

9We do not specify the exponent here.
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Section III-C2 that there is still enough independence between
them for the truncation technique to reveal that

P
{∣∣∣S(32)

∣∣∣ ≥√(M − 1)(K − 1)Kt
}

(42)

decays exponentially in t, which is a much stronger con-
centration result than (41). The importance of the difference
between (42) and (41) becomes clear if we consider S(31).
Since Ŝ

(31)
m̂ is a sum over K independent terms, each of which

satisfies E
[∣∣fm,k

∣∣2∣∣hk,m̂

∣∣2] = 1, Chernoff bounding would
yield that

P
{∣∣∣Ŝ(31)

m̂ −K
∣∣∣ ≥ √Kt

}
decays exponentially in t. Applying the union bound to S(31) =∑

m̂6=m Ŝ
(31)
m̂ , one can then show that

P
{∣∣∣S(31) −K(M − 1)

∣∣∣ ≥ (M − 1)
√

Kt
}

(43)

decays exponentially in t. When M and K are large, we would
now conclude from (41) and (43) that S(3) = S(31) + S(32)

deviates around KM with a typical deviation of order MK
√

K.
Since the typical deviations are larger (by a factor of

√
K) than

the mean, the corresponding deviation result is useless. On the
other hand, if we use the bound (42) combined with (43), again
assuming that M and K are large, we can conclude that S(3)

deviates around KM with a typical deviation of order
√

MK +
M
√

K, which is an order of magnitude smaller than the mean.
As already mentioned, the truncation technique allows us to
establish useful concentration results for sums with dependent
terms such as that in (40).

2) Application of the truncation technique: In this section,
we demonstrate how the desired concentration results for S(31)

and S(32), defined in (37) and (38), respectively, can be obtained
by application of the truncation technique. The following results
will be used in the proof of Theorem 1 and will, therefore, be
formulated for general Cm,m̂

P1,k and Cm
P1,k.

Analysis of S(31): Consider Ŝ
(31)
m̂ . The variables Xk ,∣∣fm,k

∣∣2 and Yk,m̂ ,
∣∣hk,m̂

∣∣2 are exponentially distributed with
parameter λ = 1. Therefore, we have

P
{

Xk ≥ x
}

= P
{

Yk,m̂ ≥ x
}
≤ e−x, x ≥ 0, for all k, m̂.

Define Zk,m̂ , XkYk,m̂. From the union bound for products it
follows that

P
{

Zk,m̂ ≥ x2
}

= P
{

XkYk,m̂ ≥ x2
}
≤ 2e−x

which yields

P
{

Zk,m̂ ≥ x
}
≤ 2e−

√
x.

Next, using E
[
Zk,m̂

]
= 1 and E

[
(Zk,m̂)2

]
= 4 for all k, m̂ 6=

m and the independence of the RVs Zk,m̂ across k ∈ [1 : K],
it follows from Corollary 2, taking into account (12), that for
K ≥ 2

P

{∣∣∣∣∣Ŝ(31)
m̂ −

K∑
k=1

(
Cm,m̂

P1,k

)2
∣∣∣∣∣ ≥ √Kx

}
≤ 6Ke−∆(31)x2/5

where ∆(31) , min
[
1, (1/8)C

−4]
. Applying the union bound

for sums (see Lemma 2) and using (12), we finally obtain the
desired10 concentration result for S(31) as

P
{

S(31) ≥ (M − 1)KC
2

+ (M − 1)
√

Kx
}

≤ 6(M − 1)Ke−∆(31)x2/5
(44)

and

P
{

S(31) ≤ (M − 1)KC2 − (M − 1)
√

Kx
}

≤ 6(M − 1)Ke−∆(31)x2/5
. (45)

Analysis of S(32): We start by rewriting (38) as

S(32) =
√

K − 1

×
∑

m̂6=m

K∑
k=1

Cm,m̂
P1,k f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂ T

(32)
m̂,k (46)

where T
(32)
m̂,k is defined as

T
(32)
m̂,k ,

1√
K − 1

∑
k̂ 6=k

Cm,m̂

P1,k̂
f̃p(k̂),k̂ f∗

m,k̂
h̃k̂,p(k̂) h∗

k̂,m̂
.

The concentration result for S(32) (and other similar sums
occurring in the proofs of Theorems 1 and 2) will be established
by applying (one or multiple times) the following general steps:
• Establish a concentration result for T

(32)
m̂,k .

• Represent the terms on the right-hand side (RHS) of (46)
in the form Cm,m̂

P1,k Zm̂,k exp(jφ̂k,m̂) where

Zm̂,k , T
(32)
m̂,k |fm,k| |hk,m̂|

and
φ̂k,m̂ , arg

(
f̃∗p(k),k fm,k h̃∗k,p(k) hk,m̂

)
so that the sum S(32) can be written as

S(32) ,
√

K − 1
∑

m̂6=m

K∑
k=1

Cm,m̂
P1,k Zm̂,k ejφ̂k,m̂ .

• Use the concentration result for T
(32)
m̂,k together with the

union bound for products (see Lemma 5) to establish bounds
on the tail behavior of Zm̂,k and verify condition (109) in
Theorem 10.

• If needed, split up the sum S(32) into several sums, so that
the phases exp(jφ̂k,m̂) are jointly independent in each of
these sums and Theorem 10 can be applied (to each of these
sums separately).

• Finally, apply Theorem 10 to each of the sums resulting in
the previous step separately and use the union bound for
sums to establish the desired concentration result for S(32).

Following this procedure, we start by deriving a concentration
result for T

(32)
m̂,k . Since T

(32)
m̂,k is of the same nature as S(2), we

could, in principle, use Chernoff bounds. This would, however,
lead to an exponent with a complicated dependence on t, which
can be simplified only under certain assumptions on t, such as

10We note that we do not avoid using the union bound on S(31). It is important,
however, that we do not use it when analyzing S(32).
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e.g. t = o
(√

K
)

in (34). What we need is a simple universal
bound for P

{∣∣T (32)
m̂,k

∣∣ ≥ x
}

, which is valid for all x and allows
to verify condition (109) in Theorem 10 for Zm̂,k. Such a bound
can be obtained by applying the truncation technique to T

(32)
m̂,k

as follows. Define Xk̂ ,
∣∣fm,k̂

∣∣, Yk̂,m̂ ,
∣∣hk̂,m̂

∣∣ and

φk̂,m̂ , arg
(
f̃p(k̂),k̂ f∗

m,k̂
h̃k̂,p(k̂) h∗

k̂,m̂

)
so that

T
(32)
m̂,k =

1√
K − 1

∑
k̂ 6=k

Cm,m̂

P1,k̂
Xk̂Yk̂,m̂ejφk̂,m̂ .

The RVs Xk̂ and Yk̂,m̂ (for all k̂, m̂) are Rayleigh distributed
with parameter α2 = 1/2. Therefore, we have

P
{

Xk̂ ≥ x
}

= P
{

Yk̂,m̂ ≥ x
}
≤ e−x2

, x ≥ 0

and the union bound for products yields

P
{

Xk̂Yk̂,m̂ ≥ x
}
≤ 2e−x, x ≥ 0 (47)

which shows that condition (116) in Corollary 1 is satisfied. Next,
rewrite φk̂,m̂ as

φk̂,m̂ = arg
(
f̃p(k̂),k̂

)
⊕ arg

(
f∗

m,k̂

)
⊕ arg

(
h̃k̂,p(k̂)

)
⊕ arg

(
h∗

k̂,m̂

)
(48)

where ⊕ stands for addition modulo 2π. Because the f ’s and
the h’s in (48) are independent across k̂ ∈ [1 :K], it follows that
the phases φk̂,m̂ are also independent across k̂ ∈ [1 :K], which
is precisely what we need for the truncation technique to be
applicable. Recalling that m 6= m̂, and, therefore, either p(k̂) 6=
m or p(k̂) 6= m̂, (48) implies that φk̂,m̂ ∼ U(−π, π) and hence
E
[
exp(jφk̂,m̂)

]
= 0 for all k̂, m̂. Since φk̂,m̂ is independent

of Xk̂ and Yk̂,m̂, we have E
[
exp(jφk̂,m̂)Xk̂Yk̂,m̂

]
= 0 for all

k̂, m̂ and hence E
[
T

(32)
m̂,k

]
= 0 for all m̂, k. Finally, applying

Corollary 1 to T
(32)
m̂,k , taking into account (12), we get for K ≥ 2

and x ≥ 0 that

P
{∣∣∣T (32)

m̂,k

∣∣∣ ≥ x
}
≤ 8(K − 1)e−∆(T )x2/3

(49)

with ∆(T ) , 2−1/3 min
[
1, (1/2)C

−2
]
.

We are now ready to establish the concentration result
for S(32). First, rewrite φ̂k,m̂ as

φ̂k,m̂ , arg
(
f̃∗p(k),k

)
⊕ arg(fm,k)

⊕ arg
(
h̃∗k,p(k)

)
⊕ arg(hk,m̂) . (50)

Similar to φk̂,m̂ in (48), because m̂ 6= m we conclude that
φ̂k,m̂ ∼ U(−π, π). Furthermore, because k̂ 6= k the φ̂k,m̂ are
independent of T

(32)
m̂,k , and therefore also of Zm̂,k (for all k, m̂).

To apply Corollary 1 to S(32), the φ̂k,m̂ are required to be jointly
independent across m̂ ∈ [1 : M ] for m̂ 6= m and k ∈ [1 : K].
It can be verified that this is not the case. There is, however,

a simple way to resolve this problem by considering the two
disjoint index sets

I1 ,
{

(m̂, k)
∣∣∣

m̂ ∈ [1 : M ], m̂ 6= m, k ∈ [1 : K], p(k) 6= m̂
}

I2 ,
{

(m̂, k)
∣∣∣

m̂ ∈ [1 : M ], m̂ 6= m, k ∈ [1 : K], p(k) = m̂
}

.

It follows by inspection that within each of the sets{
φ̂k,m̂

}
(k,m̂)∈I1

and
{
φ̂k,m̂

}
(k,m̂)∈I2

the phases are jointly in-
dependent. Separating S(32) into two sums corresponding to the
group of indices I1 and I2, we get

S(32) = S(321) + S(322) (51)

with

S(321) ,
√

K − 1
∑

m̂6=m

∑
k:p(k) 6=m̂

Cm,m̂
P1,k Zm̂,k ejφ̂k,m̂

S(322) ,
√

K − 1
∑

m̂6=m

∑
k:p(k)=m̂

Cm,m̂
P1,k Zm̂,k ejφ̂k,m̂ .

Applying the union bound for products first to
∣∣fm,k

∣∣∣∣hk,m̂

∣∣ as
in (47), then to Zm̂,k using (49), and using the simple bound

2e−x + 8(K − 1)e−∆(T )x1/3
≤ 16(K − 1)e−∆(T )x1/3

which is valid for x ≥ 1, we get

P{|Zm̂,k| ≥ x} ≤ 16(K − 1)e−∆(T )x1/3

for K ≥ 2 and x ≥ 1. Therefore, using E
[
Zm̂,k exp(jφ̂k,m̂)

]
=

0 for all k, m̂ 6= m, applying Corollary 1 to S(321) (which
consists of K(M −1)2/M terms) and to S(322) (which consists
of K(M−1)/M terms) separately, taking into account (12), we
obtain that for K ≥ 2, M > 2, and x ≥ 1

P

{∣∣∣S(321)
∣∣∣ ≥√ (K − 1)K(M − 1)2

M
x

}

≤ 64
(K − 1)K(M − 1)2

M
e−∆(32)x2/7

(52)

and

P

{∣∣∣S(322)
∣∣∣ ≥√ (K − 1)K(M − 1)

M
x

}

≤ 64
(K − 1)K(M − 1)

M
e−∆(32)x2/7

(53)

where ∆(32) = 2−10/21 min
[
1, (1/2)C

−2]
. Combining (35)

(and similar bounds for S(1) and S(2)), (52), (53), (51), (44),
(45), and (36), we can now state the final concentration result
for SINRP1

m by carrying out Step v in the summary presented
in the first paragraph of Section III-C. Recall, however, that we
used the classical Chernoff-bounding technique to establish the
large-deviations behavior of S(1), S(2), and S(4), whereas we em-
ployed the truncation technique to analyze the large-deviations
behavior of S(3). Even though the Chernoff bounds are tighter
than the bounds obtained through the truncation technique, the
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LP1(x) ,
π2

16
C2

C
2

SN

K

M3

max
[
0, 1− 8

Cπ
M√
K

x
]2

C
2

C
2
SN

+ 3

C
2
SN

x√
M

+ σ2

C
2
SN

(
c2 + x√

K

)
+ σ2

C
2
SN

(54)

UP1(x) ,
π2

16
C

2

C2
SN

K

M3

(
1 + 8

Cπ

M√
K

x
)2

max
[
0,

C2

C2
SN

M−1
M − 3

C2
SN

x√
M

]
+ max

[
0, σ2

C2
SN

(
c2 − x√

K

)]
+ σ2

C2
SN

(55)

LP2(x) ,
π2

16
C2

C
2

SN

K

M2

max
[
0, 1− 8

Cπ

√
M
K x
]2

C
2

C
2
SN

+ 4

C
2
SN

x

min[
√

M,
√

K] + σ2

C
2
SN

(
c2 + 2 x√

K

)
+ σ2

C
2
SN

(57)

UP2(x) ,
π2

16
C

2

C2
SN

K

M3

(
1 + 8

Cπ

√
M
K x
)2

max
[
0,

C2

C2
SN

M−1
M − 4

C2
SN

x

min[
√

M,
√

K]

]
+ max

[
0, σ2

C2
SN

(
c2 − 2 x√

K

)]
+ σ2

C2
SN

(58)

tightness of the final bounds for the tail behavior of SINRP1
m and

SINRP2
m is determined by the weakest exponent in the bounds

for the individual terms S(1), S(2), S(3) and S(4). Therefore,
employing Chernoff bounds for S(1), S(2), and S(4) and the
truncation technique for S(3) will not lead to a significantly
tighter final result, compared to the case where the truncation
technique is used throughout. Motivated by this observation and
for simplicity of exposition, we therefore decided to state the
concentration results in Section III-D for SINRP1

m and SINRP2
m

obtained by applying the truncation technique throughout.

D. Concentration Results for P1 and P2

In Section III-C, we outlined how the large-deviations behav-
ior of the SINR (for P1 and P2) can be established based on the
truncation technique and on union bounds. The resulting key
statement, made precise in Theorems 1 and 2 below, is that the
probability of the SINR falling outside a narrow interval around
its mean is “exponentially small”. We proceed with the formal
statement of the results.

