
The State of the Art in Distributed Query Processing

Donald Kossmann

University of Passau

����� Passau� Germany

http���www�db�fmi�uni�passau�de��kossmann

Abstract

Distributed data processing is fast becoming a reality� Businesses want to have
it for many reasons� and they often must have it in order to stay competitive�
While much of the infrastructure for distributed data processing is already in place
�e�g�� modern network technology�� there are a number of issues which still make
distributed data processing a complex undertaking� ��� distributed systems can
become very large involving thousands of heterogeneous sites including PCs and
mainframe server machines� �	� the state of a distributed system changes rapidly
because the load of sites varies over time and new sites are added to the system�
�
� legacy systems need to be integrated�such legacy systems usually have not
been designed for distributed data processing and now need to interact with other
�modern� systems in a distributed environment�

This paper presents the state of the art of query processing for distributed
database and information systems� The paper presents the �textbook
 architec�
ture for distributed query processing and a series of techniques that are particularly
useful for distributed database systems� These techniques include special join tech�
niques� techniques to exploit intra�query parallelism� techniques to reduce commu�
nication costs� and techniques to exploit caching and replication of data� Further�
more� the paper discusses di�erent kinds of distributed systems such as client�server�
middleware �multi�tier�� and heterogeneous database systems and shows how query
processing works in these systems�

Categories and subject descriptors� E�� �Data��Files� H���	 �Database Management
Systems�� distributed databases
 query processing� H���� �Heterogeneous Databases�� data
translation

General terms� algorithms� performance

Additional key words and phrases� query optimization� query execution� client�server
databases� middleware� multi�tier architectures� database application systems� wrappers�
replication� caching� economic models for query processing� dissemination�based informa�
tion systems

�

� Introduction

��� Background and Motivation

Researchers and practitioners have been interested in distributed database systems since
the seventies� At that time
 the main focus was on supporting distributed data manage�
ment for large corporations and organizations that kept their data at di
erent o�ces or
subsidiaries� Although there was a clear need and many good ideas and prototypes �e�g�

System R� �WDH����
 SDD�� �BGW����
 and Distributed Ingres �Sto����
 the early ef�
forts in building distributed database systems was never commercially successful �Sto�	��
In some aspects
 the early distributed database systems were ahead of their time� First

communication technology was not stable enough to ship megabytes of data as required
for these systems� Second
 large businesses somehow managed to survive without so�
phisticated distributed database technology by sending tapes
 diskettes
 or just paper to
exchange data between their o�ces�
Today
 in the late nineties
 the situation has changed dramatically� Distributed data

processing is both feasible and needed� Almost all major database system vendors o
er
products to support distributed data processing �e�g�
 IBM
 Informix
 Microsoft
 Oracle

Sybase�
 and large database application systems have a distributed architecture �e�g�

business application systems such as Baan IV
 Oracle Finance
 Peoplesoft ���
 and SAP
R���� Distributed data processing is feasible because of recent technological advances
�e�g�
 hardware
 software protocols
 standards�� Distributed data processing is needed
because of changing business requirements which have made distributed data processing
cost�e
ective and in certain situations the only viable option� Speci�cally
 businesses
are beginning to rely on distributed rather than centralized databases for the following
reasons�

�� Cost and scalability� Today
 one thousand PC processors are cheaper and sig�
ni�cantly more powerful than one big mainframe computer� So
 it makes economic
sense to replace a mainframe by a network of small
 o
�the�shelf processors� Fur�
thermore
 it is very di�cult to �up�size� a mainframe computer if a company grows

while new PCs can be added to the network at any time in order to meet a company�s
new requirements� High availability can be achieved by mirroring �replicating� data�

�� Integration of di�erent software modules� It has become clear that no single
software package can meet all the requirements of a company� Companies must

therefore
 install several di
erent packages
 each potentially with its own database

and the result is a distributed database system� Even single software packages
o
ered by one vendor have a distributed
 component�based architecture so that the
vendor can market and o
er upgrades for every component individually�

�� Integration of legacy systems� The integration of legacy systems is one particu�
lar example that demonstrates how some companies are forced to rely on distributed
data processing in which their old legacy systems need to coexist with new modern
systems�

	� New applications� There are a number of new emerging applications that rely
heavily on distributed database technology� examples are work�ow management

computer�supported collaborative work
 tele�conferencing
 and electronic commerce�

�

�� Market forces� Many companies are forced to reorganize their businesses and use
state�of�the�art distributed information technology in order to remain competitive�
As an example
 people will probably not eat more Pizza because of the Internet

but a Pizza delivery service is de�nitely going to lose some of its market share if it
does not allow people to order Pizza on the Web�

This list shows that there are many di
erent reasons to rely on distributed architectures
and correspondingly many di
erent kinds of distributed systems exist� Sometimes it is
only the software and not the hardware that is distributed� The purpose of this paper
is to give a comprehensive overview of what query processing techniques are needed to
implement any kind of distributed database and information system� It is assumed that
users and application programs issue queries using a declarative query language such as
SQL �MS��� or OQL �CBB���� and without knowing where and in which format the
data is stored in the distributed system� The goal is to execute such queries as e�ciently
as possible in order to minimize the time that users must wait for answers or the time
application programs are delayed� To this end
 we will discuss a series of techniques that
are particularly e
ective to execute queries in today�s distributed systems� For example

we will describe the design of a query optimizer that compiles a query for execution and
determines the best possible way among many alternative ways to execute a query� We
will also show how techniques such as caching and replication can be used to improve the
performance of queries in a distributed environment� Furthermore
 we will cover speci�c
query processing techniques for client�server
 middleware �multi�tier�
 and heterogeneous
database and information systems which represent architectures that are frequently found
in practice�

��� Scope of this Paper and Related Surveys

A very large body of work in the general area of database systems exists� All this work can
be roughly classi�ed into work on architectures and techniques for transaction processing
�i�e�
 quickly processing small update operations�
 work on query processing �i�e�
 mostly
read operations that explore large amounts of data�
 and work on data models
 languages
and user interfaces for advanced applications� In this paper
 we will focus primarily on
query processing� A discussion of transaction processing and of alternative data models is
beyond the scope of this paper� Transaction processing has
 for example
 been thoroughly
investigated in �GR���� Work on data models �relational
 deductive
 object�oriented
 and
semi�structured� is described in �Ull��
 CBB���
 Abi��
 Bun���� Also
 we will assume
that the reader is familiar with basic database system concepts
 SQL
 and the relational
data model� Good introductory textbooks are �SKS��
 Ram����
A parallel database system is a particular type of distributed system� Distributed and

parallel database systems share several properties and goals�in particular
 if the parallel
system has a so�called �shared�nothing� architecture �Sto���� The purpose of a parallel
database system is to improve transaction and query response times and the availability
of the system for centralized applications� Parallel systems
 therefore
 emphasize the
cost�scalability arguments described above
 while the distributed systems discussed in
this paper often address issues such as the heterogeneity of components� While some
query processing techniques are useful for both kinds of systems
 researchers in both
areas have developed special�purpose techniques for their particular environment� In this

�

paper
 we will concentrate on the techniques that are of interest for distributed database
systems
 and will not discuss techniques which are speci�cally used in parallel database
systems �e�g�
 special parallel join methods
 repartitioning of data during query execution

etc��� An excellent overview on parallel database systems is given in �DG����
In terms of related work
 there have been several surveys on distributed query pro�

cessing� e�g�
 a paper by Yu and Chang �YC�	� and parts of the books by Ceri and
Pelagatti �CP�	�
 �Ozsu and Valduriez � �OV���
 and Yu and Meng �YM��� are devoted to
distributed query processing� These surveys
 however
 are mostly focussed on the presen�
tation of the techniques used in the early prototypes of the seventies and eighties� While
there is some overlap
 most of the material presented in this paper is not covered in those
articles and books simply because the underlying technology and business requirements
have signi�cantly changed in the last few years�

��� Organization of this Paper

This paper is organized as follows�

� Section � presents the textbook architecture for query processing and a series of basic
query execution techniques which are useful for all kinds of distributed database
systems

� Section � takes a closer look at query processing for one particular and very impor�
tant class of distributed database systems� client�server database systems

� Section 	 deals with the query processing issues that arise in heterogeneous database
systems� i�e�
 systems that are composed of several autonomous component databases
with di
erent schemas
 varying query processing capabilities
 and application pro�
gramming interfaces �APIs�

� Section � shows how data placement �i�e�
 replication and caching� and query pro�
cessing interact and shows how data can dynamically and automatically be dis�
tributed in a system in order to achieve good performance

� Section � describes other emerging and promising architectures for distributed data
processing� speci�cally
 this section gives an overview of economic models for dis�
tributed query processing and dissemination�based information systems

� Section � contains conclusions and summarizes open problems for future research�

� Distributed Query Processing�

Basic Approach and Techniques

In this section
 we will describe the �textbook� architecture for query processing and
present a series of speci�c query processing techniques for distributed database and in�
formation systems� These techniques include alternative ways to ship data from one site
to one or several other sites
 implement joins
 and carry out certain kinds of queries in
a distributed environment� The purpose of this section is to give an overview of basic
mechanisms that can be used in any kind of distributed database system� In Sections �

	

Query
Optimizer

Query
RewriteParser

Query

Query
Execution
Engine

Result

internal
repr.

internal
repr. plan

Base Data
(Meta Data)

Catalog

Plan
Refinement/
Code Gen.

exec.
plan

Figure �� Phases of Query Processing �HFLP���

and 	
 we will discuss the techniques that are particularly useful for certain classes of
distributed database systems �i�e�
 client�server and heterogeneous database systems��

��� Architecture of a Query Processor

Figure � shows the classic �textbook� architecture for query processing� This architecture
was developed as part of IBM�s Starburst project �HFLP���� This architecture can be used
for any kind of database system including centralized
 distributed
 or parallel systems� The
query processor receives an �SQL or OQL� query as input
 translates and optimizes this
query in several phases into an executable query plan
 and executes the plan in order to
obtain the results of the query� If the query is an interactive ad�hoc query �dynamic SQL�

the plan is directly executed by the query execution engine
 and the results are presented
to the user� If the query is a so�called canned query which is part of an application
program �embedded SQL�
 the plan is stored in the database and executed by the query
execution engine every time the application program is executed �CAK����� Below is a
brief description of each component of the query processor�

Parser In the �rst phase
 the query is parsed and translated into an internal represen�
tation �e�g�
 a query graph �JWKL��
 PHH���� that can be easily processed by the later
phases� The development of parsers is well understood �ASU���
 and tools like flex and
bison can be used for the construction of SQL or OQL parsers just as for most other
programming languages� The same parser can be used for a centralized and distributed
database system�

Query Rewrite Query rewrite transforms a query in order to carry out optimizations
which are good regardless of the physical state of the system �e�g�
 the size of tables

presence of indices
 locations of copies of tables
 speed of machines
 etc�� �PHH���� Typical
transformations are the elimination of redundant predicates
 simpli�cation of expressions

and unnesting of subqueries and views� In a distributed system
 query rewrite also selects
the partitions of a table which must be considered to answer a query �CP�	
 �OV���� Query
rewrite is carried out by a sophisticated rule engine �PHH����

Query Optimizer This component carries out optimizations that depend on the phys�
ical state of the system� The optimizer decides which indices to use to execute a query

which methods �e�g�
 hashing or sorting� to use to execute the operations of a query �e�g�

�

RECEIVE

SEND

IDXSCAN(A)

SEND

SCAN(B)

RECEIVE

TEMP

SCAN

NLJSite 0

Site 1 Site 2

Figure �� Example Query Evaluation Plan

joins and group�bys�
 and in which order to execute the operations of a query� The query
optimizer also decides how much main memory to allocate for the execution of each opera�
tion� In a distributed system
 the optimizer must also decide at which site each operation
is to be executed� To make these decisions
 the optimizer enumerates alternative plans
�described below� and chooses the best plan using a cost estimation model� Almost all
commercial query optimizers are based on dynamic programming in order to enumer�
ate plans e�ciently� Dynamic programming and considerations for cost estimation in a
distributed system are described in more detail in Section ����

Plan A plan speci�es precisely how the query is to be executed� Probably every database
system represents plans in the same way� as trees� The nodes of a plan are operators
 and
every operator carries out one particular operation �e�g�
 join
 group�by
 sort
 scan
 etc���
The nodes of a plan are annotated indicating
 for instance
 where the operator is to be
carried out� The edges of a plan represent consumer�producer relationships of operators�
Figure � shows an example plan for a query that involves Tables A and B� The plan
speci�es that Table A is read at Site � using an index �the idxscan�A� operator�
 B is
read at Site � without an index �the scan�B� operator�
 A and B are shipped to Site �
�the send and receive operators�
 B is materialized and reread at Site � �the temp and
scan operators�
 and �nally
 A and B are joined at Site � using a nested�loop join method
�the NLJ operator�� The send and receive operators encapsulate all the communication
activity so that all other operators �e�g�
 NLJ or scan� can be implemented and used in
the same way as in a centralized database system�

Plan Re�nement�Code Generation This component transforms the plan produced
by the optimizer into an executable plan� In System R
 for example
 this transformation
involves the generation of an assembler�like code to evaluate expressions and predicates
e�ciently �LW���� In some systems
 plan re�nement also involves carrying out simple
optimizations which are not carried out by the query optimizer in order to simplify the
implementation of the query optimizer�

Query Execution Engine This component provides generic implementations for every
operator �e�g�
 send
 scan
 or NLJ �� All state�of�the�art query execution engines are based
on an iterator model �Gra���� In such a model
 operators are implemented as iterators

and all iterators have the same interface� As a result
 any two iterators can be plugged
together �as speci�ed by the consumer�producer relationship of a plan�
 and thus
 any

�

plan can be executed� Another advantage of the iterator model is that it supports the
pipelining of results from one operator to another in order to achieve good performance�

Catalog The catalog stores all the information needed in order to parse
 rewrite
 and
optimize a query� It maintains the schema of the database �i�e�
 de�nitions of tables
 views

user�de�ned types and functions
 integrity constraints
 etc��
 the partitioning schema �i�e�

information about what global tables have been partitioned and how they can be recon�
structed�
 and physical information such as the location of copies of partitions of tables

information about indices
 and statistics which are used to estimate the cost of a plan�
In most relational database systems
 the catalog information is stored like all other data
in tables� In a distributed database system
 the question of where to store the catalog
arises� The simplest approach is to store the catalog at one central site� In wide�area
networks
 it makes sense to replicate the catalog at several sites in order to reduce com�
munication costs� It is also possible to cache catalog information at sites in a wide�area
network �WDH����� Both replication and caching of catalog information are very e
ective
because catalogs are usually quite small �hundreds of KBs rather than GBs� and catalog
information is rarely updated in most environments� In certain environments
 however

the catalog can become very large and be frequently updated� In such environments
 it
makes sense to partition the catalog data and store catalog data where it is most needed�
For example
 catalogs of distributed object databases need to know where copies of all
the objects �potentially millions� are stored and they need to update this information
every time an object is migrated or replicated� Such catalogs can be implemented in a
hierarchical way as described in �EKK����

It should be noted that the Starburst architecture shown in Figure � and described in
this subsection is not the only possible way to process queries� There is no such thing as
a perfect query processor� An alternative architecture has
 for example
 been developed
by Graefe and others as part of the Exodus
 Volcano
 and Cascades projects �GD��

GM��
 Gra��� and is used in several commercial database products �e�g�
 Microsoft SQL
Server ����� In that architecture
 query rewrite and query optimization are carried out
in one phase� Furthermore
 there have been proposals to optimize a set of queries rather
than individual queries �Sel���� The advantage of such an approach is that common
subexpressions �e�g�
 joins� which are part of several queries need only be carried out once
for the whole set of queries�

��� Query Optimization

We now turn to a description of techniques that can be used to implement the query
optimizer of a distributed database system� We will �rst describe the most popular
enumeration algorithm for query optimization� After that
 we will describe two cost
models that can be used to estimate the cost of a plan�

����� Plan Enumeration with Dynamic Programming

A large number of alternative enumeration algorithms have been proposed in the lit�
erature� �SMK��� contains a good overview
 and �KS��� evaluates the most important
algorithms for distributed database systems� In the following
 dynamic programming is

�

Input� SPJ query q on relations R�� � � � � Rn

Output� A query plan for q

�� for i � � to n do f
	� optPlan�fRig� � accessPlans�Ri�

� prunePlans�optPlan�fRig��
�� g
�� for i � 	 to n do f
�� for all S � fR�� � � � � Rng such that jSj � i do f
�� optPlan�S� � �
�� for all O � S do f
�� optPlan�S� � optPlan�S� � joinPlans�optPlan�O�� optPlan�S �O��
��� prunePlans�optPlan�S��
��� g
�	� g
�
� g
��� return optPlan�fR�� � � � � Rng�

Figure �� Dynamic Programming Algorithm for Query Optimization

described� This algorithm is used in almost all commercial database products
 and it was
pioneered in IBM�s System R project �SAC����� The advantage of dynamic program�
ming is that it produces the best possible plans
 if the cost model is su�ciently accurate�
The disadvantage of this algorithm is that it has exponential time and space complexity
so that it is not viable for complex queries� in particular
 in a distributed system
 the
complexity of dynamic programming is prohibitive for many queries� An extension of the
dynamic programming algorithm is known as iterative dynamic programming� This ex�
tended algorithm is adaptive and produces as good plans as basic dynamic programming
for simple queries and �as good as possible plans� for complex queries for which dynamic
programming is not viable� We do not describe this extended algorithm in this paper and
refer the interested reader to �KS����
The basic dynamic programming algorithm for query optimization is shown in Fig�

ure �� It works in a bottom�up way by building more complex �sub�� plans from simpler
�sub�� plans� In the �rst step
 the algorithm builds an access plan for every table involved
in the query �Lines � to 	 of Figure ��� If Table A
 for instance
 is replicated at Sites
S� and S�
 the algorithm would enumerate scan�A� S�� and scan�A� S�� as alternative
access plans for Table A� Then
 the algorithm enumerates all two�way join plans using
the access plans as building blocks �Lines � to ���� Again
 the algorithm would enumerate
alternative join plans for all relevant sites� i�e�
 consider carrying out joins with A at S�
and S�� Next
 the algorithm builds three�way join plans
 using access�plans and two�way
join plans as building blocks� The algorithm continues in this way until it has enumerated
all n�way join plans which are complete plans for the query
 if the query involves n tables�
The beauty of the dynamic programming algorithm is that inferior plans are discarded

�i�e�
 pruned� as early as possible �Lines � and ���� A plan can be pruned if an alternative
plan exists that does the same or more work at a lower cost� Dynamic programming
 for
example
 would enumerate A�B and B�A as two alternative plans to execute this join

but only the cheaper of the two plans would be kept in the optPlan�A�B� structure after