Theorem 1: For any K ≥ 2, M ≥ 2, for any x ≥ 1, the
probability PP1(x) of the event

SINRP1
m /∈ [LP1(x), UP1(x)] , m ∈ [1 :M ]

where LP1(x) and UP1(x) are defined at the top of the page
in (54) and (55), respectively, with the constants CSN and CSN

given by

CSN ,
√

C
2

+ σ2
(
c2 + 1

)
CSN ,

√
C2 + σ2(c2 + 1)

satisfies the following inequality

PP1(x) ≤ 302 K2Me−∆P1 x2/7
(56)

with ∆P1 , min
[
2−

10
21 , 1/

(
2

31
21 C

2)
, 1/
(
8 C

4)
, 1/
(
4 c 4

)]
.

Proof: See Appendix C.
Theorem 2: For any K ≥ 2, M ≥ 2, for any x ≥ 1, the

probability PP2(x) of the event

SINRP2
m /∈ [LP2(x), UP2(x)] , m ∈ [1 :M ]

where LP2(x) and UP2(x) are defined at the top of the page in
(57) and (58), respectively, satisfies the following inequality

PP2(x) ≤ 814 K2M3e−∆P2 x2/9
(59)

with ∆P2 , min
[
2−

11
5 , 1/

(
2

61
36 C

2)
, 1/
(
8 C

4)
, 1/
(
4 c 4

)]
.

Proof: The proof idea is the same as that underlying the
proof of Theorem 1 with large parts of the proof itself being very
similar to the proof of Theorem 1. For the sake of brevity the
details of the proof are therefore omitted.

The concentration results in Theorems 1 and 2 form the basis
for showing that, provided the rate of growth of K as a function
of M is fast enough, the network “decouples” (see Theorems 3
and 4) and “crystallizes” (see Theorem 5). Moreover, as outlined
in Theorem 5, the outage capacity behavior of the Sm → Dm

links can be inferred from (56) and (59).

IV. ERGODIC CAPACITY AND COOPERATION AT THE RELAY
LEVEL

The focus in the previous section was on establishing concen-
tration results for the individual link SINRs for P1 and P2. Based
on these results, in this section, we study the ergodic capacity
realized by the two protocols and we establish the corresponding
capacity scaling and outage capacity behavior.

A. Ergodic Capacity of P1 and P2
Throughout this section, we assume that all channels in the

network are ergodic. The two main results are summarized as
follows.

Theorem 3 (Ergodic capacity of P1): Suppose that destina-
tion terminal Dm (m ∈ [1 :M ]) has perfect knowledge of the
mean of the effective channel gain of the Sm → Dm link, given
by (π/(4

√
K))

∑
k:p(k)=m Cm,m

P1,k . Then, for any ε, δ > 0 there
exist M0,K0 > 0 s.t. for all M ≥ M0, K ≥ K0, the per source-
destination terminal pair capacity achieved by P1 satisfies

1
2

log

(
1 +

π2

16
C2

C
2

SN

K

M3
(1− ε)

)
≤ CP1

≤ 1
2

log

(
1 +

π2

16
C

2

C2
SN

max
[
K, M2+δ

]
M3

(1 + ε)

)
. (60)
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Theorem 4 (Ergodic capacity of P2): Suppose that destina-
tion terminal Dm (m ∈ [1 :M ]) has perfect knowledge of the
mean of the effective channel gain of the Sm → Dm link, given
by (π/(4

√
KM))

∑K
k=1 Cm,m

P2,k . Then, for any ε, δ > 0 there
exist M0,K0 > 0, s.t. for all M ≥ M0, K ≥ K0, the per
source-destination terminal pair capacity achieved by P2 satisfies

1
2

log

(
1 +

π2

16
C2

C
2

SN

K

M2
(1− ε)

)
≤ CP2

≤ 1
2

log

(
1 +

π2

16
C

2

C2
SN

max
[
K, M1+δ

]
M2

(1 + ε)

)
. (61)

The proofs of Theorems 3 and 4 are very similar. Below we
present the proof of Theorem 3 only. The proof of Theorem 4 is
omitted.

Proof of Theorem 3: We start by establishing the lower
bound in (60), the proof of which uses the result summarized in
Appendix E. To apply Lemma 7 in Appendix E, we start from (7)
and define

F̄m ,
1√
K

K∑
k=1

E[am,m
k ]

F̃m ,
1√
K

K∑
k=1

(am,m
k − E[am,m

k ])

Wm ,
∑

m̂6=m

sm̂
1√
K

K∑
k=1

am,m̂
k +

1√
K

K∑
k=1

bm
k zk + wm.

With these definitions, we can now rewrite (7) as

ym =
(
F̄m + F̃m

)
sm + Wm.

Straightforward, but tedious, manipulations yield

F̄m =
π

4
1√
K

∑
k:p(k)=m

Cm,m
P1,k

Var
[
F̃m

]
=

1
K

 K∑
k=1

(
Cm,m

P1,k

)2

− π2

16

∑
k:p(k)=m

(
Cm,m

P1,k

)2


Var[Wm] =

1
KM

∑
m̂6=m

K∑
k=1

(
Cm,m̂

P1,k

)2

+
σ2

K

K∑
k=1

(
Cm

P1,k

)2 + σ2.

Next, we use (12) and (13) to lower-bound F̄m and upper-
bound Var

[
F̃m

]
and Var

[
Wm

]
, substitute the resulting bounds

into (150), and obtain11

I(ym; sm) ≥ 1
2

log

(
1 +

π2

16
C2

(1/M)C
2

+ C
2

SN

K

M3

)
. (62)

Finally, fix ε > 0 and set

M0 =
1− ε

ε

C
2

C
2

SN

.

11We note that this bound is valid for arbitrary M and K and is, therefore,
somewhat stronger than the asymptotic bound we are actually seeking.

It then follows that for any M ≥ M0, the inequality

C2

(1/M)C
2

+ C
2

SN

≥ C2

C
2

SN

(1− ε)

is satisfied, which together with (62) completes the proof of the
lower bound.

Proving the upper bound on CP1 in (60) turns out to be
significantly more challenging. The method we use to this end
is based on the concentration result for SINRP1

m in Theorem 1.
We start by noting that the per-stream ergodic capacity can be
upper-bounded by assuming that Dm has perfect knowledge
of H and F, i.e.,

CP1
m ≤ 1

2
EH,F[I(ym; sm |H,F)]

=
1
2

EH,F

[
log
(
1 + SINRP1

m

)]
≤ 1

2
log
(
1 + EH,F

[
SINRP1

m

])
where the last step follows from Jensen’s inequality.

Now fix ε > 0. To prove the upper bound in (60), it suffices
to show that there exist M0,K0 > 0 s.t. for all M ≥ M0 and
K ≥ K0

EH,F

[
SINRP1

m

]
≤ A

max[K, M2+δ]
M3

(1 + ε)

where we define

A ,
π2

16
C

2

C2
SN

.

To simplify the exposition, we define

g(M,K) ,
1
A

SINRP1
m (M,K)

M3

max[K, M2+δ]
.

Note that we make the dependence of SINRP1
m on M and K

explicit by using the notation SINRP1
m (M,K). In the remainder

of the proof, we show that

EH,F[g(M,K)] ≤ 1 + ε (63)

for M and K large enough. Let fg(x) denote the pdf of g(M,K).
Then, the expectation EH,F[g(M,K)] can be written as

EH,F[g(M,K)] =
∫ ∞

0

t fg(t)dt

=
∫ 1+ε1

0

t fg(t)dt +
∫ ∞

1+ε1

t fg(t)dt (64)

where ε1 > 0 is chosen s.t.

1 + ε1 < 1 + ε/3.

Consequently, we have∫ 1+ε1

0

t fg(t)dt ≤ (1 + ε1)
∫ 1+ε1

0

fg(t)dt

≤ 1 + ε1 < 1 + ε/3. (65)

For bounding the second integral on the RHS of (64), it
is convenient to write the upper bound in Theorem 1 in the
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BN (M,K, x) ,
K

max[K, M2+δ]

(
1 + A1

M√
K

x

)2

(67)

BD(M,K, x) ,

(
C2 max

[
0,

M − 1
M

− A2x

C2
√

M

]
+ c2σ2 max

[
0, 1− x

c2
√

K

]
+ σ2

)/
C2

SN (68)

following form: there exist ∆ > 0, δ1 > 0, δ2 > 0, and
A1, A2, A3 > 0 such that for any x ≥ 1 and M,K ≥ 2

P
{

g(M,K) ≥ B(M,K, x)
}
≤ A3M

δ1Kδ2e−∆x2/7
(66)

with

B(M,K, x) ,
BN (M,K, x)
BD(M,K, x)

where BN (M,K, x) and BD(M,K, x) are defined at the top
of the page in (67) and (68), respectively. The second integral
on the RHS of (64) will be shown, for M and K large enough,
to be upper bounded by 2ε/3 by splitting it up and proving that∫ dt0e

1+ε1

t fg(t)dt ≤ ε/3 (69)

and ∫ ∞

dt0e
t fg(t)dt ≤ ε/3 (70)

where the parameter t0 > 1 + ε1, independent of M,K, will
be chosen later. It will become clear later why we need to split
up the second integral on the RHS of (64) according to (69)
and (70). The integral in (69) can be bounded as follows∫ dt0e

1+ε1

t fg(t)dt ≤ dt0e
∫ dt0e

1+ε1

fg(t)dt

≤ dt0eP
{

g(M,K) ≥ 1 + ε1

}
.

Set x(M) =
(
min

[√
M, Mδ

])1/3
. With this choice of x(M),

it is not difficult to show that

lim
M,K→∞

A1
M x(M)√

max[K, M2+δ]
= 0

lim
M,K→∞

A2
x(M)

C2
√

M
= 0

lim
M,K→∞

x

c2
√

K
= 0

which yields

lim
M,K→∞

BN (M,K, x(M)) = lim
M,K→∞

K

max[K, M2+δ]
≤ 1.

(71)
Using C2

SN = C2 + σ2
(
c2 + 1

)
, we can furthermore conclude

that
lim

M,K→∞
BD(M,K, x(M)) = 1

which, together with (71), implies that

lim
M,K→∞

B(M,K, x(M)) ≤ 1.

We can, therefore, conclude that there exist M
(11)
0 ,K

(11)
0 > 0

s.t. for any M ≥ M
(11)
0 and K ≥ K

(11)
0

B(M,K, x(M)) ≤ 1 + ε1. (72)

Trivially, we have

lim
M,K→∞

M δ1Kδ2e−∆(x(M))2/7
= 0

and, therefore, there exist M
(12)
0 , K

(12)
0 > 0 s.t. for any M ≥

M
(12)
0 and K ≥ K

(12)
0

A3M
δ1Kδ2e−∆(x(M))2/7

≤ ε

3dt0e
. (73)

Combining (72) and (73) and setting

M
(1)
0 = max[M (11)

0 ,M
(12)
0 ], K

(1)
0 = max[K(11)

0 ,K
(12)
0 ]

we get that for any M ≥ M
(1)
0 and K ≥ K

(1)
0

dt0eP
{

g(M,K) ≥ 1 + ε1

}
≤ ε/3 (74)

which concludes the proof of (69).
To show (70), we note that∫ ∞

dt0e
t fg(t)dt ≤

∞∑
n=dt0e

(n + 1) P
{

g(M,K) ≥ n
}

, S. (75)

Expanding the square, upper-bounding x by x2 in BN (M,K, x)
and substituting the max terms in BD(M,K, x) by 0, we obtain
the bound

B(M,K, x)

≤ K

max[K, M2+δ]
C2

SN

σ2

(
1 +

(
2A1

M√
K

+ A2
1

M2

K

)
x2

)
, B1(M,K, x2). (76)

Applying the change of variables y = x2 in (76) and (66), we
finally get

P
{

g(M,K) ≥ B1(M,K,
√

y)
}

≤ P
{

g(M,K) ≥ B(M,K,
√

y)
}

≤ A3M
δ1Kδ2e−∆y1/7

. (77)

Equating B1(M,K, y) with n and solving for y, we find that

P
{

g(M,K) ≥ n
}
≤ A3M

δ1Kδ2e−∆(y2(n,M,K))1/7

with

y2(n, M, K) =

max[K,M2+δ]
K

(
σ2

C2
SN

n− K
max[K,M2+δ]

)
2A1

M√
K

+ A2
1

M2

K

. (78)

Now, S defined in (75) can be upper-bounded as

S ≤ 2
∞∑

n=dt0e

n P{g(M,K) ≥ n}

≤ 2A3M
δ1Kδ2

∞∑
n=dt0e

ne−∆(y2(n,M,K))1/7
. (79)
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If n is s.t. σ2n/C2
SN > 1, then the expression in the parentheses

in the numerator of (78) is strictly positive and it follows that
limM,K→∞ y2(n, M, K) = ∞. Therefore, if t0 is chosen s.t.
dt0e > C2

SN/σ2, each term in the sum in (79) goes to zero
exponentially fast in M,K. Note that the split-up in (69) and (70)
was needed to be able to choose t0 large enough here. To simplify
the exposition in the following, we set t0 =

(
27 + 1

)
C2

SN/σ2,
so that (

σ2

C2
SN

n− K

max[K, M2+δ]

)1/7

≥ 2

for n ≥ dt0e. Next, we note that

lim
M,K→∞

max[K, M2+δ]
K

1
2A1

M√
K

+ A2
1

M2

K

= ∞

so that there exist M
(2)
0 ,K

(2)
0 > 0 s.t. for any M ≥ M

(2)
0

and K ≥ K
(2)
0(

max[K, M2+δ]
K

1
2A1

M√
K

+ A2
1

M2

K

)1/7

≥ 2.

Now using that, trivially,

xy ≥ x + y

for x, y ≥ 2, we have for any M ≥ M
(2)
0 , K ≥ K

(2)
0 and

n ≥ dt0e

(y2(n, M, K))1/7 ≥
(

σ2

C2
SN

n− K

max[K, M2+δ]

)1/7

+

(
max[K, M2+δ]

K

1
2A1

M√
K

+ A2
1

M2

K

)1/7

which yields

S ≤ 2A3M
δ1Kδ2e

−∆

(
2A1M

√
K+A2

1M2

max[K,M2+δ ]

)−1/7 ∞∑
n=dt0e

h(n)

with

h(n) , n exp

(
−∆

(
σ2

C2
SN

n− 1
)1/7

)
.

Clearly, h(n) decays fast enough for
∑∞

n=dt0e h(n) to converge
to a finite limit, in other words, there exists a constant C < ∞
(independent of M,K) s.t.

∞∑
n=dt0e

h(n) ≤ C. (80)

Moreover, it is easily seen that

lim
M,K→∞

M δ1Kδ2e
−∆

(
2A1M

√
K+A2

1M2

max[K,M2+δ ]

)−1/7

= 0

which, together with (80), shows that S can be made arbitrarily
small by choosing M and K large enough. More specifically,
there exist M

(3)
0 ,K

(3)
0 > 0 s.t. for any M ≥ M

(3)
0 and K ≥

K
(3)
0

S ≤ ε/3. (81)

Taking

M0 , max
[
M

(1)
0 ,M

(2)
0 ,M

(3)
0

]
K0 , max

[
K

(1)
0 ,K

(2)
0 ,K

(3)
0

]
and combining (65), (74), and (81), we have shown (63), which
completes the proof.

B. The “Crystallization” Phenomenon

As pointed out in the introduction, the “crystallization” phe-
nomenon occurs for M,K → ∞, provided that K scales fast
enough as a function of M , and manifests itself in two effects,
namely, the decoupling of the individual Sm → Dm links and
the convergence of each of the resulting SISO links to a nonfading
link.

1) Decoupling of the network: Theorems 3 and 4 show that
in the M,K → ∞ limit, the per-source destination terminal
pair capacity scales as CP1 = (1/2) log

(
1 + Θ

(
K/M3

))
in P1

and CP2 = (1/2) log
(
1 + Θ

(
K/M2

))
in P2. We can, therefore,

conclude that if K ∝ M3+α in P1 and K ∝ M2+α in P2 with
α ≥ 0, apart from the factor 1/2, which is due to the use of two
time slots, P1 and P2 achieve full spatial multiplexing gain [30]
(i.e., full sum-capacity pre-log) without any cooperation of the
terminals in the network, not even the destination terminals. The
corresponding distributed array gain (i.e., the factor inside the
log) is given by Mα in both cases.

The fact that the per source-destination terminal pair capacity
is strictly positive when K scales at least as fast as M3 in P1 and
at least as fast as M2 in P2 shows that the individual Sm → Dm

links in the network “decouple” in the sense that the SINR is
strictly positive for each of the links. Note that this does not imply
that the interference at the Dm (created by sm̂ with m̂ 6= m)
vanishes. Rather, if K scales fast enough, the signal power starts
dominating the interference (plus noise) power. Since both upper
and lower bounds in Theorems 3 and 4 exhibit the same scaling
behavior, the K ∝ M3 and K ∝ M2, respectively, thresholds
are fundamental in the sense of defining the critical scaling rate
by delineating the regime where interference dominates over the
signal and hence drives the per source-destination terminal pair
capacity to zero from the regime where the signal dominates
the interference and the per source-destination terminal pair
capacity is strictly positive. Further inspection of the upper and
lower bounds in (60) and (61) reveals that, for fixed ε > 0,
unless all path-loss and shadowing coefficients Ek,m and Pm,k

(k ∈ [1 :K],m ∈ [1 :M ]) are equal and hence C
2

= C2 and
C

2

SN = C2
SN, there is a gap (apart from that due to ε > 0)

between the bounds.
The order-of-magnitude reduction in the threshold for critical

scaling in P2, when compared with P1, comes at the cost of each
relay having to know all M backward and M forward channels.
We can, therefore, conclude that P1 and P2 trade off the number
of relay terminals for channel knowledge at the relays.

Finally, it is worthwhile to point out that in contrast to
the finite-M results for P1 in [1], the destination terminals
Dm do not need knowledge of the fading coefficients hk,m

and fm,k. This can be seen by noting that the quantity(
π/(4

√
K)
)∑

k:p(k)=m Cm,m
P1,k , which has to be known at Dm,
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depends on Ek,m, Pm,k, K, and M only. Moreover, the co-
efficient

(
π/(4

√
K)
)∑

k:p(k)=m Cm,m
P1,k can easily be acquired

through training.
2) Convergence to nonfading links and “crystallization”:

When the network decouples, it is interesting to ask how the
decoupled SISO links behave (in terms of their fading statistics)
when M and K grow large. The answer to this question follows
from the concentration results in Theorems 1 and 2, which can be
reformulated to establish upper bounds on the outage probability
for the individual Sm → Dm links. For the sake of brevity, we
focus on P1 in what follows. The goal is to arrive at a statement
regarding

Pout,P1(R) = P
{

1
2

log
(
1 + SINRP1

m

)
≤ R

}
= P

{
SINRP1

m ≤ 22R − 1
}

.

The corresponding result is summarized in
Theorem 5 (Outage probability for P1):
1) Assume that K ≥ 2, M ≥ 2, and R ≥ 0 are s.t.

x(R) =
1− eP1(M,K, R)

16
Cπ

M√
K

+ eP1(M,K, R)
(

3

C
2
SN

1√
M

+ σ2

C
2
SN

1√
K

)
≥ 1 (82)

where

eP1(M,K, R) =
16
π2

C
2

SN

C2

M3

K

(
22R − 1

)
.

Then, the individual link outage probability is upper-
bounded as

Pout,P1(R) ≤ 151 K2Me−∆P1 x(R)2/7
. (83)

2) Under the same conditions on K, M and R as in 1), for
any ε, δ > 0, K ≥ M3+δ , and

R ≤ 1
2

log

(
1 +

π2

16
C2

C
2

SN

K

M3
(1− ε)

)
, (84)

we have

Pout,P1(R) ≤ lim
M,K→∞

151 K2Me−∆P1 x(R)2/7
= 0.

Proof: We start with the proof of statement 1). Recall
that Theorem 1 provides us with a parametric upper bound on
P
{
SINRP1

m ≤ LP1(x)
}

with LP1(x) defined in (54). Assuming
that

x ≤ Cπ
√

K

16M
(85)

and using C
2

SN = C
2
+σ2

(
c2 + 1

)
, we can lower-bound LP1(x)

as

LP1(x) ≥ π2

16
C2

C
2

SN

K

M3

1− 16
Cπ

M√
K

x

1 + 3

C
2
SN

x√
M

+ σ2

C
2
SN

x√
K

, L′P1(x).

Solving
22R − 1 = L′P1(x) (86)

for x(R) yields (82), which, by assumption, satisfies x(R) ≥ 1.
With

P
{

SINRP1
m ≤ L′P1(x)

}
≤ P

{
SINRP1

m ≤ LP1(x)
}

we can now apply12 Theorem 1 to obtain

Pout,P1(R) ≤ 151 K2Me−∆P1 x(R)2/7
. (87)

Finally, we note that x(R) in (82) is trivially seen to sat-
isfy (85). This concludes the proof of statement 1).

The proof of statement 2) is obtained by establishing a suffi-
cient condition on x(R), for any R ≥ 0, to grow with increas-
ing M (and by K ≥ M3+δ with increasing K). Using (82), it
is easily verified that guaranteeing

0 ≤ eP1(M,K, R) ≤ 1− ε

for some 0 < ε < 1 (independent of M,K) provides such a
condition. The final result is now obtained by solving

eP1(M,K, R) =
16
π2

C
2

SN

C2

M3

K

(
22R − 1

)
≤ 1− ε

for R.
The implications of Theorem 5 are significant: For any trans-

mission rate R less than the ergodic capacity (in the case
Ek,m = Pm,k for all k,m) or the ergodic capacity lower
bound in Theorem 3 (in the case of general Ek,m and Pm,k),
the outage probability of each of the decoupled links goes to
zero exponentially fast in the number of nodes in the network,
provided K scales supercritically in M . We have thus shown that
choosing the rate of growth of K fast enough for the network
to decouple automatically guarantees that the decoupled SISO
links converge to nonfading links. Equivalently, we can say that
each of the decoupled links experiences a distributed spatial
diversity (or, more precisely, relay diversity) order that goes
to infinity as M → ∞. Consequently, in the large-M limit
time diversity (achieved by coding over a sufficiently long time
horizon) is not needed to achieve ergodic capacity. We say that
the network “crystallizes” as it breaks up into a set of effectively
isolated “wires in the air”. From (83), we can furthermore infer
the “crystallization” rate, i.e., the rate (as a function of M and K)
at which the individual Sm → Dm links converge to nonfading
links. We note, however, that the exponent 2/7 (and 2/9 for P2) is
unlikely to be fundamental as it is probably a consequence of the
application of the truncation technique. In this sense, we can only
specify a guaranteed crystallization rate. We conclude by noting
that the upper bound (87) (as well as the corresponding result for
P2) tend to be rather loose. This is probably a consequence of the
truncation technique and the use of union bounds to characterize
the large-deviations behavior of the individual link SINR RVs.

Numerical results: We shall finally provide numerical re-
sults quantifying the outage behavior of P1 and P2. For simplicity,
we set Ek,m = Pm,k = 1 for all m, k and σ2 = 0.01 in
both simulation examples. This choice for the path loss and
shadowing parameters, although not representative of a real-
world propagation scenario, isolates the dependence of our

12Strictly speaking, one needs to use the upper bounds on
P
{

SINRP1
m ≤ LP1(x)

}
derived in the last paragraph of Appendix C.
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Fig. 3. Simulated (Monte-Carlo) SINR CDFs for different values of M for (a)
K = M3 in P1 and (b) K = M2 in P2.

results on the network geometry. Moreover, it ensures that the
distribution of the different SINR RVs for a given protocol is
identical for all links so that it suffices to analyze the behavior of
only one SINR RV for each of the two protocols. For K = M3 in
P1 and K = M2 in P2, Fig. 3 shows the cumulative distribution
functions (CDFs) (obtained through Monte-Carlo simulation) of
SINRP1 and SINRP2, respectively, for different values of M .
We observe that, for increasing M , the CDFs approach a step
function at the corresponding mean values, i.e., the SINR RVs,
indeed, converge to a deterministic quantity, and, consequently,
the underlying fading channel converges to a nonfading channel.
The limiting mean values are given by the lower and upper
bounds (which coincide in the case Ek,m = Pm,k = 1 for
all m, k) in (60) and (61) for P1 and P2, respectively. We can
furthermore see that for fixed M the CDFs are very similar for
P1 and P2 (recall, however, that K = M3 in P1 and K = M2

in P2), suggesting that the convergence behavior is similar for
the two protocols. The difference in the theoretically predicted
convergence exponents (2/7 for P1 and 2/9 for P2) therefore does
not seem to be fundamental to the two protocols and may, indeed,
be a consequence of our proof technique as already pointed out
above.

C. Cooperation at the Relay Level

The analysis carried out so far was based on the assumption
that the relays cannot cooperate. The purpose of this section
is to investigate the impact of cooperation (in fact, a specific
form of cooperation) at the relay level on the ergodic-capacity
scaling behavior in the coherent case. Note that we continue to
assume that the destination terminals cannot cooperate. Before
proceeding, we would like to mention that concentration results
and an outage analysis along the lines of the discussion in
Sections III and IV-B are possible, but will be omitted for brevity
of exposition.

Cooperation at the relay level will be accounted for by group-
ing the K single-antenna relay terminals into Q groups

Gq ,
{
R(q−1)L+1,R(q−1)L+2, . . . ,RqL

}
, q ∈ [1 :Q]

with L relays in each group13 and by assuming that the relays in
each group can fully cooperate, but cooperation across groups
is not possible. In order to simplify the exposition, in the re-
mainder of this section, we think of a group Gq (q ∈ [1 :Q]) as a
single relay element with L antenna elements and use the term
“vector-relay (v-relay)” terminal to address the L-antenna relays
G1,G2, . . . ,GQ. For q ∈ [1 :Q] and m ∈ [1 :M ], the following
notation will be used:

rq , [r(q−1)L+1, r(q−1)L+2, . . . , rqL]T

tq , [t(q−1)L+1, t(q−1)L+2, . . . , tqL]T

zq , [z(q−1)L+1, z(q−1)L+2, . . . , zqL]T

hq,m , [h(q−1)L+1,m, h(q−1)L+2,m, . . . , hqL,m]T

fm,q , [fm,(q−1)L+1, fm,(q−1)L+2, . . . , fm,qL]T

where rq and tq are the (L-dimensional) vector-valued signals
received and transmitted by the qth v-relay, respectively, zq is
additive noise at the qth v-relay, hq,m contains the channel gains
for the Sm → Gq link, and fm,q contains the channel gains for
the Gq → Dm link. Additionally, for simplicity, we assume that
relays belonging to a given group q are located close to each
other so that

Êq,m , E(q−1)L+1,m = E(q−1)L+2,m = · · · = EqL,m

P̂m,q , Pm,(q−1)L+1 = Pm,(q−1)L+2 = · · · = Pm,qL

for q ∈ [1 : Q] and m ∈ [1 : M ]. With this notation, the I-O
relations (1) and (2) for the Sm → Gq links and the Gq → Dm

links can be written as

rq =
M∑

m=1

Êq,mhq,msm + zq, q ∈ [1 :Q]

and

ym =
Q∑

q=1

P̂m,qfT
m,qtq + wm, m ∈ [1 :M ]

respectively. Next, we describe the generalization of the pro-
tocols P1 and P2 to the case of v-relays making the aspect of
cooperation at the relay level explicit.

13For simplicity, we assume that Q divides K so that K = QL.
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1) P1 for the Cooperative Case: Like in the case of single-
antenna relays (described in Section III-A), we partition the
Q v-relay terminals into M subsets Mm (m ∈ [1 :M ]) with14

|Mm| = Q/M . The v-relays (each of which has L antenna ele-
ments) in Mm are assumed to assist the mth source-destination
terminal pair {Sm,Dm}, and the relay partitioning function
p : [1, Q] → [1,M ] is defined as

p(q) , m ⇔ Gq ∈Mm.