�

pruning� Pruning signi�cantly reduces the complexity of query optimization� the earlier
inferior plans are pruned
 the better because more complex plans are not constructed from
such inferior plans�
In a distributed system
 neither scan�A� S�� nor scan�A� S�� may be immediately

pruned in order to guarantee that the optimizer �nds a good plan� Both plans do the
same work
 but they produce their results at di
erent sites� Even if scan�A� S�� is cheaper
than scan�A� S��
 scan�A� S�� must be kept because it might be a building block of the
overall best plan if
 for instance
 the query results are to be presented at S�� Only if the
cost of scan�A� S�� plus the cost of shipping A from S� to S� is lower than the cost of
scan�A� S��
 scan�A� S�� is pruned� In general
 a plan P� may be pruned if there exists
a plan P� that does the same or more work and the following criterion holds�

�i � interesting sites�P�� � cost�ship�P�� i�� � cost�ship�P�� i�� ���

Here
 interesting site denotes the set of sites which are potentially involved in processing
the query� the concept is formally de�ned in �KS���� �KS��� also shows how this expression
can be evaluated e�ciently during query optimization under certain conditions� �GHK���
describes further adaptions to the pruning logic which need to be considered if a response
time cost model is used �Section �������
In the literature
 there has been a great deal of discussion concerning bushy or �left��

deep join plan enumeration �SD��
 IK��
 LVZ���� Deep plans are plans in which every
join involves at least one base table� Bushy plans are more general� in a bushy plan
 a join
could involve one or two base tables or the result of one or two other join operations �for
instance
 the plans of Figure 	 are bushy�� The algorithm shown in Figure � enumerates
all bushy plans
 and taking all bushy plans into account is also the approach taken in
most commercial database systems� The best plan to execute a query is often bushy and
not deep� in particular in a distributed system �FJK����

����� Cost Estimation for Plans

The Classic Cost Model The classic way to estimate the cost of a plan is to estimate
the cost of every individual operator of the plan and then sum up these costs �ML���� In
this model
 the cost of a plan is de�ned as the total resource consumption of the plan�
In a centralized system
 the cost of an operator is composed of CPU costs plus disk I�O
costs� The disk I�O costs
 in turn
 are composed of seek
 latency
 and transfer costs�
In a distributed system
 communication costs must also be considered� these costs are
composed of �xed costs per message
 per�byte costs to transfer data
 and CPU costs to
pack and unpack messages at the sending and receiving sites� The costs can be weighted
in order to model the impact of slow and fast machines and communication links� for
example
 it is more expensive to ship data from Passau �Germany� to Washington �USA�
than from Passau to Munich �Germany�� Also
 high weights are assigned to the CPU
instructions and disk I�O operations which are carried out by heavily loaded machines�
As a result
 the optimizer will favor plans that carry out operators at fast and unloaded
machines and avoid expensive communication links
 wherever possible�

Response Time Models The classic cost model that estimates the total resource
consumption of a query is useful to optimize the overall throughput of a system� if all
queries consume as little resources as possible and avoid heavily loaded machines
 then

�

A B C D

Site 0

JOIN

JOIN JOIN

A B

Site 1 Site 2

C D

Site 0

JOIN

RECEIVE RECEIVE

SEND SEND

JOIN JOIN

Minimum Resource Consumption Minimum Response Time

Figure 	� Example Plans� Total Resource Consumption vs� Response Time

as many queries as possible can be executed in parallel� The classic cost model
 however

does not consider intra�query parallelism and
 therefore
 an optimizer based on this cost
model will not necessarily �nd the plan with the lowest response time for a query in cases
in which machines are lightly loaded and communication is fast�
To give an example that demonstrates the di
erence between the total resource con�

sumption and the response time of a plan
 consider the two plans of Figure 	� Assuming
that the costs of join processing are the same at all three sites and that copies of all tables
are stored at all the sites
 the �rst plan clearly has a lower total resource consumption
than the second plan because the �rst plan involves no communication� The second plan

however
 probably has a lower response time if communication is fairly cheap because all
three joins can be carried out in parallel at the three sites�
To �nd the plan with the lowest response time for a query �i�e�
 the second plan of

Figure 	�
 the query optimizer must use a cost model that estimates response time
 rather
than total resource consumption� Such a cost model was devised in �GHK���� This cost
model di
erentiates between pipelined and independent parallelism� for example
 A � B

and C � D can be carried out independently in parallel in both plans of Figure 	
 and
these two joins and the top�level join can be carried out in a pipelined parallel fashion�
Described on a high level
 this cost model works as follows to deal with both kinds of
parallelism �pipelining is slightly more complex�� First
 the total resource consumption is
computed for each individual operator� Second
 the total usage of every shared resource
used by a group of operators that run in parallel is computed� the usage of the network

for example
 is computed by taking into account the bandwidth of the network and the
volume of data transmitted to carry out all the operators that run in parallel� The
response time of an entire group of operators that run in parallel is then computed as the
maximum of the total resource consumption of the individual operators and of the total
usage of all the shared resources�
To illustrate
 let us go back to the two plans of Figure 	 and make the following

assumptions� ��� all three joins run in parallel �pipelined and�or independently� in both
plans� ��� each join costs ��� secs of CPU time and no disk I�O in both plans� ��� the
network has no latency and shipping the results of A�B and C �D each cost ��� secs of
network bandwidth in the second plan� �	� sending and receiving tuples incurs no CPU
costs� ��� reading all four tables is free in both plans� Under these assumptions
 the
response time model estimates that the �rst plan of Figure 	 has a response time of ���
secs� this is the total usage of the CPU at Site �� For the second plan
 the response time

��

model makes the following calculations� total usage of each CPU is ��� secs� total usage
of the network is ��� secs� the maximum cost of an operator is ��� secs� As a result
 the
response time is estimated to be ��� secs
 as the maximum of all these components�
This cost model captures the e
ects of operator parallelism in a coarse�grained way� for

example
 scheduling considerations that arise when several operators concurrently use the
same resource are not modeled� Looking closer at the model
 it is possible to �nd situations
in which inaccuracies of the cost model make the optimizer choose suboptimal plans even
if the resource consumption of the individual operators is accurately estimated� However

the cost model works quite well if only a few operators run in parallel� It has already
been successfully used for query optimization in several studies �e�g�
 �FJK��
 UFA�����
Like the classic cost model
 it is able to evaluate a plan very quickly� This is important
because query optimization often involves applying the cost model to thousands of plans�

��� Query Execution Techniques

This subsection describes alternative ways to execute queries in a distributed database
system� In particular
 we will describe how data can be shipped and how joins between
tables stored at di
erent sites can be computed� We will not describe �standard� execution
techniques that are commonly used in centralized database systems� e�g�
 hash
 sort

or index�based algorithms to compute joins and group�bys� Such techniques have been
described in full detail in other surveys �ME��
 Gra���
 and they can naturally be applied
in a distributed system in concert with send and receive operators�
Most of the execution techniques described in this subsection represent one of many

options to implement an operator in a distributed system� In order to make the best use
of these execution techniques
 the query optimizer of the system must be extended in
order to decide if and how to make use of these techniques for a speci�c query� In other
words
 integrating these techniques into a distributed database system involves extend�
ing the accessPlans and joinPlans functions in a dynamic�programming�based optimizer
�Figure �� in order to enumerate alternative plans that make use of these execution tech�
niques� Also
 cost formulae must be provided so that the cost and�or response time of
such plans can be estimated�

��	�� Row Blocking

As seen in Figure �
 communication is typically implemented by send and receive oper�
ators� Naturally
 the implementation of these operators is based on TCP�IP
 or UDP

or some other network protocol �Tan���� To reduce the overhead
 almost all database
systems employ a technique called row blocking� The idea is to ship tuples in a blockwise
fashion
 rather than every tuple individually� In other words
 a send operator consumes
several tuples of its child operator and sends these tuples as a batch� This approach is
obviously much cheaper than the naive approach of sending one tuple at a time because
the data is packed into fewer messages� The size of the blocks is a parameter of the send
and receive operators� this parameter is set taking into account the characteristics of the
network
 i�e�
 the message size of the network�
One particular advantage of row blocking is that it compensates for burstiness in the

arrival of data up to a certain point� If tuples are shipped one by one through the network

any short delay in the network would immediately stop the execution of the query at the

��

UNION

RECEIVE RECEIVE RECEIVE

SEND

SCAN(A2)

SEND

SCAN(A1)

SEND

SCAN(A3)

Site 1 Site2 Site3

Site 0

RECEIVE RECEIVE

SEND

SCAN(A2)

SEND

SCAN(A1)

Site 1 Site2

Site 0

SORT SORT

MERGE−JOIN

Figure �� Example Union Plan Figure �� Example Join Plan

receiving site because of a shortage of tuples to consume� Due to row blocking
 the receive
operator has a reservoir of tuples and can feed its parent operator even if the next block
of tuples is delayed� As a result
 it is often better to choose a block size which is larger
than the message size used by the network�

��	�� Optimization of Multicasts

In most environments
 networks are organized in a hierarchical way so that communication
costs vary signi�cantly depending on the locations of the sending and receiving sites� It
is
 for instance
 cheaper to send data from Munich to Passau which are both in Germany
than from Washington
 across the Atlantic
 to Passau� Sometimes
 a site needs to send
the same data to several sites to execute a query� it is
 for instance
 possible that the
same data must be sent from Washington to Munich and Passau� If the network does not
provide cheap ways to implement such multicasts
 it is preferable to send the data from
Washington to Munich and then from Munich to Passau rather than sending the data
from Washington across the Atlantic twice�
Sometimes
 this technique is useful even in a homogeneous and fast network� Let us

assume that the time�on�the�wire to send messages between Washington
 Munich
 and
Passau is negligible� in this case
 CPU costs to send �i�e�
 pack� and receive �unpack�
messages dominate communication costs� If Washington is heavily loaded or has a slow
CPU
 then it might again be better if Passau receives the data from Munich rather than
from Washington� Obviously
 another option would be for Passau to receive the data
from Washington and for Munich to receive the data from Passau� The best choice must
be made by the query optimizer�

��	�	 Multi
Threaded Query Execution

To take the best advantage of intra�query parallelism
 it is sometimes advantageous to
establish several threads at a site �Gra���� As an example
 consider the plan of Figure �
which implements the query A� �A� �A�� A� is stored at Site �
 A� at Site �
 and A� at
Site �� If the union and receive operators of Site � are executed within a single thread
 then
Site � only requests one block at a time
 e�g�
 in a round�robin way
 and the opportunity
to read and send the three partitions from Sites �� �
 and � to Site � in parallel is wasted�
Only if the union and receive operators at Site � run in di
erent threads can the three
receive operators continuously ask for tuples from the send operators at Sites �� �
 and �
so that all three send operators run and produce tuples in parallel�

��

Establishing a separate thread for every query operator
 however
 is not always the
best thing to do� First
 shared�memory communication between threads needs to be syn�
chronized
 resulting in additional cost� Second
 it is not always advantageous to parallelize
all operations� Consider
 for example
 the plan of Figure � which carries out a sort�merge
join of Tables A and B� Depending on the available main memory at Site �
 it might
or might not be advantageous to receive and sort Tables A and B in parallel at Site ��
If there is plenty of main�memory to store large fractions of both A and B at Site �

then the two pairs of receive and sort operators should be carried out in parallel in order
to parallelize the send and scan of A and B� Otherwise
 the two receive�sort branches
should be carried out one at a time in order to avoid resource contention at Site � �i�e�

disk thrashing if both sorts write concurrently to the same disk�� The query optimizer
and�or a scheduler at run time must decide which parts of a query should run in paral�
lel and
 thus
 which operators should run in the same thread� Work on scheduling and
dynamic resource allocation for distributed and parallel databases has been described in

e�g�
 �Gra����

��	�� Joins with Horizontally Partitioned Data

The logical properties of the join and union operators make it possible to process joins
in a number of di
erent ways if the tables are horizontally partitioned� If
 for example

Table A is horizontally partitioned in such a way that A � A� � A�
 then A � B can be
computed in the following two ways �ESW����

�A� � A�� �B or �A� �B� � �A� �B�

If A is partitioned into more than two partitions or if B is also partitioned
 then even
more variants are possible� for example
 ��A��A���B�� �A��B� might be an attractive
plan if B is replicated and one copy of B is located at a site near the sites that store
A� and A� and another copy of B is located near the site that stores A�� The optimizer
ought to consider all these options�
In some situations
 A and B are partitioned in such a way that it is possible to deduce

that some of the Ai � Bj are empty� The optimizer should
 of course
 take advantage of
such knowledge and eliminate such �empty� expressions in order to reduce the cost of join
processing� One very common situation is that A and B are partitioned in such a way
that Ai � Bj is empty if i �� j� Consider
 for example
 a company that has a Dept table
which is partitioned by Dept�location in order to store all the Dept information at the
site of the department� This company may also have an Emp table which is partitioned
according to the location of the Dept in which the Emp works in� Emp�Dept can be carried
out for this company by joining the Emp and Dept partitions separately at every site� In
other words
 the following equation holds if the company has n sites�

�Emp
�
�� � ��Empn���Dept��� � ��Deptn� � �Emp��Dept����Emp��Dept���� � ���Empn�Deptn�

��	�� Semi Joins

Semi�join programs were proposed as another technique to process joins between tables
stored at di
erent sites �BGW����� If Table A is stored at Site � and Table B is stored
at Site �
 then the �conventional� way to execute A�B is to ship A from Site � to Site �

��

and execute the join at Site � �or the other way around�� The idea of a semi�join program
is to send only the column�s� of A that are needed to evaluate the join predicates from
Site � to Site �
 �nd the tuples of B that qualify the join at Site �
 send those tuples to
Site �
 and then match A with those B tuples at Site �� Formally
 this procedure can be
described as follows �� is the semi�join operator and ��A� projects out the join columns
from A��

A �B � A � �B � ��A��

Variants of this approach are meant to eliminate duplicate tuples from ��A� �trading
additional work at Site � for less communication� and sending a signature �le for A
 a
so�called bloom�hash �lter
 rather than ��A� �Bab��
 VG�	�� Again
 the optimizer must
decide which variant to use
 if any
 and in which direction to carry out the semi�join
program
 from Site � to Site � or vice versa
 based on the cardinalities of the tables

the selectivity of the join predicate�s�
 and the location of the data used in the other
operations of the query�
Experimental work indicates that semi�join programs are typically not very attrac�

tive for join processing in standard �relational� distributed database systems because the
additional computational overhead is usually higher than the savings in communication
costs �ML��
 LC���� Today
 however
 several applications that involve tables with very
large tuples can be found and semi�join style techniques can indeed be very attractive
for such applications� Consider
 for example
 a table that stores employee information
including a picture of every employee� In this case
 it does make sense to �nd the target
employees of a query using
 say
 the age� dept no
 etc� columns and then fetch the picture
and other columns of the query result at the end� Other examples arise in client�server
database systems �Section ��� In a client�server system
 for example
 the following plan
might be very useful

�A �S� C� �S� �B �S� C�

if A is stored at Server S�
 B is stored at Server S�
 C is replicated at both servers
 and
the result of the whole query must be displayed at Client S� �BKKS���� Furthermore

Section 	���� demonstrates how semi�join style techniques can be very useful to exploit
the speci�c capabilities of sites in a heterogeneous database system�

��	�
 Double
pipelined Hash Joins

Recently
 double�pipelined �or non�blocking� hash join algorithms were proposed �WA��

IFF���
 UF���� The use of such join algorithms makes it possible to deliver the �rst
results of a query as early as possible� In addition
 such join algorithms make it possible
to fully exploit pipelined parallelism and
 thus
 reduce the overall response time of a query
in a distributed system� As described in �UF���
 variants of such join methods can be
particularly useful in a distributed system in which the delivery of tuples through the
network is bursty because certain phases of the join processing can be carried out at a
site while the site waits for the next
 possibly delayed
 batch of tuples�
The basic idea on which all these algorithms are based is quite simple� To execute

A � B
 two main�memory hash tables are constructed� one for tuples of A and one for
tuples of B� The two hash tables are empty
 initially� The tuples of A and B are processed
one at a time� To process a tuple of A
 the B hash table is probed in order to �nd B

tuples that match this A tuple� A and the matching B tuples are immediately output�

�	

After that
 the A tuple is inserted into the A hash table for matching B tuples that have
not yet been processed� B tuples are processed analogously� The algorithm terminates
when all A and B tuples have been processed and is guaranteed to �nd all the results of
the join� Special actions need to be taken if the hash tables grow in such a way that the
main memory is exhausted� To remedy such a situation
 the algorithms in �IFF���
 UF���
adopt a hybrid hashing and partitioning scheme�

��	�� Pointer
based Joins and Distributed Object Assembly

One particular kind of query that can be found in object�oriented and object�relational
database systems are so�called pointer�based joins� Pointer�based joins occur because
foreign�keys are implemented in these systems by explicit references that contain the
address of an object or the address of a placeholder of an object �EGK���� Rather than
a user�de�ned department number
 for example
 every Emp tuple contains a reference or
pointer to the site and storage location of the corresponding Dept object� A pointer�
based join query is a query that involves traversing a set of references as in ��nd the Dept
information of all Emps that are older than �� years old��
Alternative ways to execute pointer�based joins have been studied in �SC��� � that

paper focuses on centralized database systems
 but the basic ideas can naturally be applied
to distributed and parallel database systems �DLM���� The naive way to execute pointer�
based joins is to scan through the Emp table and follow the Dept references of all Emps
of age � ��� In a centralized database system
 this naive approach is very expensive
because it involves a great deal of random disk I�O to fetch the individual Dept objects
from the disk� In a distributed database system
 the naive approach incurs even higher
costs because it involves a round trip message to chase the Dept reference of every old Emp

in addition to random disk I�O� An alternative to the naive approach is to implement the
pointer�based join as an ordinary �relational� value�based join� that is
 as a join between
the Emp and Dept tables with Emp�DeptRef � Dept�address as the join predicate� This
approach works if it is known that the Emp tuples only reference objects of the Dept

table �i�e�
 so�called scoped references�
 and this approach typically outperforms the naive
approach because it avoids random disk I�O and excessive round trip messages� On the
negative side
 however
 this approach does not take advantage of the fact that the Dept
references in the Emp tuples actually materialize which Emps and Depts belong together

and thus
 the �value�based join� approach needs to recompute this matching�
The advantages of the �naive� and �value�based join� approaches can in many cases

be combined by grouping the Emp tuples using sorting or hashing �SC���� That is
 all
old Emps that belong to Depts stored at the same site are grouped together� Then the
Dept objects for these Emps are fetched from that site in one batch� Like with the naive
approach
 with this approach it is not necessary to recompute the matching between Emp

and Dept objects� and like the value�based approach
 this approach avoids random I�O and
unnecessary round trip messages� Random disk I�O can be avoided by sorting the Dept
references� Another algorithm
 the P �PM��M algorithm
 to implement pointer�based
joins was devised in �BCK���� The P �PM��M algorithm uses the same partition�based
�i�e�
 grouping� approach as proposed by �SC���
 but the P �PM��M algorithm also makes
sure that after the pointer�based join is complete
 the Emp tuples are in the same order
as before� This is useful
 for example
 if the Emp tuples are already in the right order
as needed for the query result
 another join operation
 or a group�by operation� The