We assume that the qth v-relay terminal has perfect knowledge
of the phases of the single-input multiple-output backward chan-
nel Sp(q) → Gq and the phases of the corresponding multiple-
input single-output forward channel Gq → Dp(q). This implies
that perfect knowledge of the vectors

h̃q,p(q) ,
[
ejarg([hq,p(q)]1), ejarg([hq,p(q)]2), · · ·

· · · , ejarg([hq,p(q)]L)
]T

and

f̃p(q),q ,
[
ejarg([fp(q),q]1), ejarg([fp(q),q]2), · · ·

· · · , ejarg([fp(q),q]L)
]T

is available at Gq . The signal rq received at the qth v-relay termi-
nal is phase-matched-filtered first w.r.t. the assigned backward
channel Sp(q) → Gq and then w.r.t. the assigned forward channel
Gq → Dp(q) followed by a normalization so that

tq = dP1,q f̃∗p(q),q

(
h̃H

q,p(q) rq

)
(88)

where15 the choice

dP1,q ,
1
L

√
Prel

×

[
Q

M

M∑
m=1

Êq,m +
π(L− 1)Q

4M
Êq,p(q) + Qσ2

]−1/2

ensures that the per-v-relay power constraint E
[
‖tq‖2

]
=

Prel/Q (q ∈ [1 :Q]) and consequently the total (across v-relays)
power constraint

∑Q
q=1 E

[
‖tq‖2

]
= Prel is met. As in the single-

antenna relay (i.e., noncooperative) case, P1 ensures that the
relays Gq ∈ Mm forward the signal intended for Dm in a
“doubly coherent” (w.r.t. the assigned backward and forward
channel) fashion whereas the signals transmitted by the source
terminals Sm̂ with m̂ 6= m are forwarded to Dm in a “non-
coherent” fashion (i.e., phase incoherence occurs either on the
backward or the forward link or on both links). From (88), we
can see that cooperation in groups of L single-antenna relays
is realized by phase combining on the backward and forward
links of each v-relay. More sophisticated forms of cooperation
such as equalization on the backward link and precoding on the
forward link are certainly possible, but are beyond the scope of
this paper.

14For simplicity, we assume that M divides Q.
15The quantity dP1,q , used in this section is (for L > 1) different from dP1,k

defined in (5). We use the same symbol for notational simplicity and employ
the index q (instead of k) consistently, in order to resolve potential ambiguities.
The same comment applies to other variables redefined in this section.

2) P2 for the Cooperative Case: Like in the case of single-
antenna relays (i.e., the noncooperative case), P2 requires that
each relay, in fact here v-relay, knows the phases of all its M
vector-valued backward and forward channels, i.e., Gq needs
knowledge of h̃q,m and f̃m,q , respectively, for m ∈ [1 :M ]. The
relay processing stage in P2 computes

tq = dP2,q

(
M∑

m=1

f̃∗m,qh̃
H
q,m

)
rq

where

dP2,q ,
1
L

√
Prel

×

[
Q

M∑
m=1

Êq,m +
π(L− 1)Q

4M

M∑
m=1

Êq,m + MQσ2

]−1/2

ensures that the per-v-relay power constraint E
[
‖tq‖2

]
=

Prel/Q (q ∈ [1 :Q]) and, consequently, the total (across relays)
power constraint

∑Q
q=1 E

[
‖tq‖2

]
= Prel is met.

3) Ergodic-Capacity Results: We are now ready to establish
the impact of cooperation at the relay level on the ergodic
capacity scaling laws for P1 and P2. Our results are summarized
in Theorems 6 and 7 below.

Theorem 6 (Ergodic capacity of P1 with cooperation):
Suppose that destination terminal Dm (m ∈ [1 :M ]) has perfect
knowledge of the mean of the effective channel gain of the
Sm → Dm link, given by (π/4)L2

∑
q:p(q)=m dP1,qP̂m,qÊq,m.

Then, for any ε, δ > 0, there exist M0, Q0 > 0 s.t. for all
M ≥ M0 and Q ≥ Q0 the per source-destination terminal pair
capacity achieved by P1 satisfies16

1
2

log

(
1 +

π2

16
QL2

M3

C2

C
2

SN

(1− ε)

)
≤ CP1

≤ 1
2

log

(
1 +

π2

16
max

[
Q,M2+δ

]
L2

M3

C
2

C2
SN

(1− ε)

)
. (89)

Theorem 7 (Ergodic capacity of P2 with cooperation):
Suppose that destination terminal Dm (m ∈ [1 :M ]) has perfect
knowledge of the mean of the effective channel gain of the
Sm → Dm link, given by (π/4)L2

∑Q
q=1 dP2,qP̂m,qÊq,m.

Then, for any ε, δ > 0, there exist M0, Q0 s.t. for all M ≥ M0,
Q ≥ Q0 the per source-destination terminal pair capacity
achieved by P2 satisfies

1
2

log

(
1 +

π2

16
QL2

M2

C2

C
2

SN

(1− ε)

)
≤ CP2

≤ 1
2

log

(
1 +

π2

16
max

[
Q,M1+δ

]
L2

M2

C
2

C2
SN

(1− ε)

)
. (90)

Proof of Theorems 6 and 7: The upper bounds in (89)
and (90) are again established based on a concentration result
for the individual link SINRs and the lower bounds build on
the technique summarized in Appendix E. The proofs of Theo-
rems 6 and 7 are almost identical to the proofs of Theorems 3

16Note that the quantities CSN, C, C, and CSN used in this section have
been defined in Section III.
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and 4, respectively, and do not require new techniques. There is,
however, one important aspect in which Theorems 6 and 7 differ
from Theorems 3 and 4, namely, the appearance of the factor L2

in (89) and (90). To demonstrate where this factor comes from,
we provide the proof of the ergodic capacity lower bound for P1
in Appendix D. The proofs of the remaining statements will be
omitted for brevity of exposition.

Discussion of results: Just like in the noncooperative (i.e.,
single-antenna relay) case, we can conclude that asymptotically
in M if K ∝ M3+α in P1 and K ∝ M2+α in P2 with α > 0,
the network decouples.

The effect of cooperation (through phase matched-filtering) at
the relay level manifests itself in the presence of the factor L2 in-
side the log in the bounds for CP1 and CP2 stated in Theorems 6
and 7, respectively. We can summarize the results of Theorems 6
and 7 as17

CP1 =
1
2

log
(

1 + Θ
(

QL2

M3

))
CP2 =

1
2

log
(

1 + Θ
(

QL2

M2

))
.

We can, therefore, conclude that the per-stream array gain A is
given by AP1 = QL2/M3 for P1 and AP2 = QL2/M2 for P2.
On a conceptual level, the array gain can be decomposed into a
contribution due to distributed array gain, Ad, and a contribution
due to cooperation at the relay level (realized by phase matching
on backward and forward links), Ac, i.e., A = AdAc with
Ad,P1 = QL/M3, Ad,P2 = QL/M2, and Ac,P1 = Ac,P2 = L.
To illustrate the impact of cooperation at the relay level, we
compare a network with K noncooperating single-antenna relays
to a network with a total of K = QL single-antenna relays
cooperating in groups of L single-antenna relays. In the case
where there is no cooperation at the relay level, we have

C
(nc)
P1 =

1
2

log
(

1 + Θ
(

K

M3

))
whereas if the relays cooperate in groups of L single-antenna
relays, we get

C
(c)
P1 =

1
2

log
(

1 + Θ
(

KL

M3

))
.

Cooperation at the relay level (realized by phase matched-
filtering) in groups of L single-antenna relays therefore yields
an L-fold increase in the effective per-stream SINR due to
additional array gain given by Ac = L. Equivalently, the total
number of single-antenna relays needed to achieve a given per
source-destination terminal pair capacity is reduced by a factor
of L through cooperation in groups of L single-antenna relay
elements. The conclusions for P2 are identical.

As already pointed out above, the network decouples into
effectively isolated source-destination pair links for any finite
L > 1. Even though a concentration analysis along the lines of
Theorems 1 and 2 was not performed (for the sake of brevity), it

17Note that we use the Θ(·) notation only to hide the dependence on E, E,
P , and P . Strictly speaking, as L is finite it should also be hidden under the
Θ(·) notation. However, our goal is to exhibit the impact of cooperation at the
relay level on CP1 and CP2, which is the reason for making the dependence
on L explicit.
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Fig. 4. Simulated (Monte-Carlo) SINR CDFs for different values of M for
QL = M3 in P1 with L = 1 and L = 4.

can be shown that for finite L > 1 the individual links converge
to nonfading links as M,Q → ∞, provided that Q scales
supercritically as a function of M .

Numerical example: We conclude this section with a nu-
merical example that demonstrates the impact of cooperation
at the relay level, where we use the same parameters as in the
simulation examples at the end of Section IV-B. Figure 4 shows
the SINR CDF for P1 with L = 4 and QL = M3 (the case
L = 1 shown in Fig. 3 is included for reference). We observe
that, as pointed out above, for increasing M , we, indeed, get
convergence of the fading link to a nonfading link. Moreover,
we can also see that increasing L for fixed M results in higher
per source-destination terminal pair capacity, but at the same
time slows down convergence (w.r.t. M and hence also Q) of
the link SINRs to their deterministic limits.

V. NONCOHERENT (AF) RELAY NETWORKS

So far, we have considered coherent relay networks, where
each relay terminal knows its assigned backward and forward
channels (P1) or all backward and forward channels (P2) per-
fectly. In the following, we relax this assumption and study
networks with no CSI at the relay terminals, i.e., noncoherent
relay networks. In particular, we investigate a simple AF architec-
ture where the relay terminals, in the second time slot, forward
(without additional processing) a scaled version of the signal
received in the first time slot. As already mentioned in Section II,
the source terminals do not have CSI. The destination terminals
cooperate and perform joint decoding. The assumptions on CSI
at the destination terminals will be made specific in Section V-B.

A. The AF Protocol

Throughout this section, we assume that Ek,m = Pm,k = 1
for all m ∈ [1 :M ], k ∈ [1 :K]. This assumption is conceptual
as the technique used to derive the main result in this section
does not seem to be applicable for general Ek,m and Pm,k. On
the other hand, the results in this section do not require H
and F to have Gaussian entries. Upon reception of rk, the
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kth relay terminal simply scales the received signal to obtain
tk =

(
d/
√

K
)
rk. Choosing d =

√
Prel/(1 + σ2) ensures that

the per-relay power constraint E
[∣∣tk∣∣2] ≤ Prel/K and hence

the total power constraint E
[
‖t‖2

]
≤ Prel is met.

With these assumptions, inserting (1) into (2), we get the
following I-O relation

y =
d√
K

FHs +
d√
K

Fz + w. (91)

In the remainder of this section, we assume that the jointly
decoding destination terminals have access to the realizations
of H and F. In fact, as the analysis below shows, knowledge
of FH and F is sufficient.

B. Capacity of the AF Protocol

Based on the I-O relation (91), we shall next study the behavior
of I(y; s |FH,F) when M,K →∞ with K/M → β. We start
by noting that

I(y; s |FH,F)

= log det

(
I +

d2

σ2MK
HHFH

(
d2

K
FFH + I

)−1

FH

)
.

Since the destination terminals perform joint decoding, the
ergodic capacity per source-destination terminal pair is given by

CAF =
1
2

E

[
1
M

K∑
k=1

log
(

1 +
1
σ2

λk

(
1
M

HHHT
))]

(92)

where

T ,
d2

K
FH

(
I +

d2

K
FFH

)−1

F

and the factor 1/2 in (92) results from the fact that data is
transmitted over two time slots.

C. Asymptotic Capacity Behavior

To compute CAF in the M,K → ∞ limit with K/M → β,
we start by analyzing the corresponding asymptotic behavior
of λk

(
(1/M)HHHT

)
. To this end, we define the empirical

spectral distribution (ESD) of a matrix (random or deterministic).
Definition 1: Let X ∈ CN×N be a Hermitian matrix. The

ESD of X is defined as

FN
X (x) ,

1
N

N∑
n=1

I[λn(X) ≤ x] .

For random X, the quantity FN
X (x) is random as well, i.e., it

is a RV for each x. In the following, our goal is to prove the
convergence (in the sense defined below), when M,K → ∞
with K/M → β and β ∈ (0,∞), of FK

(1/M)HHHT(x) to
a deterministic limit and to find the corresponding limiting
eigenvalue distribution.

Definition 2: We say that the ESD FN
X (x) of a random Her-

mitian matrix X ∈ CN×N converges almost surely (a.s.) to a
deterministic limiting function FX(x), when N → ∞, if for
any ε > 0 there exists an N0 > 0 s.t. for all N ≥ N0 a.s.

sup
x∈R

∣∣FN
X (x)− FX(x)

∣∣ ≤ ε.

To prove the convergence of FK
(1/M)HHHT(x) to a deterministic

limiting function, we start by analyzing FK
T (x).

Lemma 1: For M,K → ∞ with K/M → β, the ESD
FK

T (x) converges a.s. to a nonrandom limiting distribution
FT(x) with corresponding density given by18

fT(x) =

√
(1 + γ1)(1 + γ2)
2πd2x(1− x)2

×

√(
γ2

1 + γ2
− x

)+(
x− γ1

1 + γ1

)+
+
[
1− 1

β

]+
δ(x) (93)

where γ1 , d2(1− 1/
√

β)2 and γ2 , d2(1 + 1/
√

β)2.
Proof: We start with the singular value decomposition

d√
K

F = UΣV

where the columns of U ∈ CM,M are the eigenvectors of
the matrix (d2/K)FFH , the columns of VH ∈ CK,K are
the eigenvectors of (d2/K)FHF, and the matrix Σ ∈ RM,K

contains R = min(M,K) nonzero entries Σ11,Σ22, . . . ,ΣRR,
which are the positive square roots of the nonzero eigenvalues
of the matrix (d2/K)FFH . Defining Λ , ΣΣH ∈ RM,M , we
have

T = VHΣH (I + Λ)−1 ΣV.

By inspection, it follows that

FK
ΣH(I+Λ)−1Σ

(x) =
M

K
FM

Λ

(
x

1− x

)
+
(

1− M

K

)
u(x).

(94)

As FM
Λ (x) = FM

(d2/K)FFH (x), by the Marčenko-Pastur law
(see Theorem 12 in Appendix F), we conclude that FM

Λ (x)
converges a.s. to a limiting nonrandom distribution FΛ(x) with
corresponding density

fΛ(x) =
β

2πxd2

√
(γ2 − x)+ (x− γ1)

++[1−β]+δ(x). (95)

From (94) we can, therefore, conclude that FK
ΣH(I+Λ)−1Σ

(x)
converges a.s. to a nonrandom limit given by

FΣH(I+Λ)−1Σ(x) =
1
β

FΛ

(
x

1− x

)
+
(

1− 1
β

)
u(x). (96)

Taking the derivative w.r.t. x on both sides of (96), the density
corresponding to FΣH(I+Λ)−1Σ(x) is obtained as

fΣH(I+Λ)−1Σ(x)

=
1
β

fΛ

(
x

1− x

)
1

(1− x)2
+
(

1− 1
β

)
δ(x). (97)

We obtain the final result in (93) now by noting that fT(x) =
fΣH(I+Λ)−1Σ(x) because of the unitarity of V and by insert-
ing (95) into (97) and carrying out straightforward algebraic
manipulations.

Based on Lemma 1, we can now apply Theorem 11 (Ap-
pendix F) to conclude that FK

(1/M)HHHT(x) converges a.s.
to a deterministic function F(1/M)HHHT(x) as M,K →

18Note that (93) implies that fT(x) is compactly supported in the inter-
val [γ1/(1 + γ1), γ2/(1 + γ2)] .
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∞ with K/M → β. The corresponding limiting density
f(1/M)HHHT(x) is obtained through the application of the
Stieltjes inversion formula (151) to the solution of the fixed-
point equation

G(z) =
∫ ∞

−∞

fT(x)dx

x(1− β − βzG(z))− z︸ ︷︷ ︸
I

, z ∈ C+ (98)

in the set{
G(z) ∈ C

∣∣−(1− β)/z + βG(z) ∈ C+
}

, z ∈ C+ (99)

where we used the symbol G(z) to denote the Stieltjes transform
G(1/M)HHHT(z). In the following, for brevity, we write G
instead of G(z). To solve (98), we first compute the integral
I on the RHS of (98). We substitute fT(x) from (93) into (98)
and define

η1 ,
γ1

1 + γ1
, η2 ,

γ2

1 + γ2
, ρ ,

√
(1 + γ1)(1 + γ2)

2πd2

to obtain

I = −1
z

[
1− 1

β

]+
+

1
z

∫ η2

η1

ρ
√

(η2 − x) (x− η1) dx

x(1− x)2
(
x
(

1−β
z − βG

)
− 1
)

︸ ︷︷ ︸
Î

.

(100)
The integral Î is computed in Appendix G. Employing the
notation introduced in Appendix G, we can finally write the
fixed point equation (98) as

Gz = −
[
1− 1

β

]+
+ χ

(
A1Î1 + A2Î2 + A3Î3 + A4Î4

)
.

(101)
It is tedious, but straightforward, to show that for any β > 0

−
[
1− 1

β

]+
+ χA1Î1 = −β − 1

2β

so that (101) can be written as

Gz +
β − 1
2β

− χA2Î2 − χA3Î3 = χA4Î4. (102)

Next, multiplying (102) by 2d2β(Gβz + z + β − 1)2, squaring
both sides, introducing the auxiliary variable

Ĝ , −1− β

z
+ βG

we obtain after straightforward, but tedious, manipulations that Ĝ
must satisfy the following quartic equation

Ĝ4 + a3Ĝ
3 + a2Ĝ

2 + a1Ĝ + a0 = 0 (103)

with the coefficients

a3 =
1
z
(2z − β + 1) a2 =

1
z

(
z − β + 3− β

d2

)
a1 =

1
z2

(
2z − β + 1− β

d2

)
a0 =

1
z2

.

The quartic equation (103) can be solved analytically. The
resulting expressions are, however, very lengthy, do not lead
to interesting insights, and will therefore be omitted. It is im-
portant to note, however, that (103) has two pairs of complex

conjugate roots. The solutions of (103) will henceforth be de-
noted as Ĝ1, Ĝ

∗
1, Ĝ2, and Ĝ∗

2. We recall that our goal is to
find the unique solution G of the fixed point equation (98) s.t.
Ĝ = −(1−β)/z+βG ∈ C+ for all z ∈ C+. Therefore, in each
point z ∈ C+ we can immediately eliminate the two solutions
(out of the four) that have a negative imaginary part. In practice,
this can be done conveniently by constructing the functions Ĝ′

1 ,
<Ĝ1+j

∣∣=Ĝ1

∣∣ and Ĝ′
2 , <Ĝ2+j

∣∣=Ĝ2

∣∣, which can be computed
analytically, satisfy (103), and are in C+ for any z ∈ C+. Next,
note that (102) has a unique solution in the set (99), which is also
the unique solution of (98). We can obtain this solution G(z),
z ∈ C+, by substituting G1 = (1/β)(Ĝ′

1 − (β − 1)/z) and
G2 = (1/β)(Ĝ′

2− (β−1)/z) into (102) and checking which of
the two satisfies the equation. Unfortunately, it seems that this
verification cannot be formalized in the sense of identifying
the unique solution of (102) in analytic form. The primary
reason for this is that to check algebraically if G1 and G2

satisfy (102), we have to perform a noninvertible transformation
(squaring) of (102), which doubles the number of solutions of this
equation, and results in G1 and G2 both satisfying the resulting
formula. The second reason is that depending on the values of the
parameters β > 0, d > 0, the correct solution is either G1 or G2,
and the dependence between G1, G2, β, and d has a complicated
structure. Starting from the analytical expressions for G1 and G2,
we can identify, however, for any fixed β > 0, d > 0, the density
function f(1/M)HHHT(x) = (1/π) limy→0+ =[G(x + jy)] cor-
responding to the unique solution of (102) [and hence of (98)]
numerically. This is accomplished as follows. We know that, for
given x, limy→0+ = [G(x + jy)] is either equal to

L1(x) , lim
y→0+

= [G1(x + jy)]

or

L2(x) , lim
y→0+

= [G2(x + jy)] .

Even though the functions L1(x) and L2(x) can be computed
analytically (with the resulting expressions being very lengthy
and involved), it seems that for any fixed x > 0 the correct
choice between the values L1(x) and L2(x) can only be made
numerically. The following algorithm constitutes one possibility
to solve this problem.

Algorithm—Choice of the Limit
Input: x > 0

1) Choose a small enough y > 0
2) Substitute G1(x + jy) and G2(x + jy)

into (102)
3) If G1(x + jy) satisfies (102), then

return L1(x)
otherwise

return L2(x)

As any other numerical procedure, this algorithm includes
a heuristic element. The following comments are therefore in
order.
• In Step 1 of the algorithm, the choice of y cannot be

formalized in the sense of giving an indication of how small
it has to be as a function of β and d. On the one hand, y has to
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be strictly greater than zero, because (102) in general holds
in C+ only and does not need to hold neither for G1(x+j0)
nor for G2(x + j0). On the other hand, y should be small
enough for G1(x+jy) to be close to L1(x) and G2(x+jy)
to be close to L2(x). The correctness of the output of the
algorithm is justified by the fact that G(z) is analytic in C+

(see Definition 3 in Appendix F).
• In Step 3 the check whether G1(x + jy) satisfies (102)

is performed numerically. Therefore, rounding errors will
arise. It turns out, however, that in practice, unless

∣∣L1(x)−
L2(x)

∣∣ is very small (in this case it does not matter which
of the two values we choose), the solution of (102) yields
a clear indication of whether G1(x + jy) or G2(x + jy) is
the correct choice.

• To compute the density f(1/M)HHHT(x) using the pro-
posed algorithm, we need to run Steps 1–3 for every x.
It will be proved below that f(1/M)HHHT(x) is always
compactly supported and bounds for its support will be
given in analytic form (as a function of β and d). Since the
algorithm consists of very basic arithmetic operations only,
it is very fast and can easily be run on a dense grid inside
the support region of f(1/M)HHHT(x).

As an example, for d = 1 and β = 1/2, Fig. 5(a) shows the
density f(1/M)HHHT(x) obtained by the algorithm formulated
above along with the histogram of the same density obtained
through Monte-Carlo simulation. We can see that the two curves
match very closely and that our method allows to obtain a much
more refined picture of the limiting density. Fig. 5(b) shows the
density f(1/M)HHHT(x) for β = 2, 1, 1/2 obtained through
our algorithm. We can see that the density function is always
compactly supported.

The final step in computing the asymptotic capacity of the AF
relay network is to take the limit K, M →∞ with K/M → β
in (92) and to evaluate the resulting integral

Cβ
AF ,

β

2

∫ ∞

0

log
(
1 +

x

σ2

)
f(1/M)HHHT(x) dx (104)

numerically. The evaluation of (104) is drastically simplified
if we consider that f(1/M)HHHT(x) is compactly supported.
The corresponding interval boundaries (or, more specifically,
bounds thereon) can be computed analytically as a function of β
and d. We start by noting that the second part of Theorem 12 in
Appendix F implies that a.s. limM→∞ λmax

(
(1/M)HHH

)
=

(1 +
√

β)2. From (97) and Theorem 12, it follows that a.s.
λmax(T) = d2(1+

√
β)2/(β+d2(1+

√
β)2). For any realization

of H and T and any M,K, by the submultiplicativity of the
spectral norm, we have

λmax

(
(1/M)HHHT

)
≤ λmax

(
(1/M)HHH

)
λmax(T)

which implies that for M,K →∞ with K/M → β a.s.

λmax

(
(1/M)HHHT

)
≤ d2(1 +

√
β)4

β + d2(1 +
√

β)2
, xmax.

We can thus conclude that f(1/M)HHHT(x) is compactly sup-
ported on the interval19 [0, xmax]. Consequently, the integral

19The actual supporting interval of f(1/M)HHHT(x) may, in fact, be smaller.

0.25 0.5 0.75 1 1.25 1.5 1.75

0.25

0.5

0.75

1

1.25

1.5

1.75

f (
1
/M

)H
H

H
T

(x
)

x

(a)

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.5

1

1.5

2

2.5

3

3.5

4

f (
1
/M

)H
H

H
T

(x
)

x

β = 1

β = 1/2

β = 2

(b)

Fig. 5. Limiting density f(1/M)HHHT(x) (a) for β = 1/2 and d = 1 along
with its histogram (Monte-Carlo) and (b) for different values of β = 2, 1, 1/2
and d = 1.

in (104) becomes

Cβ
AF =

β

2

∫ xmax

0

log
(
1 +

x

σ2

)
f(1/M)HHHT(x) dx

which we can compute numerically, using any standard method
for numerical integration and employing the algorithm described
above to evaluate f(1/M)HHHT(x) at the required grid points.
Using this procedure, we computed Cβ

AF as a function of β
for d = 1 with the result depicted in Fig. 6. We can see that for
β < 1 (i.e., K < M ), Cβ

AF increases very quickly with β, which
is because the corresponding effective MIMO channel matrix
builds up rank and hence spatial multiplexing gain. For β > 1
(i.e., K > M ), when the effective MIMO channel matrix is
already full rank with high probability, the curve flattens out and
for β →∞, the capacity Cβ

AF seems to converge to a finite value.
In the next subsection, we prove that Cβ

AF indeed converges
to a finite limit as β → ∞. This result has an interesting
interpretation as it allows to relate the AF relay network to a
point-to-point MIMO channel.

D. Convergence to Point-to-Point MIMO Channel

In [1], it was shown that for finite M , as K → ∞, the two-
hop AF relay network capacity converges to half the capacity
of a point-to-point MIMO link; the factor 1/2 penalty comes
from the fact that communication takes place over two time
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Fig. 6. Capacity Cβ
AF as a function of β for d = 1 and σ2 = 0.01.

slots. In the following, we demonstrate that the result in [1] can
be generalized to the M,K → ∞ case. More specifically, we
show that for β →∞ the asymptotic (M,K →∞) capacity of
the two-hop AF relay network is equal to half the asymptotic
(M →∞) capacity of a point-to-point MIMO channel with M
transmit and M receive antennas. We start by dividing (103) by
β and taking the limit20 β → ∞, which yields the quadratic
equation

zĜ2 + z

(
1 +

1
d2

)
Ĝ +

(
1 +

1
d2

)
= 0. (105)

The two solutions of (105) are given by

Ĝ1,2(z) =
−z
(
1 + 1

d2

)
±
√

z2
(
1 + 1

d2

)2 − 4z
(
1 + 1

d2

)
2z

.

(106)

Applying the Stieltjes inversion formula (151) to (106) and
choosing the solution that yields a positive density function,
we obtain

βf(1/M)HHHT(x) =
1
π

lim
y→0+

= [βG(x + jy)]

=
1
π

lim
y→0+

=
[
Ĝ(x + jy)

]
=

1
2πx

√√√√[4x

(
1 +

1
d2

)
− x2

(
1 +

1
d2

)2
]+

. (107)

Inserting (107) into (104) and changing the integration variable
according to u , x

(
1 + 1/d2

)
, we find that Cβ

AF

β→∞−−−−→ C∞
AF,

where

C∞
AF ,

1
4π

∫ 4

0

√
4
u
− 1 log

(
1 +

d2

(d2 + 1)σ2
u

)
du. (108)

Comparing (108) with [31, Eq. (13)], it follows that for β →∞
the asymptotic M,K → ∞ with K/M → β per source-
destination terminal pair capacity in the two-hop AF relay
network is equal to half the asymptotic (M →∞) per-antenna
capacity in a point-to-point MIMO link with M transmit and M

20It is important that first we take the limit M, K → ∞ with K/M → β
and afterwards let β →∞.

receive antennas, provided the SNR in the relay case is defined
as SNR , d2/

(
(d2 + 1)σ2

)
. For M and K large, it is easy to

verify that this choice corresponds to the SNR at each destination
terminal in the AF relay network. In this sense, we can conclude
that for β →∞ the AF relay network “converges” to a point-to-
point MIMO link with the same received SNR.

VI. CONCLUSION

The minimum rate of growth of the number of relays K, as a
function of the number of source-destination terminal pairs M ,
for coherent fading interference relay networks to decouple was
shown to be K ∝ M3 under protocol P1 and K ∝ M2 under
protocol P2. P1 requires relay partitioning and the knowledge of
one backward and one forward fading coefficient at each relay,
whereas P2 does not need relay partitioning, but requires that
each relay knows all its M backward and M forward fading
coefficients. The protocols P1 and P2 are thus found to trade off
CSI at the relays for the required (for the network to decouple)
rate of growth of K as a function of M .

We found that cooperation at the relay level in groups of L
relays, both for P1 and P2, results in an L-fold reduction of the
total number of relays needed to achieve a given per source-
destination terminal pair capacity. An interesting open question
in this context is whether more sophisticated signal processing
at the relays (such as equalization for the backward link and
precoding for the forward link) could lead to improved capacity
scaling behavior.

It was furthermore shown that the critical growth rates K ∝
M3 in P1 and K ∝ M2 in P2 are sufficient to not only make
the network decouple, but to also make the individual source-
destination fading links converge to nonfading links. We say that
the network “crystallizes” as it breaks up into a set of effectively
isolated “wires in the air”. More pictorially, the decoupled links
experience increasing distributed spatial (or more specifically
relay) diversity. Consequently, in the large-M limit time diversity
(achieved by coding over a sufficiently long time horizon) is
not needed to achieve ergodic capacity. We furthermore charac-
terized the “crystallization” rate (more precisely a guaranteed
“crystallization” rate as we do not know whether our bounds
are tight), i.e., the rate (as a function of M,K) at which the
decoupled links converge to nonfading links. In the course of
our analysis, we developed a new technique for characterizing the
large-deviations behavior of certain sums of dependent random
variables.

For noncoherent fading interference relay networks with
amplify-and-forward relaying and joint decoding at the cooper-
ating destination terminals, we computed the asymptotic (in M
and K with K/M → β fixed) network capacity using tools
from large random-matrix theory. To the best of our knowledge,
this is the first application of large random-matrix theory to
characterize the capacity behavior of large fading networks.
An elegant extension of this approach to the case of multiple
layers of relays was recently reported in [32]. We furthermore
demonstrated that for β →∞ the relay network converges to a
point-to-point MIMO link. This generalizes the finite-M result
in [1] and shows that the use of relays as active scatterers can
recover spatial multiplexing gain in poor scattering environments,
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even if the number of transmit and receive antennas grows large.
More importantly, our result shows that linear increase in the
number of relays as a function of transmit-receive antennas is
sufficient for this to happen.

The large-deviations analysis, along with the notion of decou-
pling of the network, as carried out in this paper could serve
as a general tool to assess the impact of protocols, processing
at the relays, propagation conditions, routing, and scheduling
on network outage and ergodic capacity performance. More
specifically, an interesting question is under which conditions
“crystallization” can happen in a general network and, if it occurs,
what the corresponding “crystallization” rate would be. It has to
be noted, however, that, in view of the technical difficulties posed
by the basic case analyzed in this paper, it is unclear whether
this framework can yield substantial analytical insights into the
above-mentioned questions.

Finally, we note that if we interpret our results in terms of per-
node throughput, we find that P1 achieves O

(
1/n2/3

)
whereas

P2 realizes O(1/
√

n). The scaling law for P2 is exactly the same
as the behavior established by Gupta and Kumar in [6] and the
per-node throughput goes to zero. On the other hand, it is interest-
ing to observe that we can get an O(1/

√
n) throughput without

imposing any assumptions on the path-loss behavior. General
conclusions on the impact of fading on the network-capacity
scaling law cannot be drawn as we are considering a specific
setup and specific protocols. It was recently shown [33], however,
that under optimistic assumptions on CSI in the network O(1)
throughput can be achieved using hierarchical cooperation.
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APPENDIX A
TRUNCATION OF RANDOM VARIABLES AND LARGE

DEVIATIONS

We start by recalling the famous Hoeffding inequality along
with an important variation that will be central for our develop-
ments.

Theorem 8 (Hoeffding [34]): Let X1, X2, . . . , XN be inde-
pendent real-valued RVs and An ≤ Xn ≤ Bn for n ∈ [1 :N ].
Let SN =

∑N
n=1 Xn. Then,

P{SN − E[SN ] ≥ Nx} ≤ exp

(
− 2N2x2∑N

n=1(Bn −An)2

)
.

Theorem 9 (Maurer [35]): Let X1, X2, . . . , XN be indepen-
dent real-valued RVs with Xn ≥ 0 and E

[
X2

n

]
< ∞ for

n ∈ [1 :N ]. Let SN =
∑N

n=1 Xn. Then,

P{SN − E[SN ] ≤ −Nx} ≤ exp

(
− N2x2

2
∑N

n=1 E
[
X2

n

]) .

The following theorem builds on the Hoeffding inequality
(Theorem 8) and constitutes the core of the truncation technique.

Theorem 10: Assume on a common probability space:
• The real-valued RVs X1, X2, . . . , XN (possibly dependent)

have marginal distribution functions FXn(x), n ∈ [1 :N ].
The tails of these distributions are exponentially decaying
uniformly in n, i.e., there exist B > 0, α > 0, β > 0, and
x0 > 0 s.t. for x ≥ x0 > 0 and n ∈ [1 :N ]

P
{
|Xn| ≥ x

}
= 1− FXn(x) + FXn(−x) ≤ Be−α xβ

.

(109)

• The real-valued RVs φ1, φ2, . . . , φN are jointly indepen-
dent and satisfy

−1 ≤ φn ≤ 1, E[φn] = 0, n ∈ [1 :N ].

• The real-valued deterministic nonnegative coefficients
A1, A2, . . . , AN are uniformly bounded from above, i.e.,
there exists a constant A independent of n s.t.

0 ≤ An ≤ A, n ∈ [1 :N ].

• The set of RVs {Xn}N
n=1 is independent of the set

{φn}N
n=1.

Let SN =
∑N

n=1 AnXnφn. Then, for all N > 0 and x > 0
s.t. x ≥ x

(2+β)/2
0

P
{
|SN | ≥

√
Nx
}

≤ 2 max[2, NB] exp
(
−min

[
1

2A2
, α

]
x

2β
2+β

)
. (110)

Proof: The proof is based on the idea of truncation of the
RVs Xn. We start by fixing N and choosing t s.t.

(
Nt2

)γ ≥ x0.
The truncation parameter 0 < γ < 1 will be chosen later. Next,
we truncate the RVs Xn, n ∈ [1 :N ], according to

X̂n , Xn I
[
|Xn| ≤

(
Nt2

)γ]
.

Define ŜN ,
∑N

n=1 AnX̂nφn. Note that the independence of
{Xn}N

n=1 and {φn}N
n=1 and the condition E

[
φn

]
= 0 (n ∈ [1 :

N ]) implies that E
[
SN

]
= E

[
ŜN

]
= 0. Let In denote the event

that Xn is equal to its truncated version, i.e., In ,
{
Xn = X̂n

}
and, Īn the event that Xn 6= X̂n, i.e., Īn ,

{
Xn 6= X̂n

}
. With

these definitions, distinguishing the events where either all Xn

are equal to their truncated version, i.e.,
⋂N

n=1 In and where at
least one of the Xn is not equal to its truncated version, i.e.,⋃N

n=1 Īn, we get

P{|SN | ≥ Nt}

= P

{
|SN | ≥ Nt

∣∣∣∣∣
N⋂

n=1

In

}
P

{
N⋂

n=1

In

}

+ P

{
|SN | ≥ Nt

∣∣∣∣∣
N⋃

n=1

Īn

}
P

{
N⋃

n=1

Īn

}
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= P
{∣∣∣ŜN

∣∣∣ ≥ Nt
}

P

{
N⋂

n=1

In

}

+ P

{
|SN | ≥ Nt

∣∣∣∣∣
N⋃

n=1

Īn

}
P

{
N⋃

n=1

Īn

}

≤ P
{∣∣∣ŜN

∣∣∣ ≥ Nt
}

+
N∑

n=1

P
{
Īn

}
(111)

where the last step follows by using the trivial bounds

P

{
N⋂

n=1

In

}
≤ 1, P

{
|SN | ≥ Nt

∣∣∣∣∣
N⋃

n=1

Īn

}
≤ 1

and applying the union bound to P
{⋃N

n=1 Īn

}
. Since −1 ≤

φn ≤ 1, n ∈ [1 : N ], we obtain the following bounds for the
individual terms in ŜN

−An

(
Nt2

)γ ≤ AnX̂nφn ≤ An

(
Nt2

)γ
, n ∈ [1 :N ].

Moreover, owing to the independence of the φn, conditioned
on the set X ,

{
X̂1, X̂2, . . . , X̂N

}
, the RVs AnX̂nφn are

independent. Therefore, using Bayes’ rule and the Hoeffding
inequality (Theorem 8), noting that E

[
ŜN | X

]
= 0, we can

conclude that

P
{∣∣∣ŜN

∣∣∣ ≥ Nt
}

= EX
[
P
{∣∣∣ŜN − E

[
ŜN

∣∣∣X ]∣∣∣ ≥ Nt
∣∣∣X}]

≤ 2 exp

(
− N2t2

2
∑N

n=1 A2
n (Nt2)2γ

)

≤ 2 exp

(
−
(
Nt2

)1−2γ

2A2

)
. (112)

Next, using (109), and assuming [this will be justified in (114)]
that

(
Nt2

)γ ≥ x0, we have

P
{
Īn

}
= P

{
Xn 6= X̂n

}
= P

{
|Xn| ≥

(
Nt2

)γ} ≤ Be−α(Nt2)γβ

. (113)

To get the fastest possible exponential decay in (111), we need to
choose the free parameter γ s.t. it maximizes min[1− 2γ, γβ],
which is the solution that makes the exponents of t in (112)
and (113) equal and is given by γ = 1/(2 + β). Finally,
setting t = x/

√
N results in(
Nt2

)γ
= x2γ = x2/(2+β) ≥ x0 (114)

as required. Combining (111), (112) and (113), we finally obtain

P
{
|SN | ≥

√
Nx
}

≤ 2 exp
(
− 1

2A2
x

2β
2+β

)
+ NB exp

(
−α x

2β
2+β

)
. (115)

The final result (110) is a trivial upper bound to (115).
The following corollary is the generalization of Theorem 10

to the complex-valued case and will be used repeatedly in the
proofs of Theorems 1 and 2.

Corollary 1: Assume on a common probability space:
• The absolute values of the complex-valued (possibly de-

pendent) RVs X1, X2, . . . , XN have marginal distribution

functions FXn
(x), n ∈ [1 :N ]. The tails of these distribu-

tions are exponentially decaying uniformly in n, i.e., there
exist B > 0, α > 0, β > 0 and x0 > 0 s.t. for x ≥ x0 > 0
and n ∈ [1 :N ]

P{|Xn| ≥ x} = 1− FXn
(x) ≤ Be−α xβ

. (116)

• The real-valued RVs φ1, φ2, . . . , φN are jointly indepen-
dent and satisfy φn ∼ U (−π, π) and hence E

[
ejφn

]
= 0

for all n ∈ [1 :N ].
• The real-valued deterministic nonnegative coefficients

A1, A2, . . . , AN are uniformly bounded from above, i.e.,
there exists a constant A independent of n s.t.

0 ≤ An ≤ A, n ∈ [1 :N ].

• The set of RVs {Xn}N
n=1 is independent of the set

{φn}N
n=1.

Let SN =
∑N

n=1 AnXnejφn . Then, for all N > 0 and x > 0
s.t. x ≥ x

(2+β)/2
0

P
{
|SN | ≥

√
Nx
}

≤ 4 max[2, NB] exp
(
−min

[
1

2A2
, α

]
2−

β
β+2 x

2β
β+2

)
.

Proof: Apply Theorem 10 to<SN and=SN separately and
combine the two bounds using the Pythagorean union bound
(Lemma 3).

The following corollary is a modification of Theorem 10
for the case of independent nonnegative RVs and will be used
repeatedly in the proofs of Theorems 1 and 2.

Corollary 2: Assume on a common probability space:
• The real-valued nonnegative RVs X1, X2, . . . , XN are

jointly independent and have marginal distribution func-
tions FXn

(x), n ∈ [1 : N ]. The right tails of these
distributions are exponentially decaying uniformly in n,
i.e., there exist B > 0, α > 0, β > 0 and x0 > 0 s.t. for
all x ≥ x0 > 0 and n ∈ [1 :N ]

P{Xn ≥ x} = 1− FXn(x) ≤ Be−α xβ

. (117)

• The expectations E
[
X2

n

]
are uniformly bounded from

above, i.e., there exists a constant C independent of n s.t.

E
[
X2

n

]
≤ C, n ∈ [1 :N ]. (118)

• The real-valued deterministic nonnegative coefficients
A1, A2, . . . , AN are uniformly bounded from above, i.e.,
there exists a constant A independent of n s.t.

0 ≤ An ≤ A, n ∈ [1 :N ]. (119)

Let SN =
∑N

n=1 AnXn. Then, for all N > 0 and x > 0 s.t.
x ≥ x

(2+β)/2
0

P
{
|SN − E[SN ]| ≥

√
Nx
}

≤ 3 max[1, NB] exp
(
−min

[
2

A2
, α,

1
2A2C

]
x

2β
β+2

)
. (120)

Proof: The proof idea of this corollary is similar to that
used in Theorem 10. However, there are several technical details,
which do not occur in the proof of Theorem 10. We have,
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therefore, decided to present the full version of the proof of
Corollary 2.

Unlike in the proof of Theorem 10, here we have E
[
SN

]
6= 0.

To obtain an upper bound on P
{∣∣SN − E

[
SN

]∣∣ ≥ √Nx
}

, we
establish an upper bound on P

{
SN ≥ E

[
SN

]
+
√

Nx
}

and on
P
{
SN ≤ E

[
SN

]
−
√

Nx
}

and use the union bound to combine
the results.

We start by deriving an upper bound on P
{
SN ≥ E

[
SN

]
+√

Nx
}

. Following the same steps as in the proof of Theorem 10,
we define the truncation parameter 0 < γ < 1, which will be
chosen later. Fix N and choose t s.t.

(
Nt2

)γ ≥ x0. We truncate
the RVs Xn (n ∈ [1 :N ]) according to

X̂n , Xn I
[
Xn ≤

(
Nt2

)γ]
and define ŜN ,

∑N
n=1 AnX̂n. It is easily seen that E

[
SN

]
≥

E
[
ŜN

]
and therefore

P
{

SN ≥ E[SN ] + Nt
}
≤ P

{
SN ≥ E

[
ŜN

]
+ Nt

}
. (121)

Let In denote the event that Xn is equal to its truncated version,
i.e., In ,

{
Xn = X̂n

}
, and Īn the event that Xn 6= X̂n, i.e.,

Īn ,
{
Xn 6= X̂n

}
. With these definitions, distinguishing the

events where either all Xn are equal to their truncated version,
i.e.,

⋂N
n=1 In and where at least one of the Xn is not equal to

its truncated version, i.e.,
⋃N

n=1 Īn, we get

P
{

SN ≥ E
[
ŜN

]
+ Nt

}
= P

{
SN ≥ E

[
ŜN

]
+ Nt

∣∣∣∣∣
N⋂

n=1

In

}
P

{
N⋂

n=1

In

}

+ P

{
SN ≥ E

[
ŜN

]
+ Nt

∣∣∣∣∣
N⋃

n=1

Īn

}
P

{
N⋃

n=1

Īn

}

= P
{

ŜN ≥ E
[
ŜN

]
+ Nt

}
P

{
N⋂

n=1

In

}

+ P

{
SN ≥ E

[
ŜN

]
+ Nt

∣∣∣∣∣
N⋃

n=1

Īn

}
P

{
N⋃

n=1

Īn

}

≤ P
{

ŜN ≥ E
[
ŜN

]
+ Nt

}
+

N∑
n=1

P
{
Īn

}
(122)

where the last step is obtained by using the trivial bounds

P

{
N⋂

n=1

In

}
≤ 1, P

{
SN ≥ E

[
ŜN

]
+ Nt

∣∣∣∣∣
N⋃

n=1

Īn

}
≤ 1

and applying the union bound to P
{⋃N

n=1 Īn

}
. The individual

terms in ŜN are bounded according to

0 ≤ AnX̂n ≤ An

(
Nt2

)γ
, n ∈ [1 :N ].

Using Bayes’ rule and the Hoeffding inequality (Theorem 8),
we can conclude that

P
{

ŜN ≥ E
[
ŜN

]
+ Nt

}
≤ exp

(
− 2N2t2∑N

n=1 A2
n (Nt2)2γ

)

≤ exp

(
−

2
(
Nt2

)1−2γ

A2

)
. (123)

Next, using (117), and assuming [this will be justified in (125)]
that

(
Nt2

)γ ≥ x0, we have

P
{
Īn

}
= P

{
Xn 6= X̂n

}
= P

{
Xn ≥

(
Nt2

)γ} ≤ Be−α(Nt2)γβ

. (124)

To get the fastest possible exponential decay in (122), we need to
choose the free parameter γ s.t. it maximizes min

[
1− 2γ, γβ

]
,

which is the solution that makes the exponents of t in (123)
and (124) equal and is given by γ = 1/(2 + β). Finally, setting
t = x/

√
N results in(

Nt2
)γ

= x2γ = x2/(2+β) ≥ x0 (125)

as required. Combining (121)-(124), we obtain

P
{

SN ≥ E[SN ] +
√

Nx
}

≤ exp
(
− 2

A2
x

2β
2+β

)
+ NB exp

(
−α x

2β
2+β

)
. (126)

It remains to establish an upper bound on P
{
SN ≤ E

[
SN

]
−√

Nx
}

. From Theorem 9 it follows that

P
{

SN ≤ E[SN ]−
√

Nx
}
≤ exp

(
− Nx2

2
∑N

n=1 E
[
A2

nX2
n

])
which, using (118) and (119), can be further upper-bounded as

P
{

SN ≤ E[SN ]−
√

Nx
}
≤ exp

(
− x2

2A2C

)
. (127)

Combining (126) and (127) and using the union bound, we
obtain

P
{
|SN − E[SN ]| ≥

√
Nx
}
≤ exp

(
− 2

A2
x

2β
2+β

)
+ NB exp

(
−α x

2β
2+β

)
+ exp

(
− x2

2A2C

)
. (128)

The final result (120) is a trivial upper bound to (128).

APPENDIX B
UNION BOUNDS

In this appendix, as a reference, we present several variations
of union bounds for probability that we use frequently throughout
the paper.

Lemma 2 (Union bound for sums): Assume the complex-
valued RVs X1, X2, . . . , XN are s.t.

P
{
|Xn| ≥ Cn

}
≤ Pn, n ∈ [1 :N ]

where C1, C2, . . . , CN and P1, P2, . . . , PN are fixed positive
constants. Then,

P

{∣∣∣∣∣
N∑

n=1

Xn

∣∣∣∣∣ ≥
N∑

n=1

Cn

}
≤

N∑
n=1

Pn.

Proof: Let An denote the event that
∣∣Xn

∣∣ ≥ Cn, n ∈
[1 : N ]. Let B denote the event that

∣∣∑N
n=1 Xn

∣∣ ≥ ∑N
n=1 Cn.

By inspection, it follows that B ⇒
⋃N

n=1 An, which implies
P{B} ≤

∑N
n=1 P{An}.
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The proofs of the remaining union bounds follow exactly the
same pattern as the proof of Lemma 2 and will hence be omitted.

Lemma 3 (Pythagorean union bound): Assume the complex-
valued RV X is s.t.

P
{
|<X| ≥ CR

}
≤ PR and P

{
|=X| ≥ CI

}
≤ PI

where CR, CI, PR, and PI are fixed positive constants. Then,

P
{
|X| ≥

√
C2

R + C2
I

}
≤ PR + PI.

Lemma 4 (Union bound for mixed sums): Assume that the
complex-valued RVs X1, X2, . . . , XN are s.t.

P
{
|Xn| ≥ Cn

}
≤ Pn, n ∈ [1 :N ]

where C1, C2, . . . , CN and P1, P2, . . . , PN are fixed positive
constants; then, the following statements hold:

1) If the real-valued RVs X ′
1, X

′
2, . . . , X

′
N ′ are s.t.

P
{

X ′
n ≤ C ′

n

}
≤ P ′

n, n ∈ [1 :N ]

where C ′
1, C

′
2, . . . , C

′
N and P ′

1, P
′
2, . . . , P

′
N are fixed pos-

itive constants, then

P


∣∣∣∣∣∣

N∑
n=1

Xn +
N ′∑

n=1

X ′
n

∣∣∣∣∣∣ ≤ max

0,

N ′∑
n=1

C ′
n −

N∑
n=1

Cn


≤

N∑
n=1

Pn +
N ′∑

n=1

P ′
n.

2) If the real-valued RVs X ′
1, X

′
2, . . . , X

′
N ′ are s.t.

P
{

X ′
n ≥ C ′

n

}
≤ P ′

n, n ∈ [1 :N ]

then,

P


∣∣∣∣∣∣

N∑
n=1

Xn +
N ′∑

n=1

X ′
n

∣∣∣∣∣∣ ≥
N ′∑

n=1

C ′
n +

N∑
n=1

Cn


≤

N∑
n=1

Pn +
N ′∑

n=1

P ′
n.

Lemma 5 (Union bound for products): Assume the complex-
valued RVs X1, X2, . . . , XN are such that

P
{
|Xn| ≥ Cn

}
≤ Pn, n ∈ [1 :N ]

where C1, C2, . . . , CN and P1, P2, . . . , PN are fixed positive
constants. Then,

P

{∣∣∣∣∣
N∏

n=1

Xn

∣∣∣∣∣ ≥
N∏

n=1

Cn

}
≤

N∑
n=1

Pn.

Lemma 6 (Union bound for fractions): If for real-valued
positive RVs X1 and X2 and positive constants C1, C2 and
P1, P2

P
{

X1 ≥ C1

}
≤ P1 and P

{
X2 ≤ C2

}
≤ P2

then
P
{

X1/X2 ≥ C1/C2

}
≤ P1 + P2.

If, in turn,

P
{

X1 ≤ C1

}
≤ P1 and P

{
X2 ≥ C2

}
≤ P2

then

P
{

X1/X2 ≤ C1/C2

}
≤ P1 + P2.

APPENDIX C
PROOF OF THEOREM 1

We start by recalling that we want to establish a concentration
result for SINRP1

m , given by (22), using the truncation technique
throughout. As already mentioned, this entails establishing the
large-deviations behavior of S(1), S(2), S(3), and S(4). For S(3),
this has already been done in Section III-C2. It remains to
establish the corresponding (based on the truncation technique)
concentration results for S(1), S(2), and S(4) defined by (23),
(24), and (26), respectively.

A. Analysis of S(1)

The sum S(1) can be written as

S(1) =
∑

k:p(k)=m

Cm,m
P1,k Z

(1)
k (129)

with

Z
(1)
k , |fm,k| |hk,m| .

For any k ∈ [1 :K] s.t. p(k) = m, we have E
[
Z

(1)
k

]
= π/4 and

E
[(

Z
(1)
k

)2] = 1. Application of the union bound for products
yields

P
{

Z
(1)
k ≥ x

}
≤ 2e−x, x ≥ 0.

Noting that the sum S(1) contains K/M terms, which are jointly
independent, taking into account (12), and using Corollary 2, we
get for x ≥ 0 and K/M ≥ 1

P


∣∣∣∣∣∣S(1) − π

4

∑
k:p(k)=m

Cm,m
P1,k

∣∣∣∣∣∣ ≥
√

K

M
x

 ≤ 6
K

M
e−∆(1)x2/3

with ∆(1) = min
[
1, 1/

(
2 C

2)]
. Finally, using (12), it follows

that

P

{
S(1) ≥ π

4
C

K

M
+

√
K

M
x

}
≤ 6

K

M
e−∆(1)x2/3

(130)

and

P

{
S(1) ≤ π

4
C

K

M
−
√

K

M
x

}
≤ 6

K

M
e−∆(1)x2/3

(131)

for any x ≥ 0 and K/M ≥ 1.
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PU
P1 , 6

K

M
e−∆(1)x

2/3
1 + 8

K(M − 1)
M

e−∆(2)x
2/3
2 + 6 (M − 1)Ke−∆(31)x

2/5
31

+ 64
(K − 1)K(M − 1)2

M
e−∆(32)x

2/7
321 + 64

(K − 1)K(M − 1)
M

e−∆(32)x
2/7
322 + 3Ke−∆(4)x

2/3
4 (137)

ÛN
P1 ,

(
1 +

4
Cπ

√
M

K
x1 +

4
Cπ

√
M(M − 1)

K
x2

)2

(138)

ÛD
P1 , max

[
0,

C2

C2
SN

M − 1
M

− 1
C2

SN

M − 1
M
√

K
x31 −

1
C2

SN

√
(K − 1)(M − 1)2

KM3
x321

− 1
C2

SN

√
(K − 1)(M − 1)

KM3
x322

]
+

σ2

C2
SN

max
[
0, c2 − 1√

K
x4

]
+

σ2

C2
SN

(139)

B. Analysis of S(2)

The sum S(2) can be written as

S(2) =
∑

k:p(k) 6=m

Cm,m
P1,k Z

(2)
k

with
Z

(2)
k , f̃∗p(k),k fm,k h̃∗k,p(k) hk,m.

For any k ∈ [1 : K] s.t. p(k) 6= m, we have E
[
Z

(2)
k

]
= 0.

Application of the union bound for products yields

P
{∣∣∣Z(2)

k

∣∣∣ ≥ x
}
≤ 2e−x, x ≥ 0.

Noting that the sum S(2) contains K(M − 1)/M terms, which
are jointly independent, taking into account (12), and using
Corollary 1, we get for x ≥ 0 and K(M − 1)/M ≥ 1

P

{∣∣∣S(2)
∣∣∣ ≥√K(M − 1)

M
x

}
≤ 8

K(M − 1)
M

e−∆(2)x2/3

(132)
with ∆(2) = 2−

1
3 min

[
1, 1/

(
2 C

2)]
.

C. Analysis of S(4)

The sum S(4) can be written as

S(4) =
K∑

k=1

(
Cm

P1,k

)2
Z

(4)
k

with

Z
(4)
k = |fm,k| 2.

Since Z
(4)
k is exponentially distributed with parameter λ = 1,

we have

P
{

Z
(4)
k ≥ x

}
≤ e−x, k ∈ [1 :K], x ≥ 0.

Noting that the sum S(4) contains K jointly independent
terms, taking into account (13) and using E

[
Z

(4)
k

]
= 1 and

E
[(

Z
(4)
k

)2] = 2 (k ∈ [1 :K]), we get for x ≥ 0 and K ≥ 1

P

{∣∣∣∣∣S(4) −
K∑

k=1

(
Cm

P1,k

)2∣∣∣∣∣ ≥ √Kx

}
≤ 3Ke−∆(4)x2/3

with ∆(4) = min
[
1, 1/

(
4 c 4

)]
. Therefore, using (13), it follows

that

P
{

S(4) ≥ K c2 +
√

Kx
}
≤ 3Ke−∆(4)x2/3

(133)

and

P
{

S(4) ≤ K c2 −
√

Kx
}
≤ 3Ke−∆(4)x2/3

. (134)

We are now ready to carry out the final Step v of the program
outlined in the first paragraph of Section III-C. The concentration
result for SINRP1

m is expressed in terms of upper bounds on
P
{
SINRP1

m ≥ ÛP1

}
and P

{
SINRP1

m ≤ L̂P1

}
, where the exact

form of ÛP1 and L̂P1 is specified below.
To establish an upper bound on P

{
SINRP1

m ≥ ÛP1

}
, we

proceed as follows:
1) Apply Part 2 of Lemma 4 to (130) and (132) to establish

a stochastic upper bound21 for
∣∣S(1) + S(2)

∣∣.
2) Apply Part 1 of Lemma 4 to (45), (52), and (53) to establish

a stochastic lower bound22 for
∣∣S(3)

∣∣.
3) Apply Part 1 of Lemma 4 to the result from Step 2)

and (134) to establish a stochastic lower bound for
S(3) + σ2MS(4) + KMσ2.

4) Apply the union bound for fractions (Lemma 6) to the
stochastic upper bound from Step 1 and to the stochastic
lower bound from Step 3 to establish the final result:

P
{

SINRP1
m ≥ ÛP1

}
≤ PU

P1 (135)

with

ÛP1 ,
π2

16
C

2

C2
SN

K

M3

ÛN
P1

ÛD
P1

(136)

and PU
P1, ÛN

P1 and ÛD
P1 defined at the top of the page in

(137), (138) and (139), respectively.
An upper bound on P

{
SINRP1

m ≤ L̂P1

}
can be obtained as

follows:
1) Apply Part 1 of Lemma 4 to (131) and (132) to establish

a stochastic lower bound for
∣∣S(1) + S(2)

∣∣.
2) Apply Part 2 of Lemma 4 to (44), (52), and (53) to establish

a stochastic upper bound for
∣∣S(3)

∣∣.
21For a RV X , a “stochastic upper bound” in this context means a bound of

the form P{X ≥ A} ≤ P .
22For a RV X , a “stochastic lower bound” in this context means a bound of

the form P
{

X ≤ A
}
≤ P .
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L̂N
P1 , max

[
0, 1− 4

Cπ

√
M

K
x1 −

4
Cπ

√
M(M − 1)

K
x2

]2

(142)

L̂D
P1 ,

C
2

C
2

SN

M − 1
M

+
1

C
2

SN

M − 1
M
√

K
x31 +

1

C
2

SN

√
(K − 1)(M − 1)2

KM3
x321

+
1

C
2

SN

√
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F̄m =
π

4
L2

√
Q

∑
q:p(q)=m

Cm,m
P1,q (146)

Var
[
F̃m

]
=

L2

Q

∑
q:p(q) 6=m

(
Cm,m

P1,q

)2

+
(L + (π/4)(L− 1)L)2 − (π2/16)L4

Q

∑
q:p(q)=m

(
Cm,m

P1,q

)2

(147)

Var[Wm] =
L2 + (π/4)L2(L− 1)

QM

∑
m̂6=m

∑
q:p(q)=m

(
Cm,m̂

P1,q

)2

+
L2 + (π/4)L2(L− 1)

QM

∑
m̂6=m

∑
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Cm,m̂

P1,q

)2

+
L2

QM

∑
m̂6=m

∑
q:p(q)6=m
p(q)6=m̂

(
Cm,m̂

P1,q

)2

+
L2 + (π/4)L2(L− 1)

Q
σ2

∑
q:p(q)=m

(
Cm

P1,q

)2 +
L2

Q
σ2

∑
q:p(q) 6=m

(
Cm

P1,q

)2 + σ2 (148)

3) Apply Part 2 of Lemma 4 to the result from Step 2 and
to (133) to establish a stochastic upper bound for S(3) +
σ2MS(4) + KMσ2.

4) Apply the union bound for fractions to the stochastic lower
bound from Step 1 and to the stochastic upper bound from
Step 3 to establish the final result:

P
{

SINRP1
m ≤ L̂P1

}
≤ PU

P1 (140)

with

L̂P1 ,
π2

16
C2

C
2

SN

K

M3

L̂N
P1

L̂D
P1

(141)

and L̂N
P1 and L̂D

P1 defined at the top of the page in (142)
and (143), respectively.

The result presented in Theorem 1 is a simpler and slightly
weaker form of the bounds (135) and (140). To obtain this
simplification we proceed as follows. Set x1 = x2 = x31 =
x4 = x321 = x322 = x in (137), (138), (139), (142) and (143).
Note that in this case LP1(x) ≤ L̂P1(x) and UP1(x) ≥ ÛP1(x)
and therefore

P
{

SINRP1
m ≥ UP1

}
≤ P

{
SINRP1

m ≥ ÛP1

}
≤ PU

P1 (144)

P
{

SINRP1
m ≤ LP1

}
≤ P

{
SINRP1

m ≤ L̂P1

}
≤ PU

P1. (145)

Finally, combine the bounds (144) and (145) according to

P
{(

SINRP1
m ≥ UP1

)⋃(
SINRP1

m ≤ LP1

)}
≤ P

{
SINRP1

m ≥ UP1

}
+ P

{
SINRP1

m ≤ LP1

}
≤ 2PU

P1

and note that 2PU
P1 is upper bounded by the RHS of (56).

APPENDIX D
PROOF OF LOWER BOUND IN THEOREM 6

As already mentioned in the main body of the paper, the proof
of the lower bound in (89) is based on the technique summarized

in Appendix E. After straightforward algebra, it follows that the
I-O relation of the SISO channel between the terminals Sm and
Dm (m ∈ [1 :M ]) is given by

ym =
(
F̄m + F̃m

)
sm + Wm

where

F̄m ,
1√
Q

Q∑
q=1

E
[
am,m

q

]
F̃m ,

1√
Q

Q∑
q=1

(
am,m

q − E
[
am,m

q

])
Wm ,

∑
m̂6=m

sm̂
1√
Q

Q∑
q=1

am,m̂
q +

1√
Q

Q∑
q=1

bm
q h̃H

q,p(q)zq + wm

and

am,m̂
q , Cm,m̂

P1,q

(
f̃H
p(q),qfm,q

)(
h̃H

q,p(q)hq,m̂

)
bm
q , Cm

P1,q

(
f̃H
p(q),qfm,q

)
Cm,m̂

P1,q ,
√

QdP1,qP̂m,qÊq,m̂

Cm
P1,q ,

√
QdP1,qP̂m,q.

It is not difficult, but tedious, to verify that F̄m, Var
[
F̃m

]
and

Var
[
Wm

]
are given by (146), (147) and (148), respectively.

Using (3), we lower-bound F̄m and upper-bound Var
[
F̃m

]
and

Var
[
Wm

]
, substitute the resulting bounds into (150), and obtain

I(ym; sm) ≥ 1
2

log
(

1 +
π2

16
Q

M3
f(M,L)

)
(149)

where

f(M,L)

=
P E PrelL

2(
E + π(L−1)

4M E + σ2
)(

ε(M,L) + C
2

+ σ2c2 + σ2
)
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with

ε(M,L) =
C

2

M
+

(1 + (π/4)(L− 1))2

M2
C

2

+
(1 + (π/4)(L− 1))

(
2C

2
+ σ2c2

)
M

.

Finally, since L is finite, it follows by inspection that
limM→∞ ε(M,L) = 0 and, therefore,

lim
M→∞

f(M,L) =
L2C2

C
2

SN

which, together with (149), concludes the proof.

APPENDIX E
LOWER BOUND ON CHANNEL CAPACITY WITH IMPERFECT

CHANNEL KNOWLEDGE

The following Lemma is obtained by recognizing that the
expression in [23, Eq. (66)] is trivially a lower bound to I(X;Y )
in (150) below. For completeness, we present the result in the
form needed in this paper. For the proof of the (general) statement
the interested reader is referred to [23].

Lemma 7: Consider a SISO channel with I-O relation

Y = FX + W

where X ∼ CN
(
0, σ2

X

)
, W is zero-mean noise23 with variance

σ2
W , F is the random channel gain with variance σ2

F , and Y is
the output of the channel. Assume that F can be decomposed as

F = F̄ + F̃

where F̄ = E
[
F
]

is known at the receiver and F̃ with E
[
F̃
]

= 0
is not known at the receiver. Assume that X is statistically
independent24 of both F and W . Then, the mutual informa-
tion I(X;Y ) can be lower-bounded as follows

I(X;Y ) ≥ log
(

1 +
F̄ 2σ2

X

σ2
F σ2

X + σ2
W

)
. (150)

APPENDIX F
SOME ESSENTIALS FROM LARGE RANDOM-MATRIX

THEORY

In this section, we briefly summarize the basic definitions and
results from large random-matrix theory used in this paper. An
excellent tutorial on this subject is [25].

Definition 3 (Stieltjes transform): Let F (x) be a distribution
function with density f(x). The analytic function

GF (z) ,
∫

f(x)
x− z

dx, z ∈ C+

is called the Stieltjes transform of F (x).
Lemma 8 (Inversion formula): Let GF (z) be the Stieltjes

transform of a distribution function F (x). The corresponding
density function can be obtained as

f(x) =
1
π

lim
y→0+

= [GF (x + jy)] . (151)

23In contrast to [22, Section III], the noise is not necessarily Gaussian.
24In [22, Section III], it is assumed that X , F , and W are statistically

independent. The condition required here is weaker: F and W need not be
statistically independent.

Theorem 11 (Silverstein [24]): Define the following quanti-
ties on a common probability space:
• The random matrix X ∈ CN×N ′

has i.i.d. zero-mean
entries with variance one.

• The random matrix Y ∈ CN×N is Hermitian nonnegative
definite with FN

Y (x), for N → ∞, converging on [0,∞)
a.s. to a nonrandom distribution function FY(x) with cor-
responding density fY(x).

Assume that the matrices X and Y are statistically independent.
Then, for N,N ′ →∞ with N/N ′ → β,

FN
(1/N ′)XXHY(x) a.s.−−→ F(1/N ′)XXHY(x)

with its Stieltjes transform GF(1/N′)XXHY
(z) satisfying

GF(1/N′)XXHY
(z)

=
∫ ∞

−∞

fY(x)dx

x(1− β − βz GF(1/N′)XXHY
(z))− z

, z ∈ C+.

The solution of this fixed-point equation is unique in the set{
GF(1/N′)XXHY

(z) ∈ C
∣∣∣

−1− β

z
+ β GF(1/N′)XXHY

(z) ∈ C+

}
.

We shall furthermore use the Marčenko-Pastur law as stated
in [36].

Theorem 12 (Marčenko-Pastur [37]): Assume that the ma-
trix X ∈ CN×N ′

has i.i.d. zero-mean entries with variance d2.
Then, for N,N ′ → ∞ with N ′/N → β, the ESD of
(1/N ′)XXH converges a.s. to a limiting distribution function
with density

f(1/N ′)XXH (x) =
β

2πxd2

√
(γ2 − x)+ (x− γ1)

+

+ [1− β]+δ(x)

where γ1 = d2(1− 1/
√

β)2 and γ2 = d2(1 + 1/
√

β)2.
Under the same assumptions as in the first statement, if, in

addition, the entries of X have finite fourth moments, then a.s.

lim
N ′→∞

λmin

(
1

N ′XXH

)
= γ1

lim
N ′→∞

λmax

(
1

N ′XXH

)
= γ2.

APPENDIX G
COMPUTATION OF THE INTEGRAL Î IN (100)

In the following, we detail the computation of the integral

Î , ρ

∫ η2

η1

√
(η2 − x) (x− η1) dx

x(1− x)2
(
x
(

1−β
z − βG

)
− 1
)

on the RHS of (100). With the change of variables

t =
√

x− η1

η2 − x

and the notation

µ1 , 1− η1 ν1 , η1

(
1− β

z
− βG

)
− 1
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µ2 , 1− η2 ν2 , η2

(
1− β

z
− βG

)
− 1

the integral Î can be written as

Î = 2(η2 − η1)2ρ
∫ ∞

0

t2(t2 + 1)dt

(η2t2 + η1)(µ2t2 + µ1)2(ν2t2 + ν1)
.

To simplify further, we introduce the notation

κ1 , −η1

η2
, κ2 , −µ1

µ2
, κ3 , −ν1

ν2
, χ ,

2(η2 − η1)2

η2 µ2
2 ν2

ρ

so that

Î = χ

∫ ∞

0

t2(t2 + 1)dt

(t2 − κ1)(t2 − κ2)2(t2 − κ3)
. (152)

Upon partial fraction expansion of the integrand in (152), we
obtain

Î = χ(A1Î1 + A2Î2 + A3Î3 + A4Î4)

where

Î1 ,
∫ ∞

0

dt

t2 − κ1
Î2 ,

∫ ∞

0

dt

(t2 − κ2)2

Î3 ,
∫ ∞

0

dt

t2 − κ2
Î4 ,

∫ ∞

0

dt

t2 − κ3
(153)

with

A1 =
κ1(κ1 + 1)

(κ1 − κ2)2(κ1 − κ3)
(154)

A2 =
κ2(κ2 + 1)

(κ2 − κ1)(κ2 − κ3)
(155)

A3 =
−κ2

2 − κ1κ
2
2 + κ1κ3 + 2κ1κ2κ3 − κ2

2κ3

(κ2 − κ1)2(κ2 − κ3)2
(156)

A4 =
κ3(κ3 + 1)

(κ3 − κ1)(κ3 − κ2)2
. (157)

The integrals in (153) can be evaluated resulting in

Î1 =
1√
−κ1

arctan
t√
−κ1

∣∣∣∣∞
0

=
π

2
√
−κ1

(158)

Î2 = − t

2κ2(t2 − κ2)

∣∣∣∣∞
0

− 1
2κ2

√
−κ2

arctan
t√
−κ2

∣∣∣∣∞
0

= − π

4κ2
√
−κ2

(159)

Î3 =
1√
−κ2

arctan
t√
−κ2

∣∣∣∣∞
0

=
π

2
√
−κ2

(160)

Î4 =
1√
−κ3

arctan
t√
−κ3

∣∣∣∣∞
0

=
π

2
√
−κ3

. (161)

The quantity κ3 is complex-valued, and the arctan and square
root in (160) are understood as the principal values of these
functions in C as defined in [38].

Finally, by inspection, combining (158)–(161) with (154)–
(157) and resubstituting the values of the parameters κ1, κ2,

κ3, χ, ρ, µ1, µ2, η1, η2, ν1, ν2, γ1, and γ2, after straightforward
but tedious simplifications, we find

χA1Î1 =

(√
β + 1

) ∣∣√β − 1
∣∣

2β

χA2Î2 = − z√
β(Gβz + z + β − 1)

χA3Î3 = −
zd2

(√
β − 1

)2 (Gβz + z + β − 1)
2d2β(Gβz + z + β − 1)2

+
zβ(Gβz + β − 1)

2d2β(Gβz + z + β − 1)2

χA4Î4 = − (Gβz + β − 1)
2d2β(Gβz + z + β − 1)2

×

√√√√d2(Gβz + z + β − 1)
(√

β − 1
)2 + zβ

d2(Gβz + z + β − 1)
(√

β + 1
)2 + zβ

×
(

d2(Gβz + z + β − 1)
(√

β + 1
)2

+ zβ

)
.
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[12] A. Jovičić, P. Viswanath, and S. R. Kulkarni, “Upper bounds to transport
capacity of wireless networks,” IEEE Trans. Inf. Theory, vol. 50, no. 11,
pp. 2555–2565, Oct. 2004.

[13] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran, “Closing the gap in
the capacity of wireless networks via percolation theory,” IEEE Trans. Inf.
Theory, vol. 53, no. 3, pp. 1009 – 1018, Mar. 2007.

[14] B. Wang, J. Zhang, and L. Zheng, “Achievable rates and scaling laws
of power-constrained wireless sensory relay networks,” IEEE Trans. Inf.
Theory, vol. 52, no. 9, pp. 4084 – 4104, Sep. 2006.

[15] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols
for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.

[16] J. N. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in
wireless networks: Efficient protocols and outage behavior,” IEEE Trans.
Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[17] R. U. Nabar, H. Bölcskei, and F. W. Kneubühler, “Fading relay channels:
Performance limits and space-time signal design,” IEEE J. Sel. Areas
Commun., vol. 22, no. 6, pp. 1099–1109, Aug. 2004.



30

[18] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216, Jul. 2000.

[19] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[20] K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-
multiplexing tradeoff in half-duplex cooperative channels,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, Dec. 2005.

[21] B. Wang, J. Zhang, and A. Høst-Madsen, “On the capacity of MIMO relay
channels,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 29–43, Jan. 2005.

[22] M. Médard, “The effect upon channel capacity in wireless communications
of perfect and imperfect knowledge of the channel,” IEEE Trans. Inf.
Theory, vol. 46, no. 3, pp. 933–946, May 2000.

[23] A. Lapidoth and S. Shamai (Shitz), “Fading channels: How perfect need
“perfect side information” be?” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp.
1118 – 1134, May 2002.

[24] J. W. Silverstein, “Strong convergence of the empirical distribution of
eigenvalues of large dimensional random matrices,” J. Multivariate Anal.,
vol. 55, pp. 331–339, Nov. 1995.
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