��

P �PM��M algorithm is particularly useful if the pointer�based join is along reference
sets because it avoids the costs of unnesting the reference sets before the join and then
regrouping the sets again after the join�
A special class of algorithms
 object assembly
 becomes attractive if a query involves

several pointer�based joins or tries to compute the transitive closure of one or several root
objects� Such queries are beginning to become more and more important in the context of
the WWW� consider
 for example
 Web crawlers that recursively traverse references �http
links� of Web pages
 or systems for semi�structured data �e�g�
 XML data�� Traditional
join processing takes a breadth��rst search approach to evaluate queries with several
pointer�based or ordinary joins� The traditional way would be to order the joins during
query optimization and execute the joins in the speci�ed order� Object assembly takes a
di
erent approach combining breadth��rst and depth��rst search in a �exible way� Using
object assembly in a distributed system
 a query involving Emps
 Depts
 and Divisions

for example
 could be executed as follows �KGM��
 MGS��	��

�� Group Emps such that the corresponding Depts referenced by a group of Emps are
stored at the same site

�� Consider the �rst group of Emps and visit the site that stores the Depts for that
group of Emps� at that site
 fetch all the referenced Dept objects and
 if any
 also
fetch all Division objects which are stored at that site and referenced by the Dept
objects� return the Dept and Division objects

�� At the original site
 the site of the Emp objects
 Emp�Dept�Division triplets can
be directly output� Emp�Dept pairs need to be further expanded by grouping them
in such a way that the Divisions referenced by a group of Emp�Dept pairs are
stored at the same site� i�e�
 the grouping of Emp�Dept pairs is carried out just as
the grouping of Emps in Step �
 and a group of Emp�Dept pairs can be expanded
just as in Step �

	� Repeat Steps � and � until all Emp and Emp�Dept groups have been expanded�

As described in �MGS��	�
 many variants of this approach are conceivable in a distributed
system� unfortunately
 none of these variants has been implemented so that experimental
performance results are not available�

��	�� Top N and Bottom N Queries

Top N and Bottom N queries are another particular kind of query� Examples are ��nd
the ten highest paid employees that work in a research department� or ��nd the ten
researchers that have published the most papers�� The goal is to avoid wasted work
when executing these queries by isolating the top N �or bottom N� tuples as quickly as
possible and then performing other operations �sorts
 joins
 etc�� only on those tuples�
In standard relational databases
 so�called stop operators can be used to isolate the top
N and bottom N tuples� Query optimization issues and stop operator implementation
issues have been discussed in �CK��
 CK���� The techniques proposed in this work have
been developed primarily for centralized relational database systems
 but they can again
be directly applied to distributed databases as well� To give a very simple example of
how these techniques could be used in a distributed system
 consider the plan shown in

��

UNION

RECEIVE RECEIVE RECEIVE

Site 0 STOP(10)

SCAN(A2) SCAN(A3)SCAN(A1)

Site 1 Site2 Site3

SEND

STOP(10)

SEND

STOP(10)

SEND

STOP(10)

Figure �� Example Plan for a Top N Query

Figure �� The given plan computes the top ten tuples of Table A if A is horizontally
partitioned over three sites� The stop operators at Sites �� �
 and � make sure that every
site ships at most ten tuples to Site �
 and the stop operator at Site � makes sure that no
more than ten query results are produced�
Di
erent algorithms need to be used in multi�media database systems �Fag��
 CG���

or for so�called meta�searching �GCGMP��
 GGM���� As an example
 consider a query
that asks for �ten di
erent kinds of birds that have black feathers and a high voice�
using an image database that stores pictures of birds and a sound database that stores
recordings of birds� singing� In fact
 this query is a top �� query because the image and
sound databases are fuzzy � rather than returning a set of recordings with high voices
 the
sound database system assigns a score�voice� to every recording indicating how high the
voice of the corresponding bird is
 and it returns the recordings in descending order of
score�voice�� In the same way
 the image database returns pictures of birds in descending
order of score�looks� that indicates how black the corresponding bird is� The top ten
birds are then determined by an overall scoring function that computes the total score of
a bird� in this case
 minfscore�voice�� score�looks�gwould be an appropriate overall scoring
function� Other scoring functions have been described and discussed in �Fag��
 FW����
The goal is to evaluate such a query in such a way that the number of images and
recordings probed and returned by the image and sound databases is minimized� If the
overall scoring function is min or any other �monotonic� function�
 then this task can be
done using the following algorithm devised in �Fag����

�� Continuously ask the image and sound databases for the bird with the next highest
�component� score until the intersection of the sets of birds returned by the two
databases contains at least ten birds

�� Probe the image and sound databases to evaluate the overall scoring function for
all the birds which were returned by one but not both of the two databases in the
�rst step�

This simple algorithm works because the top �� birds are within the union of the two
sets of birds returned by the two databases in the �rst step� every other bird has de��
nitely lower overall score than the ten birds of the intersection
 if the scoring function is
monotonic� The second step is necessary because the ten birds of the intersection are not

�A scoring function f is de�ned as monotonic if s��a� � s��b� � s��a� � s��b� implies that
f�s��a�� s��a�� � f�s��b�� s��b���

��

necessarily the overall winners� it is possible
 for example
 for a bird that is very black and
has a mediocre voice to be among the overall top ��
 but not in the intersection because
of its mediocre voice�
The algorithm above can easily be extended to more than two databases� Similar

and slightly more complicated algorithms have been proposed for meta�searching in the
WWW� In this environment users are interested in combining the scores for Web pages
returned by search engines such as AltaVista
 Infoseek
 or Lycos in order to �nd Web
pages with a high total score according to all search engines� The algorithm above is not
applicable in this environment and di
erent algorithms are necessary because the second
step of the above algorithm �i�e�
 probing� cannot be carried out using today�s WWW
search engines �GGM����

� Client�server Database Systems

We now turn to speci�c classes of distributed systems� systems with a client�server archi�
tecture� We will �rst characterize di
erent kinds of client�server systems and then deal
with one of the crucial questions for query�processing in these systems� if and how to ex�
ploit the resources of client machines� We will then discuss query optimization and query
execution issues and present several techniques that are popular for query processing in
a client�server environment� Some of the techniques presented in this section are also
applicable to other system architectures� These techniques are presented in this section
because they are mostly used by client�server database systems�

��� Client�server� Peer�to�peer� and Multi�tier Architectures

In general
 client�server �or master�slave� refers to a class of protocols that allows one
site
 the client
 to send a request to another site
 the server
 that sends an answer as a
response to this request �Tan���� Using this mechanism
 it is possible to implement a
variety of di
erent database architectures�

Peer
to
peer� This is the most general architecture� In peer�to�peer systems every site
can act as a server that stores parts of the database and as a client that executes
application programs and initiates queries�

�Strict� Client
server� In a strict client�server system every site has the �xed role of
always acting either as a client �query source� or as a server �data source�� In such a
strict client�server architecture
 not all the sites can communicate with each other�
typically
 two clients do not interact and often servers do not interact either�

Middleware� Multi
tier� In such an architecture
 the sites are organized in a hierarchi�
cal way� Every site plays the role of a server for the sites at the upper level and the
role of a client for the lower�level sites� Thus
 a site in one of the middle tiers can
only communicate with its clients at the level above or its servers at the level below�
typically
 a site cannot communicate with sites at the same or any other level�

Many examples for distributed database systems with these kinds of architecture can
be found� SHORE �CDF��	� is an example of a system with a peer�to�peer architecture�

��

SHORE is an experimental distributed database system developed at the University of
Wisconsin� Most commercial database systems today have a strict client�server archi�
tecture� Compared to a peer�to�peer architecture
 one advantage of a strict separation
between client and server machines is that only server machines need to be administered�
i�e�
 backed�up� Also
 security issues can be addressed by controlling the server machines
and the client�server communication links� Another advantage is that client and server
machines can be equipped according to their speci�c purposes� Client machines are of�
ten PCs with good support for graphical user interfaces whereas server machines are
usually more powerful with multiple processors
 large disks �possibly RAID� and very
good I�O performance� An example for a three�tier middleware system is an Intranet
with clients running a WWW browser and one or several WWW servers which are con�
nected to database backend servers� Another example of a middleware system is SAP
R�� �BEG���� SAP is the market�leader for business application software �ERP�
 and
SAP R�� installations consist of at least three tiers� ��� presentation servers which drive
the GUIs of the users� desktops
 ��� application servers which implement the business
application logic
 and ��� database backend servers which store all the data� Integrat�
ing functionality from di
erent vendors is one reason to use a middleware architecture�
i�e�
 di
erent functionality is provided at di
erent layers of the system� Scalability can
be another reason to use a middleware architecture� at every tier
 additional sites �i�e�

processors� can be added in order to deal with a heavier load�
In the remainder of this section
 we will describe query processing techniques which are

applicable for all three architectures� For easier presentation and to avoid confusion with
the terms �client� and �server
� we will concentrate on the strict client�server architecture
and assume that every site has the �xed role of acting either as a client or as a server while
processing a query� Nevertheless
 all techniques are applicable to all three architectures
because all three architectures are based on the same paradigm in which query sites and
data sites can be di
erent�

��� Exploiting Client Resources

The essence of client�server computing is that the database is persistently stored by server
machines and that queries are initiated at client machines� The question is whether to
execute a query at the client machine at which the query was initiated or at the server
machines that store the relevant data� In other words
 the question is whether to move
the query to the data �execution at servers� or to move the data to the query �execution
at clients�� Another related question is whether and how to make use of caching� i�e�
 to
temporarily store copies of data at client machines� In this section we will present and
discuss the tradeo
s between alternative approaches which are commonly used in existing
systems today�

	���� Query Shipping

The �rst approach is called query shipping� Query shipping is used in many relational
and object�relational database systems today� e�g�
 IBM DB�
 Oracle �
 and Microsoft
SQL Server� The principle of query shipping is to execute queries at servers
 i�e�
 at
the lowest level possible in a hierarchy of sites� Figure � illustrates query shipping in a
system with one server� A client ships the SQL �or OQL� code of a query to the server

��

A B

server

client

query

result

scan scan

join

A B

server

client

A B

scan scan

join

A B

server

client

A

scan

scan

join

Figure �� Query Shipping Figure �� Data Shipping Figure ��� Hybrid Shipping

the server evaluates the query and ships the results back to the client� In systems with
several servers
 query shipping works only if there is a middle�tier site that carries out
joins between tables stored at di
erent servers or if there are gateways between the servers
so that inter�site joins can be carried out at one of the servers�

	���� Data Shipping

The exact opposite of query shipping is data shipping which is used in many object�
oriented database systems� e�g�
 ObjectStore and O�� In this approach
 queries are exe�
cuted at the client machine at which the query was initiated and data is rigorously cached
at client machines in main�memory or on disk �FCL���� That is
 copies of the data used
in a query are kept at a client so that these copies can be used to execute subsequent
queries at that client� Caching is typically carried out in the granularity of pages �i�e�

	K or �K blocks of tuples� �DFMV���
� and it is possible to cache individual pages of
base tables and indices �Lom��
 ZC���� To illustrate data shipping
 consider the example
shown in Figure � where some pages of Tables A and B are already cached at the client
�represented by the dashed boxes in the �gure�� The scan operators at the client use
these cached copies of pages and fault in all the pages of A and B that are not cached�

	���	 Hybrid Shipping

Neither data�shipping nor query shipping is the best policy for query processing in all
situations� The advantages of both approaches can be combined in a so�called hybrid
shipping architecture �FJK���� Hybrid shipping provides the �exibility to execute query
operators on client and server machines
 and it allows the caching of data by clients� The
approach is illustrated in Figure �� where the scan�A� and join operators are carried
out at the client whereas the scan�B� operator is carried out at the server� The scan�A�
operator uses the client�s cache as much as possible and ships to the client only those
parts of A that are not in the cache� In contrast
 the scan�B� operator neither uses nor
changes the state of the client�s cache� �Section � contains more information about the
impact of query operators on caching�� Today
 hybrid shipping is used in some database
products such as UniSQL �DJ���
 application systems such as SAP R��
 database research
prototypes such as ORION�� �JWKL��� and KRISYS �DHM����
 and to some extent
 in

�Caching in the granularity of individual tuples� for example� has been studied in �KK�	
�

��

heterogeneous systems such as Garlic �C����
 Mind �DHK����
 TSIMMIS �PGMW���

and DISCO �TRV��� �Section 	��

	���� Other Hybrid Shipping Variants

For application programs that carry out SQL�style queries and C �style methods
 one
special and restricted variant of hybrid shipping is to execute the SQL�style queries at
the servers
 without caching
 and the C �style methods at the clients
 using caching�
Such an approach has been proposed
 for example
 as part of the KRISYS and Gar�
lic projects �HMNR��
 HKU���
 and Persistence is a product that supports this ap�
proach �KJA���� This approach is reasonable because caching and client�side execution
are particularly e
ective for methods that repeatedly access the same objects in order to
carry out complex computations� Queries that involve a great deal of data
 on the other
hand
 can often be executed more e�ciently at server machines without making use of
client�side caching�
Another variant of hybrid shipping is used by certain decision support products� e�g�

products by MicroStrategy� These products have a three�tier architecture� The bottom
tier is a standard relational database system that stores the database and carries out
join processing and other standard relational operations� The middle�tier then carries out
non�standard operations for decision support like moving averages
 roll�up
 drill�down

etc� �KS��
 GBLP���� Again
 such an architecture is a special hybrid shipping variant
because query processing is carried out at servers and at middle�tier machines
 and the
di
erence to full��edged hybrid shipping is that not all operations can be carried out at
all the machines�tiers�

	���� Discussion

The performance tradeo
s of query
 data
 and hybrid shipping have been studied in �FJK����
Many of the e
ects are obvious� Query shipping performs well if the server machines are
powerful and the client machines are rather slow� On the negative side
 query shipping
does not scale well if there are many clients because the servers are potential bottlenecks
in the system� Data shipping scales well because it uses the client machines
 but data
shipping can be the cause of very high communication costs if caching is not e
ective
and a great deal of un�ltered base data must be shipped to the clients� Obviously
 hy�
brid shipping has the potential at least to match the best performance of data shipping
and query shipping by exploiting caching and client resources like data shipping if that
is bene�cial
 or otherwise by behaving like query shipping� In some situations
 hybrid
shipping will show better performance than both data and query shipping by exploiting
client and server machines and intra�query parallelism to execute a query� The price for
this improved �exibility is that query optimization is signi�cantly more complex in a hy�
brid shipping system than in a query or data shipping system because the optimizer must
consider more options� The experiments of �FJK��� and other studies demonstrate three
other less obvious e
ects for hybrid shipping systems�

� Sometimes it is better to read data from the servers� disks in a hybrid�shipping
system even if the data are cached at the client� Consider
 for example
 a join
query that involves two tables which are stored at two di
erent servers and assume
that these tables are cached on the client�s disk and that the network is fast� The

��

best way to execute this query might be to read both tables from the servers� disks
�rather than from the client�s disk cache� and to execute the join at the client� This
way
 reading the data from the servers� disks and join processing with the client�s
disk�s� do not interfere with each other�

� Sometimes the best strategy to execute a query in a hybrid shipping system involves
shipping cached base data or intermediate query results from the client to a server�
Such a strategy
 for example
 is useful in situations in which the data are cached in
the client�s main memory
 the network is fast
 and join operations can be carried
out most e�ciently at the server�

� Transactions that involve several small update operations should be carried out at
clients
 thereby putting the new versions of tuples into the client�s cache� Such
an approach
 for example
 is used extensively by SAP R�� �BEG��
 KKM���� The
advantage is that such transactions can be rolled back at clients without a
ecting the
server and that the updates can be propagated to the server in one batch with fairly
little overhead �OS�	
 BL�	�� Transactions that involve updating large amounts of
data �e�g�
 give all Emps a ��! salary increase�
 on the other hand
 should be carried
out directly at the server�s� that store the a
ected data� This way
 the original Emp
table need not be shipped from the server to the client
 and the updated Emp table
need not be shipped back to the server either�

In all the experiments presented in �FJK���
 the other hybrid shipping variants described
in Subsection ����	 perform just like query shipping and perform poorly in many situ�
ations� In general
 these restricted hybrid shipping variants may perform well for some
workloads
 just like data or query shipping
 but only full��edged hybrid shipping is able
to perform well for any kind of workload�

��� Query Optimization

Having described query
 data
 and hybrid shipping as fundamentally di
erent approaches
for query processing
 we will now show how query optimizers for query
 data
 and hy�
brid shipping systems can be built and describe several alternative query optimization
strategies�

	�	�� Site Selection

From the perspective of a query optimizer
 data shipping
 query shipping
 and hybrid
shipping can be modeled by the options they allow for site selection� Every operator of a
plan has a site annotation which indicates where the operator is to be executed� Table �
shows the possible site annotations for di
erent classes of query operators and the three
alternative approaches� The table shows the possible annotations for client�server and
peer�to�peer systems� analogous annotations can be used for multi�tier systems� In all
three approaches
 display operators that pass the results of select queries to application
programs obviously need to be carried out at the client which issued the query� For all
other operators
 the options of the three approaches are di
erent� Data shipping carries
out all operators at the client� i�e�
 at the site at which the data is consumed� In contrast

query shipping carries out all the operators at servers� i�e�
 at sites at which the data is

��

data shipping query shipping hybrid shipping

display client client client

update client server client or server

binary operators consumer producer of consumer or producer of
�e�g�� join� �i�e�� client� left or right input left or right input

unary operators consumer consumer
�e�g�� sort� group�by� �i�e�� client�

producer
or producer

scan client server client or server

Table �� Site Selection Options for Data
 Query
 and Hybrid Shipping

produced� Hybrid shipping allows the optimizer to annotate operators in any way allowed
by data or query shipping� The special hybrid variant for decision support and OLAP
could be characterized by specifying that scans have server site annotations
 joins and
other standard relational operators have producer site annotations like query shipping

and all the other operators �e�g�
 moving average� have consumer site annotations like
data shipping�
All site annotations are logical� A client site annotation indicates that the operator is

to be carried out by the client that issues the query� such an annotation does not indicate
that the operator is carried out by a speci�c Machine x� Likewise
 a consumer �producer�
annotation indicates that the operator is carried out at the same site as the operator that
processes the operator�s results �input�� A server annotation for a scan indicates that
the scan is carried out at one of the servers that store a copy of the scanned data� A
server annotation for an update indicates that the update is carried out at all the servers
that store a copy of the a
ected data�� These logical site annotations are translated into
physical addresses when a plan is prepared for execution� As a result
 the same plan can
be used to execute a query at di
erent clients so that a query need not be re�compiled for
every client individually� If there is replication
 translating a server annotation for a scan
involves selecting one speci�c server machine� This selection can be done heuristically
�e�g�
 the server closest to the client� or in a cost�based manner �Section �������

	�	�� Where and When to Optimize

There are two questions of particular interest for query optimization in a client�server en�
vironment� The �rst question is where a query should be optimized� Hagmann and Ferrari
studied alternative approaches in an environment with many clients and one server �HF����
They propose carrying out certain steps of query processing at the client at which a query
originates and other steps at the server� For example
 parsing and query rewrite could be
carried out at the client whereas query optimization and plan re�nement could be carried
out at the server� This approach makes sense because operations such as parsing and
query rewrite can very well be executed at the clients so that they do not disturb the
server
 whereas steps such as query optimization require a good knowledge of the current
state of the system
 i�e�
 the load on the server
 and should
 therefore
 be carried out by
the server� In systems with many servers
 no single server has complete knowledge of the
whole system� In such systems
 one server needs to carry out query optimization� e�g�

the server located closest to the client� This server needs to either guess the state of the

�Here� a �read�one�write�all
 �ROWA� protocol is assumed�

��

network and other servers based on statistics of the past
 or try to discover the load of
other servers by asking them for their current load� While asking is obviously better than
guessing in terms of generating good plans
 asking involves at least two extra messages
for every server that is potentially involved in a query�
The second question which is related to the above question is when to optimize a

query� Again
 the answer to this question determines the accuracy
 in this case the
recency
 of the information about the state of the system that the optimizer receives� This
question arises for canned queries which are part of application programs and evaluated
during the execution of an application program� As already stated in Section ���
 the
traditional approach is to compile and optimize these queries at the time the application
program is compiled
 store plans for these queries in the database
 and retrieve and execute
these plans whenever the application program is executed� Only when something drastic
happens that makes the execution of the plan impossible
 e�g�
 when an index used in the
plan is dropped
 the plan stored in the database is invalidated and a new plan must be
generated before the application program is executed �CAK����� Obviously
 this approach
cannot adapt to changes such as shifts in the load of sites
 and the compiled plans show
poor performance in many situations�
More dynamic approaches were proposed by Graefe and others in �GW��
 CG�	� and

by Ioannidis et al� in �INSS���� The idea is to generate several alternative plans and�or
sub�plans at compile time of the application
 store these alternative plans and sub�plans
in the database
 and choose the plan or sub�plans that best matches the current state
of the system just before executing the query� Even more dynamic approaches optimize
queries on the �y� The idea is to start executing a compiled or dynamically chosen
plan and observe whether intermediate query results are produced and delivered at the
expected rate� If the expectations are not met
 then the execution of the plan is stopped

intermediate results are materialized
 and the optimizer is called to �nd a new plan for
those parts of the query that still need to be carried out� Urhan et al� show how such a
re�optimization approach can be very useful to improve the response time of queries in
situations in which the arrival of data from certain servers is delayed or bursty because
those servers are heavily loaded or the communication links are congested �UFA���� For
this purpose
 the approach re�orders and re�schedules operations at the client so that the
client carries out other operations while waiting for the delayed data� In another paper

Kabra and DeWitt show how such a re�optimization approach helps in situations in which
the initial plan performs poorly because it was based on wrong estimates of the size of
tables and intermediate query results �KD����
Ozcan et al� proposed another dynamic�on�the��y query optimization approach �ONK���

ONK����� In that approach
 queries are optimized and executed in two phases� First
 a
query is decomposed� This means that the query is divided into a set of subqueries which
can each be executed by a single server� The �nal query result is composed by joining
the results of the subqueries by the client or a middle�tier machine� Query decomposition
for this purpose is described in �EDNO���� The subqueries are processed by the servers
in parallel� The order
 i�e�
 schedule
 in which the results of the subqueries are joined at
the client depends on the speed in which the servers produce subquery results and the
selectivity and cost of the joins which need to be carried out to combine the subquery
results� Ozcan et al� propose a heuristic approach to decide whether to join the subquery
results produced by two fast servers immediately or to delay a join and wait for the deliv�
ery of other subquery results from slower servers �rst� The goal is to parallelize work at

�	

the client with work at slow servers as much as possible
 as in the re�optimization work
of �UFA���
 and also to avoid the execution of very expensive joins that may result from
poor join ordering�

	�	�	 Two
step Optimization

Two�step query optimization is an approach that has become popular for both distributed
and parallel database systems �CL��
 HS��
 SAL���
 DSD��
 TGHM��
 HM��
 GGS����
Two�step optimization is an alternative to the dynamic approaches presented in the pre�
vious subsection because it carries out certain decisions just before a query is executed�
Two�step optimization also reduces the overall complexity of distributed query optimiza�
tion� Several variants of two�step optimization exist� For distributed systems
 the basic
variant of two�step optimization works as follows�

�� At compile time
 generate a plan that speci�es the join order
 join methods
 and
access paths

�� Every time just before the query is executed
 transform the plan and carry out site
selection� i�e�
 determine where every operator is to be executed�

Both steps can be carried out by dynamic programming or any other enumeration algo�
rithm �Section ������� Two�step optimization has a reasonable complexity because both
steps can be carried out with reasonable e
ort� The �rst step has essentially the same

mostly acceptable
 complexity as query optimization in a centralized database system�
The second step also has acceptable complexity because it only carries out site selection�
Furthermore
 two�step optimization is useful to balance the load on a distributed system
because executing operators on heavily loaded sites can be avoided by carrying out site
selection at execution time �CL���� Two�step optimization is also useful to exploit caching
in a hybrid shipping system because query operators can dynamically be placed at a client
if the underlying data is cached by the client �FJK���� On the negative side
 two�step
query optimization can result in plans with unnecessarily high communication cost� To
see why
 consider the example shown in Figure ��� The plan in �a� shows the join ordering
carried out in the �rst step of two�step optimization� the plan in �b� shows the result of
site selection in the second step� and the plan in �c� shows an optimal plan for this query�
In the second and third plans
 the site annotations are indicated by the shading of the
operators� Tables A and D are co�located at one server �the darkly shaded server�
 Ta�
bles B and C are co�located at another server �the lightly shaded server�
 and the result
of the query must be displayed at a client workstation �the unshaded site�� The second
plan
 obtained using two�step optimization
 has a higher communication cost than the
optimal plan because the �rst step of two�step optimization was carried out ignoring the
location of data and the impact of join ordering on communication cost in a distributed
system�

��� Query Execution Techniques

Most of the query execution techniques presented in Section ��� are useful in a client�
server environment as well as in any other distributed database system� Row blocking

for example
 is essential to ship data from servers to clients and from clients to servers

��

display

join

join

BA

join

C D

display

join

join

BA DC

join

display

join

A C BD

join join

a� ��Step Plan at Compile�Time b� ��Step Plan at Run�Time c� Optimal Plan

Figure ��� Increased Communication Cost Due to Two�Step Optimization

and it has been implemented in almost all commercial database systems� Also
 it is often
attractive to carry out operations at the client in a multi�threaded way� In fact
 Web
browsers like Netscape�s Navigator load individual components such as text and images
of a Web page in a parallel and multi�threaded way�
One particular issue that arises in hybrid shipping systems is how to deal with trans�

actions that �rst update data in a client�s cache and then execute a query at a server that
involves the updated data� For example
 consider a transaction that �rst updates the
salary of John Doe and then asks for the average salary of all employees� The update is
likely to be executed at the client at which the transaction was started in order to batch
updates as described in Section ������ On the other hand
 the optimizer will probably
decide to execute the second query at the server that stores the Emp table in order to avoid
the cost of shipping the whole Emp table to the client� The point is that the computation
of the average salary must consider the new salary of John Doe which is known at the
client but not at the server� There are two possible solutions�

� Propagate all relevant updates such as John Doe�s new salary to the server just
before starting to execute the query at the server �KGBW���

� Carry out the query at the server and pad the results returned by the server at the
client using the new value of John Doe�s salary � for example
 such an approach
can be carried out using one of the techniques proposed in �SC����

In either case
 carrying out the query at the server involves additional costs� these addi�
tional costs should be taken into account by a dynamic or two�step optimizer in order to
decide whether it is cheaper to carry out the query at the server or at the client� Such
issues do not arise in query shipping and data shipping systems� Query shipping systems
do not support client�side caching and batched updates
 and data shipping systems carry
out all query operators at the client using the latest cached versions of data�

��

� Heterogeneous Database Systems

This section shows how queries can be processed in heterogeneous database systems�� The
purpose of such systems is to enable the development of applications that need to access
di
erent kinds of component databases� e�g�
 image and other multi�media databases

relational databases
 object�oriented databases
 or WWW databases� One characteristic
of heterogeneous database systems is that the individual component databases can have
di
erent capabilities to store data
 carry out database operations �e�g�
 joins and group�
bys�
 and�or to communicate with other component databases of the system� For example

a relational database is capable of processing any kind of join whereas a WWW database
is typically only capable of processing a speci�c pre�de�ned set of queries� One of the
challenges
 therefore
 is to �nd query plans that exploit the speci�c capabilities of every
component database in the best possible way and to avoid query plans that attempt
to carry out invalid operations at a component database� Another challenge is to deal
with semantic heterogeneity �SL��� which arises
 for example
 if an application needs the
total sales and one component database uses DM as a currency while another component
database uses Euro� Furthermore
 every component database has its own speci�c API

decides autonomously when and how to execute a query
 and might not be designed to
interact with other databases�
There has been a great deal of work on various aspects of the design and implementa�

tion of heterogeneous databases� In fact
 there have even been excellent tutorials in the
past �Ass���
 and some commercial systems are described in �IEE���� In this section
 we
will
 therefore
 concentrate on basic technology and recent developments in this area� We
will present the architecture that is used for most heterogeneous database systems today
and discuss how queries can be optimized and executed in heterogeneous systems� Again

keep in mind that we are only interested in query processing in this paper� Issues such
as transaction processing in heterogeneous database systems are beyond the scope of this
paper and have already been described
 e�g�
 in �BGMS����

��� Wrapper Architecture for Heterogeneous Databases

In order to construct heterogeneous database systems
 several tools have been devel�
oped in recent years� examples are DISCO �TRV���
 Garlic �C����
 Hermes �ACPS���

TSIMMIS �PGMW���
 Pegasus �SAD��	�
 and Junglee�s VDB technology �GHR���� Fur�
thermore
 a number of tools have been designed for the speci�c purpose of integrating
data from di
erent relational and object�oriented databases� e�g�
 IBM�s Data Joiner

MIND �DHK����
 and IRO�DB �GGT���� An older example is HP�s MultiDatabase prod�
uct �Day���� Essentially
 all of these tools have a three�tier software architecture as shown
in Figure ��� Clients connect to a so�called mediator �Wie���� The mediator parses a
query
 carries out query rewrite and query optimization and executes some of the oper�
ations of a query� The mediator also maintains a catalog to store the global schema of
the whole heterogeneous database system
 i�e�
 the schema used in queries by application
programs and users
 the external schema of the component databases
 i�e�
 which parts
of the global schema are stored by each component database
 and statistics for query
optimization� Thus
 the mediator has very much the same structure as the �textbook�

�Sometimes� the terms federated or multi�database system are used in the same way as we use the
term heterogeneous database system�

��

Wrapper Wrapper

CatalogMediator

DatabaseDatabase Database

client client

Figure ��� Wrapper Architecture of Heterogeneous Databases

query processor described in Section ���� The di
erence is that an extended query opti�
mization approach needs to be used �see Section 	��� and that certain query execution
techniques are particularly attractive in the mediator which might not be attractive in
other distributed database systems �see Section 	���� Also
 a mediator is designed to
integrate any kind of component database� That is
 a mediator does not contain any code
that is speci�c to any one component database and as a result
 a mediator cannot directly
interact with component databases�
To encapsulate the details of component databases
 a wrapper �or adaptor� is associ�

ated to every component database� The wrapper translates every request of the mediator
so that the request is understood by the component database�s API
 and the wrapper
also translates the results returned by the component database so that the results are un�
derstood by the mediator and are compliant with the external schema of the component
database and the global schema of the heterogeneous database� For example
 a wrapper
of a WWW database �e�g�
 amazon�com� that returns html pages �e�g�
 lists of books�
must �lter out the useful information �e�g�
 author
 title
 price
 order information� from
the html pages� Another example is the wrapper for a sales database that uses DM as
currency� This wrapper must convert DM into Euro
 if Euro is the currency used in the
global schema of the heterogeneous database� In some cases
 wrappers also implement
special techniques like row blocking or caching to improve performance� In addition
 as
described in the next subsection
 wrappers also participate in query optimization�
Obviously
 wrappers are fairly complex pieces of software
 and it is not unusual for it

to take several months to develop a wrapper� The TSIMMIS and Garlic projects have
speci�cally addressed the question of how to make wrapper design as cheap as possi�
ble �PGGMU��
 RS���� Nevertheless
 wrapper development is expensive� The good news
is that similar wrappers work for many di
erent kinds of component databases so that it is
quite easy to adjust an existing wrapper in order to obtain a wrapper for a new component
database� Also
 as shown in Figure ��
 it is possible for several component databases to
be handled by the same wrapper� Furthermore
 with the growing importance and demand
for heterogeneous systems
 it is quite likely that wrappers will be commercially available
in the future for many common classes of databases�
One feature of the architecture shown in Figure �� is that it is extensible� At any time

wrappers and component databases can be upgraded or new component databases can be
integrated without changing the mediator or adjusting existing wrappers� Furthermore

the architecture is a software architecture� Wrappers and the mediator can be installed
at any machines in the system� It is even possible that the mediator is distributed� i�e�

��

that separate cooperating instances of the mediator are installed at di
erent machines�

��� Query Optimization

This subsection shows how query optimization can be carried out in a heterogeneous
database system� As stated at the beginning of this section
 one of the challenges of
query optimization in a heterogeneous system is that the capabilities of the component
databases are di
erent� The optimizer of a heterogeneous system must
 therefore
 be
generic and be able to understand what capabilities component databases have�
Several alternative approaches for query optimization in heterogeneous database sys�

tems have been proposed in the literature� One approach is to describe the capabilities of
the component databases as views
 store the de�nitions of these views in the catalog
 and
see during query optimization how a query can be subsumed by the views registered in
the catalog �Lev���� While this approach is quite �exible
 it is very di�cult to implement�
Other work has proposed the use of capability records �LRO��� or context�free grammars
to describe the capabilities of queries and the use of various new cost�based and heuristic
algorithms to generate plans for a query �PGH��
 TRV���� In this section
 we will focus
on an approach that is based on existing and well�established query optimization tech�
niques� In this approach
 the capabilities of the component databases are described by
enumeration rules which are interpreted by the optimizer
 and this approach uses either
dynamic programming or iterative dynamic programming �Section ������ in order to �nd
a good plan for a query with reasonable e
ort� This approach was described in full detail
in �HKWY���� It was implemented for the Garlic system at IBM�

����� Plan Enumeration with Dynamic Programming

The idea is quite simple� Every wrapper provides a set of planning functions which are
called by the optimizer�s accessPlan and joinPlan functions in order to construct subplans

i�e�
 wrapper plans
 which can be handled by the wrapper and its component databases�
In other words
 query optimization is carried out using the same dynamic�programming�
based algorithms as described in Section ����� with the only di
erence that the accessPlan
and joinPlan functions call planning functions de�ned by wrapper developers in order to
enumerate subplans rather than constructing such subplans themselves�
Conceptually
 planning functions can be seen as enumeration rules
 and we will give

several example rules to illustrate the process� Figure �� shows the plan access rule of a
wrapper for relational component databases� This rule generates an R Scan operator to
read table T from the component database that stores T �i�e�
 ds�T��
 apply predicates P
to the tuples of T
 and project out columns C of T � This rule is called by the optimizer�s
accessPlan function for every table used in a query that is stored by a component database
which is associated to the relational wrapper� Consider
 for instance
 the following query�

SELECT e�name� e�salary� d�budget

FROM Emp e� Dept d

WHERE e�salary � ������� AND e�works in � d�dno�

If Emp and Dept are both stored in the relational component database D�
 then the
plan access rule of Figure �� is instantiated twice as follows�

plan access	Emp� fsalary�works in�nameg� fsalary � �������g
 �

��

plan access�T�C� P � � R Scan�T�C� P� ds�T ��

ds�T � returns the id of the relational component database that stores T �

Figure ��� Access Plan Enumeration Rule for Relational Component Databases

plan join�S�� S�� P � � R Join�S�� S�� P �

Condition	 S��Site � S��Site

Figure �	� Join Plan Enumeration Rule for Relational Component Databases

R Scan	Emp� fsalary�works in�nameg�fsalary � �������g� D�

plan access	Dept� fdno�budgetg� fg
 �

R Scan	Dept� fdno�budgetg� fg� D�

The R Scan operator generated with every application of the plan access rule is speci�c
to and used internally by the relational wrapper� neither other wrappers nor the mediator
need to know about the existence or semantics of such an R Scan operator� Likewise

the relational component databases do not need to know about R Scan operators� To
execute plans that involve R Scan operators
 the wrapper translates R Scan�T� C� P�
D� into select C from T where P and submits this query to the relational component
database D�
Figure �	 shows the enumeration rule that generates join plans for relational com�

ponent databases� This rule is called by the optimizer�s joinPlan function during join
ordering and receives as input two subplans and a set of join predicates� The rule gener�
ates a plan with an R Join operator which speci�es that the intermediate query results
produced by the two subplans should be joined by the relational component database�
The rule is only applicable if both subplans are executed by the same relational database�
this fact is modeled by the condition S�
Site � S�
Site� To evaluate this rule the top�level
operator of all plans and subplans is annotated as described in Section ������ for query
optimization with heterogeneous data sources
 however
 the site annotations must always
be physical�� For the Emp � Dept example
 the rule from Figure �	 would produce the
following plan�

R Join	R Scan	Emp� fsalary�works in�nameg�fsalary � �������g� D�

R Scan	Dept� fdno�budgetg� fg� D�

fEmp�works in � Dept�dnog

To execute a plan with an R Join operator
 the relational wrapper would translate the
plan into an SQL query that involves all the tables and all the join and non�join predicates
speci�ed by the operators of the plan��

To give another example
 consider the BigBook database that can be accessed via
the web �http�		www�BigBook�com�� BigBook takes a name or business category and
a city or state as input and returns the exact address
 telephone number
 etc� of all
matching businesses� For example
 it is possible to ask for all the attorneys in Arkansas�

�Other annotations which may be used by rules include the tables� columns� and predicates involved
in a subplan or the sorting order in which the top�level operator produces its output �Loh��� HKWY��
�

�Precisely� the wrapper would construct the SQL query taking into account the table� column� predi�

cate� and sorting order annotation of the root operator of the plan�

��

plan access�T�C� P � � B Fetch�fcategory � c� city � tg�

Condition� fcategory � c� city � tg � P

plan access�T�C� P � � B Fetch�fcategory � c� state � sg�

Condition� fcategory � c� state � sg � P

plan access�T�C� P � � B Fetch�fname � n� city � tg�

Condition� fname � n� city � tg � P

plan access�T�C� P � � B Fetch�fname � n� state � sg�

Condition� fname � n� state � sg � P

Figure ��� Plan Enumeration Rule for the BigBook Database

Figure �� shows the enumeration rules de�ned by the wrapper for BigBook� All these
rules generate a B Fetch operator which is translated by the BigBook wrapper into an
http call to www�BigBook�com� Independent of the query
 the wrapper fetches all the
columns �i�e�
 name
 category
 address
 telephone�
 and depending on the predicates
of the query
 the wrapper applies a pair of name	category and city	state predicates�
Only name
 category
 city
 and state predicates can be applied� To �nd all the
attorneys in Fruitdale Ave�
 San Jose
 the wrapper would generate a plan that returns all
attorneys in San Jose �i�e�
 apply the category and city predicates� and the �address
like ��Fruitdale Ave
��� predicate would be applied in the mediator� Either a name or
a category predicate can also be applied� If a query involves a name and a category

predicate
 the enumeration rules of Figure �� would enumerate two alternative plans
 one
for each predicate� The optimizer would use the cheaper plan
 usually
 the plan that
is expected to return the least number of tuples from the BigBook database
 and the
other predicate would be applied in the mediator� Furthermore
 certain queries cannot
be handled although they might be syntactically correct� For example
 it is not possible
to �nd all the attorneys in the USA using the BigBook database because this query is
lacking a city or state predicate� The optimizer would abort processing such a query in
a controlled way because the rules of Figure �� generate no plan to execute such a query�
Furthermore
 BigBook and its wrapper are not capable of processing joins so that the
wrapper provides no plan join rules�
Just like wrappers
 the mediator provides a set of rules that enumerate portions of

plans that are to be executed by the mediator� For example
 the mediator provides a
rule to generate plans that apply predicates such as the address like
�Fruitdale Ave
��
predicate which cannot be applied by the component database� The mediator also pro�
vides a rule that says that any kind of join can be carried out by the mediator
 regardless
of where the tables involved in the join are stored� So
 an Emp � Dept operation could
be carried out by the mediator or by the relational component database� The optimizer
enumerates both alternatives by calling the mediator and wrapper join enumeration rules

��

and the overall cheaper plan is selected�
The full details and a description of a more elaborate example can be found in

�HKWY���� Having presented the basic idea
 we will just brie�y summarize the major
advantages of this approach�

�� This approach relies on well�established distributed database technology� the use of
dynamic programming or iterative dynamic programming will generate good plans
with reasonable e
ort just as in any other distributed database system� Using the
same technology as most existing database products also gives vendors an easy
migration path to adapt products for heterogeneous database systems�

�� This approach is very �exible so that the capabilities of the component databases
can be modeled very accurately� For example
 it is possible to write enumeration
rules that model gateways between di
erent component databases or replication of
tables at di
erent component databases�

�� It is usually fairly easy to implement the enumeration rules of a wrapper� The
simple enumeration rules shown in Figures �� through �� are actually used in the
Garlic project in order to integrate relational databases and web databases such
as BigBook� Enumeration rules and planning functions for wrappers can be very
simple because these enumeration rules describe what kind of operations can be
carried out by a component database rather than exactly how these operations are
to be carried out�

	� It is possible to de�ne very simple enumeration rules for a new wrapper at the
beginning and to add more sophisticated enumeration rules once the wrapper is op�
erational� In fact
 some very simple generic rules exist that can be used to integrate
any new wrapper and component database �HKWY����

�� New wrappers with any kind of enumeration rules can be integrated into the system
and the enumeration rules of an existing wrapper can be altered without adjusting
the enumeration rules of other wrappers or the mediator and without adjusting any
other component of the system�

����� Cost Estimation for Plans

Having described how alternative query evaluation plans can be enumerated in a hetero�
geneous database system
 we now turn to the question of how to estimate the cost or
response time of these plans� Both the classic and the response time cost models pre�
sented in Section ����� can be used for this purpose
 and the cost or response time of
the individual operators that are to be carried out by the mediator can be estimated just
as in any other distributed database system because the mediator uses standard
 well�
understood algorithms to execute joins
 group�bys
 etc� The challenge is to estimate the
cost or response time of wrapper plans which are to be carried out by the component
databases because the details of how a component database executes such a plan
 i�e�
 a
subquery
 might not be known�
Estimating the cost of wrapper plans in heterogeneous database systems is still an

open research issue� There are three alternative approaches that di
er in the accuracy of
the estimates and in the amount of required e
ort by wrapper developers� We will brie�y

��

describe these three approaches below� Experiments that demonstrate the importance of
accurate cost estimations have been presented in �ROH����

Calibration Approach The �rst approach is called the calibration approach� The idea
is to de�ne a generic cost model for all wrappers and adjust certain parameters of this
cost model for every individual wrapper and component database by executing a set of
test queries� This way
 the speci�c hardware and software characteristics of a wrapper
and a component database can be taken into account� For example
 a very simple generic
model would be to estimate the cost of a wrapper plan as

c � n

where n is the estimated number of tuples returned by the wrapper plan �i�e�
 n depends
on the query� and c is the wrapper�component database speci�c parameter which would
be small for very fast component databases and large for slow component databases or
component databases that are only reachable by a slow communication link�
To date
 several generic cost models and sample queries have been proposed to imple�

ment the calibration approach for heterogeneous databases� e�g�
 �DKS��
 ZL�	
 GGT��

ROH���� The generic cost models described in that work are signi�cantly more complex
than the simple example we gave above� These cost models typically de�ne special cost
formulae for single table queries
 multi�table queries
 indexed and non�indexed queries

etc� The big advantage of the calibration approach is that wrapper developers need not
worry much about costing issues when they design a new wrapper and�or integrate a
new component database into the heterogeneous database� The generic cost model is pre�
de�ned as part of the mediator
 and the calibration of the generic cost model for a new
wrapper and component database can be carried out automatically or semi�automatically
using the pre�de�ned test queries� The big disadvantage of the calibration approach is
that not all component databases can be tweaked into a generic cost model� The generic
cost models proposed in �DKS��
 ZL�	
 GGT���
 for example
 are mostly based on obser�
vations made with relational or object�oriented database systems
 and they are not likely
to be a good match for the cost of queries executed
 say
 by the BigBook database�

Individual Wrapper Cost Models An alternative to the calibration approach is to
de�ne a separate cost model for every wrapper� In this approach
 the developer of the
wrapper does not only provide enumeration rules as described in the previous subsection

but also a set of cost formulae� One cost formula is associated with every enumeration
rule in order to estimate the cost of the plan�s� generated by that rule� Obviously
 the
big advantage of this approach is that the cost of all wrapper plans can be modeled as
accurately as possible or desired� On the negative side
 however
 this �do it yourself�
approach puts a heavy burden on developers of wrappers� To combine the advantages of
the calibration approach and this �do it yourself� approach
 Naacke et al� �NGT��� pro�
posed an approach in which costing is done by default using the calibration approach and
wrapper developers are free to overwrite the default and de�ne their own cost functions
for their speci�c wrappers if they feel that the calibration approach is not su�ciently
accurate for their wrappers and component databases� Such a hybrid approach has also
been adopted for Garlic �ROH����

��

Learning Curve Approach The third approach to estimate the cost of wrapper plans
is based on monitoring the system and keeping statistics about the cost to execute wrapper
plans �ACPS���� In this approach
 for example
 the system would observe that the last
three plans that involved Tables A and B had costs of
 say
 �� secs
 �� secs
 and � secs�
Based on these statistics
 the cost model would estimate that the next plan involving A
and B costs �� secs� Similar and more sophisticated ideas of query feedback have also
been studied in the standard relational context �CR�	�� Like the calibration approach

this approach releases wrapper developers from the burden of worrying about costing
issues
 but it can be very inaccurate� One particular advantage of this approach is that it
automatically and dynamically adapts to changes in the system that impact the cost of
operations� e�g�
 growing tables
 hardware upgrades
 di
erent load situations�

��� Query Execution Techniques

We will now discuss two techniques which have become popular for executing queries in
heterogeneous database systems� In theory
 of course
 we would like to take advantage
of all the possible ways to execute a query
 and many of the basic techniques described
in Sections ��� and ��	 are applicable and useful in the mediator of a heterogeneous
system� e�g�
 batching updates or multi�threaded query execution� The wrappers and
component databases
 however
 have limited capabilities which signi�cantly restrict the
possible ways to execute a query� For instance
 two component databases may not be
capable of participating in a semi�join program with duplicate elimination� Also
 it is
usually not possible to place query operators at component databases� instead
 operators
must be translated into queries which are understood by the APIs of the component
databases�

��	�� Bindings

The �rst technique simulates a nested�loop join in a heterogeneous system� In System R�

a similar technique was called fetch as needed �ML���� This technique exploits the fact
that many component databases take input parameters
 i�e�
 bindings
 as part of their
query interfaces� The BigBook database on the Web
 for example
 takes as input a city
and business category and �nds the addresses of all matching companies in that city� To
illustrate how bindings can be exploited for query processing in heterogeneous systems

consider a heterogeneous system with two relational component databases
 D� and D�

that store Tables A and B
 respectively� One way to execute A � B with join predicate
A�x � B�y would be as follows�

� the mediator asks D� to execute the query

select � from A

in order to scan through Table A�

� The wrapper ofD� returns tuples of Table A to the mediator
 one by one or in blocks
using row blocking� For every tuple of Table A
 the mediator asks the wrapper of
D� to evaluate the following query in order to �nd the matching B�s�

select � from B where B�y � �

�	

Here
 �"� denotes the binding parameter and is instantiated with the A�x value of
the current tuple of A�

This approach shows good performance if A is fairly small or a predicate restricts the
number of tuples of A that need to be probed� This approach is also useful because it
might be the only possible way to execute A � B� BigBook
 for example
 only allows
queries that restrict the business category and city of companies
 using predicates with
bindings
 so that join queries that involve BigBook need to be processed in this way�
Certain component databases accept blocks of tuples as parameters� e�g�
 relational

databases� Such capabilities can be exploited to process joins by passing a block of tuples
of the outer table or even the whole outer table to the component database
 thereby
reducing the number of messages� Adapting the example
 the mediator would ask the
wrapper of D� to evaluate the query

select � from � a where B�y � a�x

in the second step� Here
 �"� is instantiated with a block of tuples from A or the whole A
table� Since this blocking reduces the number of messages
 it is usually signi�cantly faster
than the tuple�at�a�time approach and should
 therefore
 always be used if applicable�
Blocking corresponds roughly to a block�wise nested�loop join or to a special kind of
semi�join program
 depending on whether all the columns or only the x column of A are
passed to D��

��	�� Cursor Caching

There are many workloads for which the mediator submits the same query with di
erent
parameters
 many times to a component database� To implement the tuple�at�a�time

binding�based nested�loop join
 for example
 the same query is submitted for every tuple
of A� In addition
 only four di
erent kinds of queries can be submitted to the BigBook
database� The idea of Cursor Caching is to optimize a query only once in order to reduce
the overhead of submitting the same query to the same component database repeatedly�
For component database systems that understand JDBC �HCF���
 cursor caching can be
implemented by using JDBC�s prepareStatement command to optimize the query
 the
set command to pass the binding parameter�s� every time the query is executed
 and the
executeQuery command to execute the query� Cursor caching is another technique which
is extensively used by database application systems such as SAP R�� �DHKK���� Similar
ideas have also been integrated into several DBMS products� e�g�
 Oracle� �LJJC����
Cursor caching has the same tradeo
s as static query optimization �Section ������� on

the positive side
 cursor caching reduces overhead for query optimization� on the negative
side
 the �cached� plan might not always be the best plan to execute a query� In particular

the best plan can depend on the value of the query parameter� This e
ect has been studied
for SAP R�� in �DHKK����

��� Outlook

While query processing for homogeneous and client�server databases is fairly well un�
derstood �Sections � and ��
 this is not true for heterogeneous systems� Writing wrap�
pers is a tedious task and query optimization is more di�cult because the component

��

databases are autonomous
 have di
erent capabilities
 and incur costs which are hard
to predict� Nevertheless
 products from database vendors �e�g�
 IBM�s Garlic �C���� or
HP�s Pegasus �SAD��	�� as well as new start�up companies �e�g�
 Junglee �GHR���� are
already appearing on the market because the management of heterogeneous database
systems is extremely important in practice� Furthermore
 academic research projects are
developing new ways in which database and application components interoperate �e�g�

�RSS��
 BKK�����
This section presented a small fraction of the existing work in this area and there

is de�nitely a great deal of new work to come� However
 this section showed the most
important trend� When designing a heterogeneous database
 the goal is to encapsulate
the heterogeneity of the component databases and use existing homogeneous distributed
database technology as much as possible�

� Dynamic Data Placement

The previous three sections answered the following question� given a query and the lo�
cation of copies of data and other parameters
 how can this query be executed in the
cheapest or fastest possible way� In this section
 we will look at this question from a dif�
ferent perspective and show where copies of data should be placed in a distributed system
so that the whole query workload can be executed in the cheapest or fastest possible way�
Traditionally
 data placement has been carried out statically� With static data place�

ment
 a system administrator decides where to place copies of data speculating what kind
of queries might be carried out at what locations in the system� To support static data
placement
 several models and tools that take the expected query workload and system
topology as input and decide where to place copies of data have been devised� e�g�
 �Ape����
Obviously
 static data placement has several weaknesses� ��� the query workload is often
not predictable� ��� even if the workload can be predicted
 the workload is likely to change

and the workload might change so quickly that the system administrator cannot adjust
the data placement quickly enough� ��� the complexity of a su�ciently accurate model for
static data placement is too big� �The problem is NP�complete �Ape����� This section
is
 therefore
 focussed on dynamic data placement approaches� These approaches keep
statistics about the query workload and automatically move data and establish copies
of data at di
erent sites in order to adjust the data placement to the current workload�
These approaches do not aim to be perfect
 but they try to improve the data placement
with every move�
As in the rest of this paper
 concurrency control and consistency issues are not ad�

dressed� Concurrency control issues which are relevant for dynamic data placement
 for
example
 have been addressed in �DGMS��
 FCL��
 Lom��
 ZC���� Also
 this section
only presents techniques that decide where copies of base tables or parts thereof and of
indices or parts thereof should be placed� Techniques that place copies of entries of the
catalog at di
erent sites are not discussed� such techniques have been speci�cally studied
in �EKK����

��

Replication Caching

target server client or middle�tier
granularity coarse �ne

storage device typically disk typically main memory
impact on catalog yes no
update protocol propagation invalidation
remove copy explicit implicit
mechanism separate fetch fault in and keep copy after use

Figure ��� Di
erences Between Replication and Caching

��� Replication vs� Caching

First
 we would like to establish some terminology� In principle
 there are two di
erent
mechanisms to establish copies of data at di
erent sites of a distributed system� replication
and caching� Seen from a high level
 replication and caching share the same goals� both
establish copies of data at di
erent sites in order to reduce communication costs and�or
balance the load of a system� As shown in Figure ��
 however
 there are a number of
subtle di
erences between replication and caching� First of all
 replication takes e
ect at
server machines �i�e�
 data sources� in a client�server environment� That is
 replication
establishes copies of data at servers based on statistics which are kept at servers with
the purpose of better meeting the requirements of a potentially large group of clients�
Caching
 on the other hand
 takes e
ect at clients or at middle�tier machines �i�e�
 query
sources��
 and caching is based on statistics kept at these machines� Only one client or
a small group of clients
 therefore
 bene�t from a cached copy of a data item
 but on
the positive side
 caching establishes copies of data directly at the places where the data
is needed� Also
 caching exploits client machine resources which might remain unused
without caching �Section �����
The second di
erence between replication and caching lies in the granularity of the

copies of the data� Replication is typically coarse�grained� only a whole table
 a whole
index
 or a whole �horizontal� partition of a table or index can be replicated� Replicating
data in a coarse granularity is acceptable because a large group of clients bene�t from
replication �as stated above�
 and it is quite likely that most parts of a table or index will
be used by this group of clients� Caching
 on the other hand
 is typically �ne�grained�
individual pages of a table or index can be cached by a client machine and some systems
even allow the caching of individual rows of a table� Caching in a �ne granularity is
important because caching supports the queries of a single client or of a fairly small group
of clients
 and clients tend to be only interested in a small fraction of the data stored in
a speci�c table�
The next four di
erences listed in Figure �� are based on the observation that replica�

tion decisions are usually more long�term than caching decisions� Again
 the background
for these di
erences is that replication is intended to support a large group of clients
whose overall access behavior does not change as rapidly as the access behavior of a single
client� First
 replication typically involves placing data on servers� disks �in part because
of the coarse�grained nature of replication�
 whereas a client�s working set of data typi�

�In a multi�tier environment� caching can be established at all tiers� Caching data at several levels�
i�e�� hierarchical caching� is also carried as part of the Internet� Furthermore� many institutions provide
proxy caches in order to serve a group of clients �LA�	
�

��

cally �ts in the client machine�s main memory�	 Second
 server replicas are registered in
the system�s distributed catalog so that they can be used by all clients while caching does
not a
ect the catalog� Third
 propagation�based protocols are used to keep replicas of
data consistent and accessible at servers at all times� For caching
 on the other hand
 it
was shown that the best way to maintain consistency is to use a protocol which is based
on invalidation and removes out�of�date copies from a client�s cache so that copies of data
are only available in a client�s cache as long as the data has not been updated �FCL����
Finally
 replicas are kept at servers until they are explicitly deleted whereas copies of data
are kept in a client�s cache until they are replaced by copies of other and more interesting
data using a replacement policy such as LRU or until they are removed from the cache
because of invalidation�
The last di
erence between replication and caching concerns the mechanism used to

establish copies of data� Replicas are established by a separate process that copies a table

index
 or partition and moves it to the target server� Caching
 on the other hand
 is a
by�product of query execution� when a table scan or index scan is executed at a client

the client faults in all the pages of the table or index that the client has not cached and

after the scan is complete
 the client keeps all the used pages of the table or index in its
cache
 if the cache is large enough �Section ������� In other words
 replication can occur
at servers even if no queries are processed by these servers
 whereas the cache of a client
is empty if no queries have been processed by that client� As a consequence
 caching
decisions need to be made by the query processor while replication decisions can be made
by a separate component which is established at every server and works independently of
the query processor�
Having listed all these di
erences
 one may ask whether one technique is more useful

than the other and whether both techniques are needed� We know of no study that answers
this question completely
 but from the discussion it should have become clear that caching
and replication are complementary techniques and that both should be implemented�
Replication helps to move data near to a large group of clients so that these clients can
access the data cheaply the �rst time they need the data� Caching makes it possible to
access data cheaply when the data are used repeatedly by the same client� In fact
 both
replication � also called mirroring � and caching are techniques that are frequently used
in the WWW and Internet� Another di
erence between caching and replication is that
replication is often used in order to improve the reliability of a system in the presence of
server or network failures� Due to its volatile nature
 caching cannot serve this purpose� In
this section
 however
 we will concentrate on the performance implications of replication
and caching� Finally
 migration is a particular form of replication in which a new copy is
established at the target server and the old copy is removed from the original server�

��� Dynamic Replication Algorithms

Several dynamic replication algorithms have been proposed in the literature �GS�	
 BC��

FNY��
 SAB���
 CABK��
 WJH���� These algorithms can be classi�ed roughly into two
groups� ��� algorithms that try to reduce communication costs in a WAN by moving
copies of data to servers which are located near clients that are likely to use that data

and ��� algorithms that try to replicate hot data in order to balance the load on servers

�Note that WWW browsers like Netscape cache data on a client�s disk� and disk caching has also been
shown to be useful in the general database context �FCL��
�

��

1 2

3

4

5 6 7

8

9

10

Figure ��� Replication Scheme of the ADR Algorithm

in a LAN or in an environment in which communication is cheap� i�e�
 high bandwidth
and low delay� Furthermore
 some replication algorithms work particularly well if the
network is a tree or has some other simple structure
 whereas other algorithms work
well in any kind of network� In this subsection
 we will brie�y describe one speci�c
algorithm
 the ADR algorithm �WJH���
 which is targeted to reduce communication
costs and works particularly well in tree�shaped networks� The ADR algorithm is a
good representative of this class of algorithms� The ADR algorithm is very simple
 has
provably good performance in certain environments
 and can easily be integrated into
most distributed systems� Other replication algorithms which help balance the load of a
system and which are based on completely di
erent ideas are presented in Section ����
The ADR algorithm is based on the following observation which holds if a propagation

based �read�one�write�all� �ROWA� protocol is used to synchronize updates and keep
replicas consistent�

The replication scheme of an object � table
 index
 or partition thereof �
should be a connected subgraph in order to minimize the communication costs
in a tree�shaped hierarchical network�

To illustrate this principle
 Figure �� shows a network with ten servers� In this network

an object is replicated at Servers �
 �
 and � �shaded in Figure ���� Even if the object is
rarely accessed by the clients of Server �
 the object should nevertheless be replicated at
Server �
 if the object is replicated at Servers � and �� When the object is updated by a
client of Server �
 then this update must be propagated via Server � to Server � so that
the extra copy of the object at Server � can be kept consistent without any additional
communication cost� Likewise
 Server ��s copy of the object can be kept consistent with
no additional communication cost if the update originates at a client of Server �
 �
 �
 or
��� If the object is read regardless where
 the copy of the object at Server � does not hurt
either�
Based on this principle
 the ADR algorithm expands and contracts the replication

scheme of an object at the borders of the replication scheme� In the example of Figure ��

Servers � and � would keep read and write statistics for the object and periodically decide
whether the replication scheme should be expanded to Servers �
 �
 	
 �
 �
 or ��
 be
contracted
 removing the replicas at Servers � or �
 or remain unchanged� Speci�cally

Servers � and � periodically carry out the following tests based on their statistics�

Expansion Test� For each of their neighbors which is not part of the replication scheme

add the neighbor to the replication scheme
 if more read requests originate from
clients of that neighbor or from clients connected to servers of the subtree rooted
in that neighbor than updates originate at other clients� For example
 if more read

��

requests originate from clients of Servers � and � than write requests from clients of
all other servers
 then Server � should be added to the replication scheme�

Contraction Test� Drop the copy
 if more updates are propagated to that copy than
the copy is read� If
 for example
 more updates originate at clients of Servers �
 �

�
 �
 �� than read requests originate at Servers �
 �
 �
 	
 �
 then Server � should
drop its copy of the object�

If the replication scheme consists of only one server
 then this server carries out a
�switch test� in addition to the expansion test in order to �nd out whether it might be
better to store the only copy of the object at a di
erent server� i�e�
 carry out migration�
Of course
 to prevent the only copy of the object from being dropped
 the contraction
test must not be carried out if the replication scheme consists of only one server�

��� Cache Investment

We will now turn to caching and a method called cache investment �FK���� Like the
ADR algorithm
 cache investment keeps statistics and establishes copies of data at clients
only if these copies promise to be bene�cial� Since replication and caching are di
erent

however
 there are a number of important di
erences between the ADR algorithm and
cache investment
 and the ADR algorithm is not directly applicable to support caching�
There are two basic ideas behind cache investment� The �rst idea is to carry out what�

if analyses in order to decide whether it is worth caching parts of a table or index� More
precisely
 what�if analyses are applied in order to ��� compute the cost �i�e�
 investment�
of loading a client�s cache with parts of a table and�or index
 and ��� to compute the
bene�ts of caching parts of a table or index� The second idea is to extend the optimizer
so that the optimizer decides to execute queries at clients if these queries involve data
that should be cached at these clients� This way
 copies of the data are faulted in at these
clients and subsequent queries can be executed using the cache� Queries that involve data
that should not be cached should be executed preferably at servers without extra cost for
faulting in data�
To illustrate cache investment
 consider a client that asks for all Emps with salary �

��
����

SELECT e�name
 e�manager

FROM Emp e

WHERE e�salary �
��
����

Section ����� mentions that there are essentially two ways to execute this query in a
hybrid�shipping system� at the client or at the server� Assuming that there is an index on
Emp�salary and that the client�s cache is initially empty
 evaluating this query by using
an index scan operator at the client involves faulting in
 say
 �� pages of the Emp�salary
index in order to evaluate the predicate and
 say
 another �� pages of the Emp table in
order to retrieve the name and manager �elds of the Emps that qualify� As a result
 the
overall communication costs are �� pages if the index scan is carried out at the client� If
the index scan is executed at the server
 the name and manager �elds of the resulting Emp
tuples need to be shipped from the server to the client�let�s assume a total of �� pages�
As a result
 a traditional query optimizer will always decide to execute the index scan at
the server�

	�

In this example
 cache investment takes e
ect if the client repeatedly asks queries which
involve Emps with high salaries� In this case
 cache investment advises the optimizer at
one point to generate a plan that executes the index scans for these Emps at the client�
That plan is suboptimal �as described above�
 but the execution of that plan brings the
relevant Emp index and table pages into the client�s cache so that subsequent queries asking
for Emps with high salaries can be carried out at the client with no communication cost�
Without cache investment
 the optimizer would execute all queries at the server
 no data
would be cached at the client
 and every query would involve some communication cost
to ship query results from the server to the client� Taking a closer look
 cache investment
makes the following two calculations for every query issued at a client�

�� The investment to load the cache with the relevant index and table pages for highly�
paid Emps is �� pages for our example query� �� is the di
erence in cost between
the suboptimal
 client�side plan that brings the pages to the client�s cache and the
optimal
 server�side plan� The investment might be higher or lower for other queries
depending on
 among others
 the selectivity of the predicates of the WHERE clause
and the number of columns of the query result�

�� The bene�t of caching all relevant pages to extract the highly�paid Emps is �� pages
for our example query� �� is the di
erence in cost between the best plan for the
query given that none of the relevant pages are cached
 and the cost of the best plan
assuming that all relevant pages are cached� Again
 the bene�t of caching might be
higher or lower depending on the selectivity of the predicate and the target columns
of the query�

As a result of these calculations
 cache investment discovers that after three �high salary�
queries
 the bene�ts of caching outweigh the investment� After three queries
 cache in�
vestment will thus advise the optimizer to generate a suboptimal plan in order to load
the cache with the relevant Emp data�
There are quite a few more details that need to be taken into account to make cache

investment work properly� for instance
 the exact interaction of cache investment and
query optimization
 dealing with updates
 limitations in the size of a client�s cache
 light�
weight strategies to estimate the bene�ts and investment of caching
 cost formulae for
clustered and unclustered indices
 considering response time rather than communication
costs in the calculations
 and keeping statistics in the presence of rapidly changing client
workloads� All these details have been described in �FK��� so that we will not discuss them
here� To conclude
 here again are the di
erences between caching with cache investment
and replication with the ADR algorithm�

� Caching is �ne�grained making it possible to cache only a few
 frequently used pages
of large tables or indices as in the example above� Shipping
 caching
 and keeping
consistent copies of the whole Emp table at all the clients that frequently ask for Emp
information is usually not practical�

� The investment to establish a copy is signi�cantly lower with caching than with
replication because caching takes e
ect when data is read from disk and shipped to
the client in order to execute a query� In our example
 the investment was �� pages
although �� pages had to be shipped to the client� Replication always pays the full
price of �� pages �or even more due to its coarse granularity� to establish a copy
because the replication process does not overlap with the execution of queries�

	�

� As mentioned in Section ���
 however
 probably both replication with the ADR
algorithm �or some other algorithm� and caching with cache investment �or some
similar technique� should be used because caching and replication take e
ect at
di
erent �ends� of the system�

��� View Caching� View Materialization� and Data Warehouses

At the end of this section
 we would like to comment on the kinds of data that can
be cached and replicated� So far
 we assumed that only base data can be cached and
replicated� i�e�
 base tables or indices or parts of them� We now turn to systems that cache
or replicate �i�e�
 materialize� derived data or views� Such systems could
 for example

cache the average salary of all Emps that work in a research department instead of or in
addition to the complete salary information of all Emps�
View caching and materialization has been addressed in a number of research projects�

e�g�
 �RCK���
 KB�	
 DFJ���
 DRSN��
 DHM����� View materialization has also been
implemented in Oracle � �BDD����� The most prominent example of commercial systems
that materialize and�or cache views are data warehouses �Wid���� Data warehouses are
typically established for decision support in companies or as product catalogs and clas�
si�ed ads for electronic commerce on the web� They are usually installed in a three�tier
environment� The data warehouse is located in the middle�tier
 it is connected to one
or more data sources
 and it keeps materialized views over the base data stored at those
data sources in order to answer queries from clients without interacting with the data
sources� In fact
 a huge industry has already been formed around this concept
 and data
warehousing de�nitely deserves more attention than we give it in this small section� From
our narrow perspective
 a data warehouse
 the data sources
 and the clients are part of a
distributed system in which views are materialized or cached in the warehouse�
Compared to the replication and caching of base data
 the bene�ts of materializing

and caching views are signi�cantly larger� Caching the result of a join or aggregate query

for example
 might completely eliminate the cost of join or group�by processing for subse�
quent queries in addition to savings in communication costs and potential load balancing
e
ects� View caching and view materialization
 however
 are signi�cantly more complex
to implement� First
 keeping cached or materialized views consistent in the presence of
updates is complex and often expensive �Rou��
 QW���
 and it is unclear how invalidation�
based protocols
 which have proven to be very useful to implement cache consistency
 can
be applied to view caching� Second
 the ADR algorithm obviously cannot be applied
to decide what views to materialize
 and algorithms that carry out such decisions are
just beginning to emerge �HRU��
 YKL��
 SSV���� Cache investment can be used
 but
there is an explosion in the number of �what�if� analyses that need to be carried out
for every query so that a naive application of cache investment is impractical� Third

query optimization is more complicated and more expensive in the presence of cached
and�or materialized views �Lev���� The optimizer must determine whether a cached or
materialized view is applicable � this is known as the containment or subsumption prob�
lem �Lev���� After that
 the optimizer must decide which of the applicable views to use�
To this end
 the optimizer must be extended in order to enumerate read�view� plans for
all applicable views just like other access and join plans and carry out cost�based opti�
mization using dynamic programming or iterative dynamic programming �Section �������
If
 for example
 a materialized view involves Tables Emp and Dept and was shown to be

	�

applicable for a query that involves the Emp
 Dept
 and Division tables
 the view can be
used as an access plan for the Emp table
 as an access plan for the Dept table
 and as a Emp
� Dept join plan� In other words
 the view
 if it is applicable
 can be seen as a component
database that stores copies of the Emp and Dept tables and is capable of processing joins

and query optimization in the presence of views can be carried out in the same way as
query optimization in the presence of heterogeneous component databases as described
in Section 	���

� New Architectures for Distributed Query Process�

ing

The previous sections presented a comprehensive set of techniques to implement dis�
tributed database and information systems� While this set of techniques is su�cient for
most of today�s applications
 the advent of the Internet has sparked a large number of
new applications and led to systems with an ever growing number of clients and servers�
In such an environment
 the conventional query processing approach presented in the
previous sections might be too rigid� In this section
 we will describe recent trends and
developments� Speci�cally
 we will give a brief overview of economic models for distributed
query processing and dissemination�based information systems�

	�� Economic Models for Distributed Query Processing

A large variety of economic models for various aspects of distributed computing have
been studied since the mid�eighties� e�g�
 economic models for resource allocation
 load
balancing
 �ow control
 and quality of service� A good survey of such techniques can be
found in �FNSY���� The motivation to use an economic model is that distributed systems
are too complex to be controlled by a single centralized component with a universal cost
model� Systems based on an economic model rely on the �magic of capitalism�� Every
server that o
ers a service �data
 CPU cycles
 etc�� tries to maximize its own pro�t by
selling its services to clients� The hope is that the speci�c needs of all the individual
clients are best met if all servers act this way�
Mariposa is the �rst distributed database system based on an economic paradigm

�SAL����� Mariposa processes queries by carrying out auctions� In such an auction

every server can bid to execute parts of a query
 and clients pay for the execution of their
queries� More precisely
 query processing in Mariposa works as follows �more details can
be found in �SAL������

�� Queries originate at clients
 and clients allocate a budget to every query� The budget
of a query depends on the importance of the query and how long the client is willing
to wait for the answer� A client in Las Vegas could
 for example
 be willing to pay
#���� if the client gets the latest World Cup football results within a second
 but
only �� cents if the delivery of the results takes one minute�

�� Every query is processed by a broker� The broker parses the query and generates
a plan that speci�es the join order and join methods� For this purpose
 the broker
may employ an ordinary query optimizer for a centralized database system based
on
 e�g�
 dynamic programming�

	�

�� The broker starts an auction� As part of this auction
 every server that stores copies
of parts of the queried data or is willing to execute one or several of the operators
speci�ed in the broker�s plan is asked to give bids in the form of�

hOperator o�Price p�Running Time r�Expiration Date xi

In other words
 with such a bid a server indicates that it will be willing to execute
Operator o for p dollars in t seconds
 and that this o
er is valid until the expiration
date x�

	� The broker collects all bids and makes contracts with servers to execute the queries�
Doing so
 the broker tries to maximize its own pro�t� If
 for example
 the broker
�nds a way to execute the Las Vegas query from above in a second paying only
#���� to servers
 the broker will pursue this way and keep #	��� of the budget as
pro�t� If the query cannot be evaluated with acceptable cost in one second
 the
broker will try to �nd a very cheap way to execute the query in a minute and keep
a couple of cents as pro�t� If the broker �nds no way to execute the query within
the time�budget limitations
 the broker will reject the query� In this case
 the client
must raise the budget or revise the response time goals or just be happy without
the answer�

At �rst glance
 Mariposa�s query processing approach does not appear to be very di
erent
from the techniques presented in Sections � and �� Mariposa carries out two�step opti�
mization as described in Section ����� making it possible to avoid heavily loaded or slow
servers� The beauty of Mariposa is that di
erent servers can �exibly establish di
erent
bidding strategies in order to achieve high revenue� For instance
 it is possible that a
server specializes in high�end or low�end services� Using an example from real life
 there
are expensive restaurants for people that like to eat well and fast�food restaurants for
people with other needs� This diversity makes it possible to meet the eating habits of a
large group of people� Mariposa supports such a diversity in the services provided by a
distributed database system�
Another advantage of Mariposa is that dynamic data placement �ts nicely into Mari�

posa�s economic approach� In addition to the revenue for executing query operators

servers can make a pro�t by buying and selling copies of data �SAB����� The football
WWW server located in Paris
 for example
 was not able to handle all the requests from
all over the world during the World Cup �nals in ����� Using Mariposa
 that server could
have allowed other servers
 say
 in Brazil or Nigeria to replicate the results of the football
matches and get additional revenue for selling the original copy of the Results table and
for propagating all the updates� Servers in Brazil and Nigeria would have bought copies
of the Results table to bid for queries that involve that data and�or sell copies of that
data to other servers� e�g�
 in Argentina or Cameroun�
While all these concepts sound very promising and a version of Mariposa is already

available commercially �distributed by Cohera�
 it is still unclear how well Mariposa and
other systems with economic models will work in practice� There is a signi�cant amount of
research required to �nd out how to con�gure the bidding and data buying�selling strate�
gies of servers and how to keep the overheads of the bidding protocols within reasonable
limits�

		

	�� Dissemination�based Information Systems

Throughout this paper
 a request�driven data delivery model was assumed� In this model

users or application programs �i�e�
 clients� are active and initiate queries� servers are
passive and process queries upon request� Lately
 there has been a great deal of interest
in push technology� In this model
 servers are active and disseminate data to clients before
the clients ask for the data� An early incarnation of push is TeleText provided by most
European TV stations since the mid�eighties� Furthermore
 both Netscape�s Navigator
and Microsoft�s Internet Explorer provide features to allow clients to passively listen to
data which is disseminated by WWW servers� Pointcast�s screen�saver which displays
news and commercials based on a user�s pro�le of interests is another product in this
domain� A good overview of these and other push�based systems is given in �FZ����
One reason for this interest is that many people like to obtain all the information they

are interested in with virtually no e
ort� In addition
 there are a number of technical
reasons in favor of push� in particular
 if data is dissiminated in networks that support
broadcasts or �	N multicasts� Most importantly
 push�based systems scale better than
traditional request�driven systems� Rather than processing every request individually

push�based systems satisfy the requests of several users by disseminating the results only
once �AF���� Data push and request�driven access to data can also be combined in order
to achieve high scalability and satisfy unusual user requests at the same time �AFZ����
Other interesting aspects are client�side caching in push�based systems �AAFZ��
 AFZ���

and multi�tier architectures for data dissemination �FZ����
Unfortunately
 SQL�style query processing has not yet been studied in the context of

push�based systems� For example
 it is still unclear which of the techniques presented
in this paper would be applicable for a push�based system� A great deal of future work
remains to be done in this area�

	 Conclusion

In the last decade
 the landscape of distributed database and information systems has
changed tremendously� Network technology has become mature and as a result
 busi�
nesses rely more and more on distributed and on�line data processing architectures as
opposed to monolithic and batch�oriented architectures� In addition
 a whole new gen�
eration of distributed database applications is appearing
 exploiting
 for example
 the
Internet or wireless communication networks for mobile clients� Furthermore
 most sys�
tems today have a client�server or a multi�tier architecture
 and many complex systems
are composed of several sub�systems from potentially di
erent vendors with heterogeneous
data processing capabilities and APIs�
In this paper an overview of the state of the art in distributed query processing was

given� We presented a series of techniques covering all aspects of query processing� from
basic techniques for query optimization and query execution to more specialized tech�
niques for certain classes of client�server and heterogeneous database systems� We also
showed how caching and replication techniques can be used in large systems with many
clients and servers� Combined
 this set of techniques should be su�cient to support most
of today�s database applications� We also discussed recent trends that might dramatically
change the way some distributed systems will be built in the future�
While most issues of distributed query processing are well understood
 there are a

	�

number of avenues for future work� First
 no vendor has implemented all or a signi�cant
portion of the techniques described in this paper� Conceptually
 the pieces �t together
well
 but it is nevertheless not always easy to integrate a new technique into an existing
system� For example
 it is possible to extend a query optimizer to consider a new query
evaluation algorithm
 but doing so might substantially increase the running time of the
optimizer� As a result
 a tricky compromise must be found that extends the optimizer
so that the new algorithm is supported reasonably well and the increase in optimization
time is tolerable� Second
 the techniques described in this paper can be implemented as
part of a distributed database management system or as part of a database application
system� Preferably
 of course
 the techniques should be implemented as part of a database
management system so that any kind of application can directly bene�t from them� In
fact
 however
 several of the techniques presented in this paper have been implemented as
part of the SAP R�� business application system �KKM��� because standard
 o
�the�shelf
database management systems have not yet implemented these techniques� This situa�
tion might be the cause for a great deal of confusion
 and ultimately certain application
systems might not work well with certain database management systems if con�icting
techniques are carried out on both ends or important techniques are not carried out at
all� Coordinating all the di
erent query processing activities is a di�cult task in such
systems� The situation is getting worse with the current trend to design and market
application and database management modules that can be freely plugged together and
may interact in unpredictable ways�

Acknowledgments

I would like to thank Alfons Kemper for suggesting that I write this paper and for many
helpful discussions and comments� I would also like to thank Reinhard Braumandl
 Mike
Carey
 Gerhard Drasch
 Andr$e Eickler
 Mike Franklin
 Laura Haas
 Bj�orn J$onsson
 and
Konrad Stocker � some of the ideas described in this paper come from joint work with
them� I am also grateful to the editor and the anonymous referees whose detailed com�
ments helped greatly to improve the presentation of this paper� This work was partially
supported by the German Research Council �DFG� under contract Ke 	�������

References

�AAFZ��� S� Acharya� R� Alonso� M� Franklin� and S� Zdonik� Broadcast disks� Data manage�
ment for asymmetric communication environments� In Proc� of the ACM SIGMOD
Conf� on Management of Data� pages ����	��� San Jose� CA� USA� May �����

�Abi��� Serge Abiteboul� Querying semi�structured data� In Proc� of the Intl� Conf� on
Database Theory �ICDT�� Delphi� Greece� �����

�ACPS��� S� Adali� K� Candan� Y� Papakonstantinou� and V� S� Subrahmanian� Query
caching and optimization in distributed mediator systems� In Proc� of the ACM
SIGMOD Conf� on Management of Data� pages �
������ Montreal� Canada� June
�����

�AF��� D� Aksoy and M� Franklin� Scheduling for large�scale on�demand data broadcast�
ing� In Proc� IEEE INFOCOM Conf�� San Francisco� CA� USA� March �����

	�

�AFZ��� S� Acharya� M� Franklin� and S� Zdonik� Prefetching from a broadcast disk� In
Proc� IEEE Conf� on Data Engineering� New Orleans� LA� USA� �����

�AFZ��� S� Acharya� M� Franklin� and S� Zdonik� Balancing push and pull for data broad�
cast� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages ��
�����
Tucson� AZ� USA� May �����

�Ape��� P� Apers� Data allocation in distributed DBMS� ACM Trans� on Database Systems�
�
�
��	�
�
��� September �����

�Ass��� Special issue on heterogeneous databases� ACM Computing Surveys� Vol 		� No
�
� September �����

�ASU��� A� Aho� R� Sethi� and J� Ullman� Compilers� Principles� Techniques and Tools�
Addison�Wesley� �����

�Bab��� E� Babb� Implementing a relational database by means of specialized hardware�
ACM Trans� on Database Systems� �������	�� March �����

�BC��� A� Bestavros and C� Cunha� Server�initiated document dissemination for the
WWW� IEEE Data Engeneering Bulletin� ���
��
���� September �����

�BCK��� R� Braumandl� J� Claussen� and A� Kemper� Evaluating functional joins along
nested reference sets in object�relational and object�oriented databases� In Proc� of
the Conf� on Very Large Data Bases �VLDB�� pages �����	�� New York� USA�
August �����

�BDD���� R� G� Bello� K� Dias� A� Downing� J� Feenan Jr�� W� D� Norcott� H� Sun�
A� Witkowski� and M� Ziauddin� Materialized views in oracle� In Proc� of the
Conf� on Very Large Data Bases �VLDB�� pages �������� New York� USA� Au�
gust �����

�BEG��� R� Buck�Emden and J� Galimow� SAP R�� System� A Client�Server Technology�
Addison�Wesley� Reading� MA� USA� �����

�BGMS�	� Y� Breitbart� H� Garcia�Molina� and A� Silberschatz� Overview of multidatabase
transaction management� The VLDB Journal� ��	������	�
� ���	�

�BGW���� P� A� Bernstein� N� Goodman� E� Wong� C� Reeve� and J� Rothnie� Query pro�
cessing in a system for distributed databases �SDD���� ACM Trans� on Database
Systems� ����� December �����

�BKK��� R� Braumandl� A� Kemper� and D� Kossmann� Database patchwork on the internet
�project demo description�� In Proc� of the ACM SIGMOD Conf� on Management
of Data� Philadelphia� PA� USA� June �����

�BKKS��� R� Braumandl� A� Kemper� D� Kossmann� and K� Stocker� Query optimization in
the presence of replication� ����� In preparation�

�BL��� P� Bogle and B� Liskov� Reducing cross domain call overhead using batched fu�
tures� In Proc� of the ACM Conf� on Object	Oriented Programming Systems and
Languages �OOPSLA�� pages
���
��� Portland� OR� USA� October �����

�Bun��� Peter Buneman� Semistructured data� In Proc� ACM SIGMOD�SIGACT Conf�
on Princ� of Database Syst� �PODS�� pages �����	�� Tucson� Arizona� �����

	�

�C���� M� Carey et al� Towards heterogeneous multimedia information systems� In
Proc� of the Intl� Workshop on Research Issues in Data Engineering� March �����

�CABK��� G� Copeland� W� Alexander� E� Boughter� and T� Keller� Data placement in
bubba� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages
������� Chicago� IL� USA� May �����

�CAK���� D� Chamberlin� M� Astrahan� W� King� R� Lorie� J� Mehl� T� Price� M� Schkolnik�
P� Selinger� D� Slutz� B� Wade� and R� Yost� Support for repetitve transactions
and ad hoc queries in System R� ACM Trans� on Database Systems� �����������
March �����

�CBB���� R� Cattell� D� Barry� D� Bartels� M� Berler� J� Eastman� S� Gamerman� D Jordan�
A� Springer� H� Strickland� and D� Wade� The Object Database Standard� ODMG

��� The Morgan Kaufmann Series in Data Management Systems� Morgan Kauf�
mann Publishers� San Mateo� CA� USA� �����

�CDF���� M� Carey� D� DeWitt� M� Franklin� N� Hall� M� McAuli�e� J� Naughton� D� Schuh�
M� Solomon� C� Tan� O� Tsatalos� S� White� and M� Zwilling� Shoring up persistent
applications� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages

�
�
��� Minneapolis� MI� USA� May �����

�CG��� R� Cole and G� Graefe� Optimization of dynamic query evaluation plans� In Proc�
of the ACM SIGMOD Conf� on Management of Data� pages �������� Minneapolis�
MI� USA� May �����

�CG��� S� Chaudhuri and L� Gravano� Optimizing queries over mulitmedia repositories�
In Proc� of the ACM SIGMOD Conf� on Management of Data� pages �����	�
Montreal� Canada� June �����

�CK��� M� Carey and D� Kossmann� On saying �enough already�
 in SQL� In Proc� of
the ACM SIGMOD Conf� on Management of Data� pages 	���	
�� Tucson� AZ�
USA� May �����

�CK��� M� Carey and D� Kossmann� Reducing the braking distance of an SQL query
engine� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages ��������
New York� USA� August �����

�CL��� M� Carey and H� Lu� Load balancing in a locally distributed database system�
In Proc� of the ACM SIGMOD Conf� on Management of Data� pages ��������
Washington� USA� �����

�CP��� S� Ceri and G� Pelagatti� Distributed Databases � Principles and Systems�
McGraw�Hill� Inc�� New York� San Francisco� Washington� D�C�� �����

�CR��� C� Chen and N� Roussopoulos� Adaptive selectivity estimation using query feed�
back� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages ����
��	� Minneapolis� MI� USA� May �����

�Day�
� U� Dayal� Processing queries over generalization hierarchies in a multidatabase
system� In Proc� of the Conf� on Very Large Data Bases �VLDB�� Florence� Italy�
���
�

�DFJ���� S� Dar� M� Franklin� B� J�onsson� D� Srivastava� and M� Tan� Semantic data caching
and replacement� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages

��
��� Bombay� India� September �����

	�

�DFMV��� D� DeWitt� P� Futtersack� D� Maier� and F� Velez� A study of three alternative
workstation server architectures for object�oriented database systems� In Proc� of
the Conf� on Very Large Data Bases �VLDB�� pages �����	�� Brisbane� Australia�
August �����

�DG�	� D� DeWitt and J� Gray� Parallel database systems� The future of high performance
database systems� Communications of the ACM�
����������� June ���	�

�DGMS��� S� Davidson� H� Garcia�Molina� and D� Skeen� Consistency in partitioned networks�
ACM Computing Surveys� ���	��
���
��� September �����

�DHK���� A� Dogac� U� Halici� E� Kilic� G� �Ozhan� F� Ozcan� S� Nural� C� Dengi� S� Man�
cuhan� B� Arpinar� P� Kokasl� and C� Evrendilek� METU interoperable database
system� In Proc� of the ACM SIGMOD Conf� on Management of Data� page ��	�
Montreal� Canada� June �����

�DHKK��� J� Doppelhammer� T� H�oppler� A� Kemper� and D� Kossmann� Database perfor�
mance in the real world� TPC�D and SAP R�
� In Proc� of the ACM SIGMOD
Conf� on Management of Data� pages �	
��
�� Tucson� AZ� USA� May �����

�DHM���� S� De loch� T� H�arder� N� Mattos� B� Mitschang� and J� Thomas� KRISYS� Mod�
eling concepts� implementation techniques� and client�server issues� The VLDB
Journal� ��	�������� April �����

�DJ��� A� D!Andrea and P� Janus� UniSQL!s next�generation object�relational database
management system� ACM SIGMOD Record� 	��
�������� September �����

�DKS�	� W� Du� R� Krishnamurthy� and M��C� Shan� Query optimization in heterogeneous
DBMS� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages 	���	���
Vancouver� Canada� August ���	�

�DLM�
� D� DeWitt� D� Lieuwen� and M� Mehta� Parallel pointer�based join techniques
for object�oriented databases� In Proc� of the Intl� IEEE Conf� on Parallel and
Distributed Information Systems� San Diego� CA� USA� January ���
�

�DRSN��� P� Deshpande� K� Ramasamy� A� Shukla� and J� Naughton� Caching multidimen�
sional queries using chunks� In Proc� of the ACM SIGMOD Conf� on Management
of Data� pages 	���	��� Seattle� WA� USA� June �����

�DSD��� W� Du� M��C� Shan� and U� Dayal� Reducing multidatabase query response time
by tree balancing� In Proc� of the ACM SIGMOD Conf� on Management of Data�
pages 	�
�
�
� San Jose� CA� USA� May �����

�EDNO��� C� Evrendilek� A� Dogac� S� Nural� and F� Ozcan� Multidatabase query optimiza�
tion� Distributed and Parallel Databases� ������������ January �����

�EGK��� A� Eickler� C� Gerlhof� and D� Kossmann� A performance evaluation of OID
mapping techniques� In Proc� of the Conf� on Very Large Data Bases �VLDB��
pages ���	�� Z�urich� Switzerland� September �����

�EKK��� A� Eickler� A� Kemper� and D� Kossmann� Finding data in the neighborhood� In
Proc� of the Conf� on Very Large Data Bases �VLDB�� pages

��
��� Athens�
Greece� August �����

	�

�ESW��� R� Epstein� M� Stonebraker� and E� Wong� Query processing in a distributed
relational database system� In Proc� of the ACM SIGMOD Conf� on Management
of Data� pages �������� �����

�Fag��� R� Fagin� Combining fuzzy information from multiple systems� In Proc� ACM
SIGMOD�SIGACT Conf� on Princ� of Database Syst� �PODS�� pages 	���		��
Montreal� Canada� �����

�FCL�
� M� Franklin� M� Carey� and M� Livny� Local disk caching for client�server database
systems� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages ��
�����
Dublin� Ireland� August ���
�

�FCL��� M� Franklin� M� Carey� and M� Livny� Transactional client�server cache con�
sistency� Alternatives and performance� ACM Trans� on Database Systems�
		�
��
���
�
� September �����

�FJK��� M� Franklin� B� J�onsson� and D� Kossmann� Performance tradeo�s for client�server
query processing� In Proc� of the ACM SIGMOD Conf� on Management of Data�
pages �������� Montreal� Canada� June �����

�FK��� M� Franklin and D� Kossmann� Cache investment strategies� Technical Report CS�
TR�
��
� University of Maryland� College Park� MD 	���	� May ����� Submitted
for journal publication�

�FNSY��� D� Ferguson� C� Nikolaou� J� Sairamesh� and Y� Yemini� Economic models for
allocating resources in computer systems� In S� Clearwater� editor� Market based
Control of Distributed Systems� World Scienti�c Press� �����

�FNY�
� D� Ferguson� C� Nikolaou� and Y� Yemini� An economy for managing repli�
cated data in autonomous decentralized systems� In Proc� Int� Symposium on
Autonomous and Decentralized Systems� Kawasaki� Japan� ���
�

�FW��� R� Fagin and E� Wimmers� Incorporating user preferences in multimedia queries� In
Proc� of the Intl� Conf� on Database Theory �ICDT�� volume ���� of Lecture Notes
in Computer Science �LNCS�� pages 	���	��� Springer�Verlag� January �����

�FZ��� M� Franklin and S� Zdonik� Data in your face� Push technology in perspective�
In Proc� of the ACM SIGMOD Conf� on Management of Data� pages ��������
Seattle� WA� USA� June �����

�GBLP��� J� Gray� A� Bosworth� A� Layman� and H� Pirahesh� Data cube� A relational
aggregation operator generalizing group�by� cross�tab� and sub�total� In Proc�
IEEE Conf� on Data Engineering� pages ��	����� New Orleans� LA� USA� �����

�GCGMP��� L� Gravano� C��C� Chang� H� Garcia�Molina� and A� Paepcke� STARTS� stanford
proposal for internet meta�searching� In Proc� of the ACM SIGMOD Conf� on
Management of Data� pages 	���	��� Tucson� AZ� USA� May �����

�GD��� G� Graefe and D� DeWitt� The EXODUS optimizer generator� In Proc� of the
ACM SIGMOD Conf� on Management of Data� pages ������	� San Francisco�
CA� USA� May �����

�GGM��� L� Gravano and H� Garcia�Molina� Merging ranks from heterogeneous internet
sources� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages ����	���
Athens� Greece� August �����

��

�GGS��� S� Ganguly� A� Goel� and A� Silberschatz� E"cient and accurate cost models for
parallel query optimizaton� In Proc� ACM SIGMOD�SIGACT Conf� on Princ� of
Database Syst� �PODS�� pages ��	����� Montreal� Canada� �����

�GGT��� G� Gardarin� J��R� Gruser� and Z��H� Tang� Cost�based selection of path expression
processing algorithms in object�oriented databases� In Proc� of the Conf� on Very
Large Data Bases �VLDB�� pages
������� Bombay� India� September �����

�GHK�	� S� Ganguly� W� Hasan� and R� Krishnamurthy� Query optimization for parallel
execution� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages
����� San Diego� CA� USA� June ���	�

�GHR��� A� Gupta� V� Harinarayan� and A� Rajaraman� Virtual data technology� ACM
SIGMOD Record� 	����������� December �����

�GM�
� G� Graefe and W� McKenna� The Volcano optimizer generator� Extensibility and
e"cient search� In Proc� IEEE Conf� on Data Engineering� pages 	���	��� Vienna�
Austria� April ���
�

�GR�
� J� Gray and A� Reuter� Transaction Processing� Concepts and Techniques� Morgan
Kaufmann Publishers� San Mateo� CA� USA� ���
�

�Gra��� G� Graefe� Encapsulation of parallelism in the volcano query processing system�
In Proc� of the ACM SIGMOD Conf� on Management of Data� pages ��	�����
Atlantic City� NJ� USA� June �����

�Gra�
� G� Graefe� Query evaluation techniques for large databases� ACM Computing
Surveys� 	��	���
����� June ���
�

�Gra��� G� Graefe� The cascades framework for query optimization� IEEE Data Engeneer	
ing Bulletin� ���
�����	�� September �����

�Gra��� G� Graefe� Iterators� schedulers� and distributed�memory parallelism� Software
Practice and Experience� 	������	����	� April �����

�GS��� J� Gwertzman and M� Seltzer� The case for geographical push�caching� Technical
Report HU TR�
����� Harvard University� Cambridge� MA� �����

�GW��� G� Graefe and K� Ward� Dynamic query evaluation plans� In Proc� of the ACM
SIGMOD Conf� on Management of Data� pages
���
��� Portland� OR� USA�
May �����

�HCF��� G� Hamilton� R� Cattell� and M� Fisher� JDBC database access with Java� A
Tutorial and Annotated Reference� Addison�Wesley� Reading� MA� USA� �����

�HF��� R� Hagmann and D� Ferrari� Performance analysis of several back�end database
architectures� ACM Trans� on Database Systems� ��������	�� March �����

�HFLP��� L� Haas� J� C� Freytag� G� Lohman� and H� Pirahesh� Extensible query processing
in starburst� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages

���
��� Portland� OR� USA� May �����

�HKU��� L� Haas� D� Kossmann� and I� Ursu� An investigation into loading a cache with
query results� Technical report� IBM Almaden� San Jose� CA� March �����

��

�HKWY��� L� Haas� D� Kossmann� E� Wimmers� and J� Yang� Optimizing queries across
diverse data sources� In Proc� of the Conf� on Very Large Data Bases �VLDB��
pages 	���	��� Athens� Greece� August �����

�HM��� W� Hasan and R� Motwani� Coloring away communication in parallel query opti�
mization� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages 	
��	���
Z�urich� Switzerland� September �����

�HMNR��� T� H�arder� B� Mitschang� U� Nink� and N� Ritter� Workstation�Server�
Architekturen f�ur datenbankbasierte Ingenieuranwendungen� Informatik �
Forschung und Entwicklung� ���	������	� May �����

�HRU��� V� Harinarayan� A� Rajaraman� and J� Ullman� Implementing data cubes e"�
ciently� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages
	���	��� Montreal� Canada� June �����

�HS��� W� Hong and M� Stonebraker� Parallel query processing in XPRS� Technical re�
port UCB�ERL M������ Department of Industrial Engineering and Operations
Research and School of Business Administration� University of California� Berke�
ley� CA� May �����

�IEE��� Special issue on interoperability� IEEE Data Engineering Bulleting� Vol 	�� No
�
September �����

�IFF���� Z� Ives� D� Florescu� M� Friedman� A� Levy� and D� Weld� An adaptive query
execution engine for data integration� In Proc� of the ACM SIGMOD Conf� on
Management of Data� Philadelphia� PA� USA� June �����

�IK��� Y� Ioannidis and Y� Kang� Left�deep vs� bushy trees� An analysis of strategy
spaces and its implications for query optimization� In Proc� of the ACM SIGMOD
Conf� on Management of Data� pages �������� Denver� CO� USA� May �����

�INSS�	� Y� Ioannidis� R� Ng� K� Shim� and T� Sellis� Parametric query optimization� In
Proc� of the Conf� on Very Large Data Bases �VLDB�� pages ��
����� Vancouver�
Canada� August ���	�

�JWKL��� B� Jenq� D� Woelk� W� Kim� and W� Lee� Query processing in distributed ORION�
In Proc� of the Intl� Conf� on Extending Database Technology �EDBT�� pages ����
���� Venice� Italy� March �����

�KB��� A� Keller and J� Basu� A predicate�based caching scheme for client�server database
architectures� In Proc� of the Intl� IEEE Conf� on Parallel and Distributed Infor	
mation Systems� pages 		��	
�� Austin� TX� USA� September �����

�KD��� N� Kabra and D� DeWitt� E"cient mid�query re�optimization for sub�optimal
query execution plans� In Proc� of the ACM SIGMOD Conf� on Management of
Data� pages �������� Seattle� WA� USA� June �����

�KGBW��� W� Kim� J� Garza� N� Ballou� and D� Woelk� Architecture of the ORION next�
generation database system� IEEE Transactions on Knowledge and Data Engi	
neering� 	���������	�� March �����

�KGM��� T� Keller� G� Graefe� and D� Maier� E"cient assembly of complex objects� In Proc�
of the ACM SIGMOD Conf� on Management of Data� pages �������� Denver� CO�
USA� May �����

��

�KJA�
� A� Keller� R� Jensen� and S� Agrawal� Persistence software� Bridging object�
oriented programming and relational databases� In Proc� of the ACM SIGMOD
Conf� on Management of Data� pages �	
��	�� Washington� DC� USA� May ���
�

�KK��� A� Kemper and D� Kossmann� Dual�bu�ering strategies in object bases� In Proc� of
the Conf� on Very Large Data Bases �VLDB�� pages �	���
�� Santiago� Chile�
September �����

�KKM��� A� Kemper� D� Kossmann� and F� Matthes� SAP R�
� a database application
system� Tutorial handouts for the ACM SIGMOD Conference� Seattle� WA� USA�
June �����

�KS��� R� Kimball and K� Strehlo� Why decision support fails and how to �x it� ACM
SIGMOD Record� 	��
���	���� September �����

�KS��� D� Kossmann and K� Stocker� Iterative dynamic programming� A new class of
query optimization algorithms� December ����� Submitted for publication�

�LA��� A� Luotonen and K� Altis� World�wide web proxies� Technical report� CERN�
Geneva� Switzrland� April �����

�LC��� H� Lu and M� Carey� Some experimental results on distributed join algorithms in
a local network� In Proc� of the Conf� on Very Large Data Bases �VLDB�� pages
		��
��� Stockholm� Sweden� �����

�Lev��� A� Levy� Answering queries using views� A survey� May ����� In preparation�

�LJJC��� T� Lahiri� A� Joshi� A� Jasuja� and S� Chatterjee� ������ users on an Oracle�
Universal Server database� In Proc� of the ACM SIGMOD Conf� on Management
of Data� pages �	���
�� Seattle� WA� USA� June �����

�Loh��� G� Lohman� Grammar�like functional rules for representing query optimization
alternatives� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages
���	�� Chicago� IL� USA� May �����

�Lom��� D� Lomet� Replicated indexes for distributed data� In Proc� of the Intl� IEEE
Conf� on Parallel and Distributed Information Systems� Miami Beach� FL� USA�
December �����

�LRO��� A� Levy� A� Rajaraman� and J� Ordille� Querying heterogeneous information
sources using source descriptions� In Proc� of the Conf� on Very Large Data Bases
�VLDB�� pages 	���	�	� Bombay� India� September �����

�LVZ�
� R� Lanzelotte� P� Valduriez� and M� Zait� On the e�ectiveness of optimization
search strategies for parallel execution spaces� In Proc� of the Conf� on Very Large
Data Bases �VLDB�� pages ��
����� Dublin� Ireland� August ���
�

�LW��� R� Lorie and B� Wade� The compilation of a high level data language� Technical
Report RJ 	���� IBM Research� San Jose� CA� �����

�ME�	� P� Mishra and M� Eich� Join processing in relational databases� ACM Computing
Surveys� 	������
���
� March ���	�

��

�MGS���� D� Maier� G� Graefe� L� Shapiro� S� Daniels� T� Keller� and B� Vance� Issues in
distributed object assembly� In T� �Ozsu� U� Dayal� and P� Valduriez� editors�
Distributed Object Management� pages �������� San Mateo� CA� USA� May �����
Morgan Kaufmann Publishers� International Workshop on Distributed Object
Management�

�ML��� L� Mackert and G� Lohman� R� optimizer validation and performance evaluation
for distributed queries� In Proc� of the Conf� on Very Large Data Bases �VLDB��
pages �������� Kyoto� Japan� �����

�MS�
� J� Melton and A� Simon� Understanding the new SQL� A complete Guide� Morgan
Kaufmann Publishers� San Mateo� CA� USA� ���
�

�NGT��� H� Naacke� G� Gardarin� and A� Tomasic� Leveraging mediator cost models with
heterogeneous data sources� In Proc� IEEE Conf� on Data Engineering� Orlando�
FL� USA� �����

�ONK���� F� Ozcan� S� Nural� P� Koksal� C� Evrendilek� and A� Dogac� Dynamic query
optimization on a distributed object management platform� In Proc� of the Intl�
Conf� on Information and Knowledge Management� pages �����	�� Rockville� MD�
USA� November �����

�ONK���� F� Ozcan� S� Nural� P� Koksal� C� Evrendilek� and A� Dogac� Dynamic query
optimization in multidatabases� IEEE Data Engeneering Bulletin� 	��
��
�����
September �����

�OS��� J� O!Toole and L� Shrira� Opportunisic log� E"cient reads in a reliable object
server� Technical Report MIT�LCS�TM����� Massachusetts Institute of Technol�
ogy� Cambridge� MA �	�
�� March �����

� �OV��� T� �Ozsu and P� Valduriez� Principles of Distributed Database Systems� Prentice
Hall� Englewood Cli�s� NJ� USA� �����

�PGGMU��� Y� Papakonstantinou� A� Gupta� H� Garcia�Molina� and J� Ullman� A query tran�
lation scheme for rapid implementation of wrappers� In Proc� of the Conf� on De	
ductive and Object	Oriented Databases �DOOD�� pages �������� December �����

�PGH��� Y� Papakonstantinou� A� Gupta� and L� Haas� Capabilities�based query rewriting
in mediator systems� In Proc� of the Intl� IEEE Conf� on Parallel and Distributed
Information Systems� Miami Beach� FL� USA� December �����

�PGMW��� Y� Papakonstantinou� H� Garcia�Molina� and J� Widom� Object exchange across
heterogeneous information sources� In Proc� IEEE Conf� on Data Engineering�
pages 	���	��� Taipeh� Taiwan� �����

�PHH�	� H� Pirahesh� J� Hellerstein� and W� Hasan� Extensible�rule based query rewrite
optimization in starburst� In Proc� of the ACM SIGMOD Conf� on Management
of Data� pages
����� San Diego� CA� USA� June ���	�

�QW��� D� Quass and J� Widom� On�line warehouse view maintenance� In Proc� of the
ACM SIGMOD Conf� on Management of Data� pages
�
����� Tucson� AZ� USA�
May �����

�Ram��� R� Ramakrishnan� Database Management Systems� McGraw�Hill� Inc�� New York�
San Francisco� Washington� D�C�� �����

�	

�RCK���� N� Roussopoulos� C� Chen� S� Kelley� A� Delis� and Y� Papakonstantinou� The
ADMS project� Views R Us� IEEE Data Engeneering Bulletin� ���	�����	�� June
�����

�ROH��� M� Tork Roth� F� Ozcan� and L� Haas� Cost models DO matter� Providing cost
information for diverse data sources in a federated system� February ����� Sub�
mitted for publication�

�Rou��� N� Roussopoulos� The incremental access method of view cache� Concepts� al�
gorithms� and cost analysis� ACM Trans� on Database Systems� ���
���
����
�
September �����

�RS��� M� Tork Roth and P� Schwarz� Don!t scrap it� wrap it� A wrapper architecture
for legacy data sources� In Proc� of the Conf� on Very Large Data Bases �VLDB��
pages 	���	��� Athens� Greece� August �����

�RSS��� L� Relly� H� Schuldt� and H��J� Schek� Exporting database functionality � the
concert way� IEEE Data Engeneering Bulletin� 	��
�������� September �����

�SAB���� J� Sidell� P� Aoki� S� Barr� A� Sah� C� Staelin� M� Stonebraker� and A� Yu� Data
replication in Mariposa� In Proc� IEEE Conf� on Data Engineering� pages ��������
New Orleans� LA� USA� �����

�SAC���� P� Selinger� M� Astrahan� D� Chamberlin� R� Lorie� and T� Price� Access path
selection in a relational database management system� In Proc� of the ACM SIG	
MOD Conf� on Management of Data� pages 	
�
�� Boston� USA� May �����

�SAD���� M��C� Shan� R� Ahmed� J� Davis� W� Du� and W� Kent� Pegasus� A heterogeneous
information management system� In W� Kim� editor� Modern Database Systems�
chapter
	� ACM Press �Addison�Wesley publishers�� Reading� MA� USA� �����

�SAL���� M� Stonebraker� P� Aoki� W� Litwin� A� Pfe�er� A� Sah� J� Sidell� C� Staelin� and
A� Yu� Mariposa� A wide�area distributed database system� The VLDB Journal�
���������
� January �����

�SC��� E� Shekita and M� Carey� A performance evaluation of pointer�based joins� In Proc�
of the ACM SIGMOD Conf� on Management of Data� pages
���
��� Atlantic
City� NJ� May �����

�SC�	� V� Srinivansan and M� Carey� Compensation�based on�line query processing� In
Proc� of the ACM SIGMOD Conf� on Management of Data� pages

��
��� San
Diego� CA� USA� June ���	�

�SD��� D� Schneider and D� DeWitt� Tradeo�s in processing complex join queries via
hashing in multiprocessor database machines� In Proc� of the Conf� on Very Large
Data Bases �VLDB�� pages �������� Brisbane� Australia� August �����

�Sel��� T� Sellis� Multiple�query optimization� ACM Trans� on Database Systems�
�
����	
��	� March �����

�SKS��� A� Silberschatz� H� Korth� and S� Sudarshan� Database System Concepts� McGraw�
Hill� Inc�� New York� San Francisco� Washington� D�C�� third edition� �����

�SL��� A� Sheth and J� Larson� Federated database systems for managing distributed�
heterogeneous� and autonmous databases� ACM Computing Surveys� 		�
����
�
	
�� September �����

��

�SMK��� M� Steinbrunn� G� Moerkotte� and A� Kemper� Heuristic and randomized opti�
mization for the join ordering problem� The VLDB Journal� ��
������	��� August
�����

�SSV��� P� Scheuermann� J� Shim� and R� Vingralek� WATCHMAN� a data warehouse in�
telligent cache manager� In Proc� of the Conf� on Very Large Data Bases �VLDB��
pages ����	� Bombay� India� September �����

�Sto��� M� Stonebraker� The design and implementation of distributed INGRES� Addison�
Wesley� Reading� MA� USA� �����

�Sto��� M� Stonebraker� The case for shared nothing� IEEE Data Engeneering Bulletin�
��������� March �����

�Sto��� M� Stonebraker� Readings in Database Systems� Morgan Kaufmann Publishers�
San Mateo� CA� USA� second edition� �����

�Tan��� A� Tanenbaum� Computer Networks� Prentice Hall� Englewood Cli�s� NJ� USA�
�����

�Tan�	� A� Tanenbaum� Modern Operating Systems� Prentice Hall� Englewood Cli�s� NJ�
USA� ���	�

�TGHM��� J� Thomas� T� Gerbes� T� H�arder� and B� Mitschang� Implementing dynamic code
assembly for client�based query processing� In Proc� of the Int� Symp� for Advanced
Applications� �DASFAA�� pages 	���	�	� Singapore� April �����

�TRV��� A� Tomasic� L� Raschid� and P� Valduriez� Scaling acccess to distributed heteroge�
neous data sources with DISCO� IEEE Trans� Knowledge and Data Engineering�
�����������	
� October �����

�UF��� T� Urhan and M� Franklin� Xjoin� Getting fast answers from slow and bursty
networks� Technical report CS�TR�
���� University of Maryland� College Park�
February �����

�UFA��� T� Urhan� M� Franklin� and L� Amsaleg� Cost based query scrambling for initial
delays� In Proc� of the ACM SIGMOD Conf� on Management of Data� pages
�
������ Seattle� WA� USA� June �����

�Ull��� J� Ullman� Principles of Data and Knowledge	Base Systems� volume I� Computer
Science Press� Woodland Hills� CA� �����

�VG��� P� Valduriez and G� Gardarin� Join and semijoin algorithms for a multiprocessor
database machine� ACM Trans� on Database Systems� ������

����� March �����

�WA��� A� Wilshut and P� Apers� Data#ow query execution in a parallel main memory�
In Proc� of the Intl� IEEE Conf� on Parallel and Distributed Information Systems�
pages ������ Miami� Fl� USA� December �����

�WDH���� R� Williams� D� Daniels� L� Haas� G� Lapis� B� Lindsay� P� Ng� R� Obermarck�
P� Selinger� A� Walker� P� Wilms� and R� Yost� R�� An overview of the archi�
tecture� IBM Research� San Jose� CA� RJ

	�� December ����� Reprinted in�
M� Stonebraker �ed��� Readings in Database Systems� Morgan Kaufmann Publish�
ers� ����� pp� �����
��

��

�Wid��� J� Widom� Research problems in data warehousing� In Proc� of the Intl� Conf�
on Information and Knowledge Management� pages 	��
�� Baltimore� MD� USA�
November �����

�Wie�
� G� Wiederhold� Intelligent integration of information� In Proc� of the ACM SIG	
MOD Conf� on Management of Data� pages �
���
�� Washington� DC� USA� May
���
�

�WJH��� O� Wolfson� S� Jajodia� and Y� Huang� An adaptive data replication algorithm�
ACM Trans� on Database Systems� 		��	��	���
��� June �����

�YC��� C� Yu and C� Chang� Distributed query processing� ACM Computing Surveys�
������
����

� December �����

�YKL��� J� Yang� K� Karlapalem� and Q� Li� Algorithms for materialized view design in
data warehousing environment� In Proc� of the Conf� on Very Large Data Bases
�VLDB�� pages �
������ Athens� Greece� August �����

�YM��� C� Yu and W� Meng� Principles of Database Query Processing for Advanced Ap	
plications� Morgan Kaufmann Publishers� San Mateo� CA� USA� �����

�ZC��� M� Zaharioudakis and M� Carey� Highly concurrent cache consistency for indices
in client�server database systems� In Proc� of the ACM SIGMOD Conf� on Man	
agement of Data� pages ������ Tucson� AZ� USA� May �����

�ZL��� Q� Zhu and P� Larson� A query sampling method of estimating local cost parame�
ters in a multidatabase system� In Proc� IEEE Conf� on Data Engineering� pages
������
� Houston� TX� USA� �����

��

Contents

� Introduction �
��� Background and Motivation �
��� Scope of this Paper and Related Surveys �
��� Organization of this Paper � 	

� Distributed Query Processing�
Basic Approach and Techniques �
��� Architecture of a Query Processor �
��� Query Optimization �

����� Plan Enumeration with Dynamic Programming � � � � � � � � � � � �
����� Cost Estimation for Plans �

��� Query Execution Techniques ��
����� Row Blocking ��
����� Optimization of Multicasts ��
����� Multi�Threaded Query Execution ��
����	 Joins with Horizontally Partitioned Data � � � � � � � � � � � � � � � ��
����� Semi Joins ��
����� Double�pipelined Hash Joins �	
����� Pointer�based Joins and Distributed Object Assembly � � � � � � � � ��
����� Top N and Bottom N Queries ��

	 Client
server Database Systems ��
��� Client�server
 Peer�to�peer
 and Multi�tier Architectures � � � � � � � � � � � ��
��� Exploiting Client Resources ��

����� Query Shipping ��
����� Data Shipping ��
����� Hybrid Shipping ��
����	 Other Hybrid Shipping Variants ��
����� Discussion ��

��� Query Optimization ��
����� Site Selection ��
����� Where and When to Optimize ��
����� Two�step Optimization ��

��	 Query Execution Techniques ��

� Heterogeneous Database Systems ��
	�� Wrapper Architecture for Heterogeneous Databases � � � � � � � � � � � � � ��
	�� Query Optimization ��

	���� Plan Enumeration with Dynamic Programming � � � � � � � � � � � ��
	���� Cost Estimation for Plans ��

	�� Query Execution Techniques �	
	���� Bindings �	
	���� Cursor Caching ��

	�	 Outlook ��

��

� Dynamic Data Placement 	

��� Replication vs� Caching ��
��� Dynamic Replication Algorithms ��
��� Cache Investment � 	�
��	 View Caching
 View Materialization
 and Data Warehouses � � � � � � � � � 	�

 New Architectures for Distributed Query Processing �	
��� Economic Models for Distributed Query Processing � � � � � � � � � � � � � 	�
��� Dissemination�based Information Systems � � � � � � � � � � � � � � � � � � 	�

� Conclusion ��

��

