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Abstract

We consider the following problem: how can two de-
vices that do not share any secrets establish a shared secret
key over a wireless radio channel in the presence of a com-
munication jammer? An inherent challenge in solving this
problem is that known anti-jamming techniques (e.g., fre-
quency hopping or direct-sequence spread spectrum) which
should support device communication during the key estab-
lishment require that the devices share a secret spreading
key (or code) prior to the start of their communication. This
requirement creates a circular dependency between anti-
jamming spread-spectrum communication and key estab-
lishment, which has so far not been addressed. In this work,
we propose an Uncoordinated Frequency Hopping (UFH)
scheme that breaks this dependency and enables key estab-
lishment in the presence of a communication jammer. We
perform a detailed analysis of our UFH scheme and show
its feasibility, both in terms of execution time and resource
requirements.

1. Introduction

The broadcast nature of wireless radio transmissions
makes them particularly vulnerable to communication jam-
ming Denial-of-Service (DoS) attacks. The aim of these
attacks is to prevent devices from exchanging any useful
information by interfering with their communication. Pos-
sible communication jamming attacks include signal an-
nihilation, modification (bit-flipping, overshadowing) and
jamming as well as the insertion of forged or replayed sig-
nals [2, 16, 20].
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A class of well-known countermeasures against commu-
nication jamming attacks are spread-spectrum techniques
such as frequency hopping, direct-sequence spread spec-
trum, and chirp spread spectrum [16]. Common to all these
techniques is that they rely on secret (spreading) codes that
are shared between the communication partners. These se-
cret codes enable the sender to spread the signal (in time
and/or frequency) such that its transmission becomes un-
predictable for a third party, thus reducing the probability
of interference. However, for these schemes to work, the
required secret code must be shared between the partners
prior to their communication, generally precluding unan-
ticipated transmissions between unpaired devices. The re-
quirement of a shared code has so far been fulfilled by
out-of-band code pre-distribution on the devices. This ap-
proach has scalability disadvantages in environments where
a large number of nodes potentially take part in a pairwise
communication.

If pre-sharing the codes is not adequate or even infeasi-
ble (e.g., due to a large number of nodes or high network
membership dynamics) the devices must agree on a secret
code in an ad-hoc manner using the wireless channel. This
observation leads to the following problem: How can two
devices that do not share any secrets establish a shared se-
cret key over a wireless radio channel in the presence of a
communication jammer (in order to derive a secret spread-
ing code from the established key)? The execution of a key
establishment protocol relies on jamming-resistant commu-
nication which, in turn, requires the availability of a shared
secret code. In other words, the dependency of spread-
spectrum techniques on a shared key (or code) and the
dependency of key establishment on a jamming-resistant
communication create a circular dependency, which we
call anti-jamming/key-establishment dependency (see Fig-
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Figure 1. Anti-jamming/Key-establishment
dependency graphs. (a) If two devices do
not share any secret keys or codes and want
to execute a key establishment protocol in
the presence of a jammer, they have to use
a jamming-resistant communication. How-
ever, known anti-jamming techniques such
as frequency hopping and direct-sequence
spread spectrum rely on secret (spreading)
codes that are shared between the communi-
cation partners prior to the start of their com-
munication. (b) In this work, we break this
dependency and propose a novel frequency
hopping scheme called Uncoordinated Fre-
quency Hopping (UFH) that enables two par-
ties to execute a key establishment protocol
in the presence of a jammer, even if the par-
ties do not yet share a secret key or code.

ure 1(a)). To the best of our knowledge, this circular depen-
dency has so far not been addressed in this setting. We point
out that, even if the nodes hold their public-key certificates
issued by a commonly trusted authority, they still need to
communicate in order to establish the secret spreading key
(code) required for the jamming-resistant communication
(e.g., using an authenticated Diffie-Hellman key establish-
ment protocol).

In our present work, we break the circular depen-
dency between anti-jamming spread-spectrum communica-
tion, shared secret keys (or codes), and key establishment
in a jammed environment (see Figure 1(b)). As a solution
to this circular dependency, we propose a scheme called
Uncoordinated Frequency Hopping (UFH) that enables the
jamming-resistant communication between two nodes in
the presence of a jammer without a pre-shared code. We
further show how to use this UFH scheme for executing a
key establishment protocol, which, in the presence of a jam-
mer, enables the nodes to agree on a shared secret key. The
nodes can then use this key to create a secret hopping se-
quence and communicate using coordinated frequency hop-
ping, thereby abandoning the use of the UFH scheme.

UFH is closely related to coordinated frequency hop-
ping: each message is split into multiple parts and then sent
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Figure 2. Example of UFH. The numbers in-
dicate the frequency channels where sender
A is sending and receiver B is listening over
time (here both send and receive on one fre-
quency at a time). If A and B send and re-
ceive simultaneously on the same frequency
(5 and 1 in the example) the packet sent
on this frequency is successfully transmitted
over the undisturbed channel.

across the air on random hopping frequencies chosen from a
fixed frequency band. Like coordinated frequency hopping,
UFH is based on the assumption that the attacker cannot
jam all frequency channels on which the nodes communi-
cate at the same time so that the sender and the receiver can
still communicate through the remaining channels. How-
ever, in UFH, the sender and the receiver do not agree on a
secret channel sequence but instead transmit and listen on
randomly selected channels. Hence, all communication in
UFH underlies the observation that, with sufficient trans-
mission attempts, the sender and receiver will send and lis-
ten on the same channels in a number of time slots, even if
they did not agree on them beforehand (see Figure 2). In-
tuitively, given 500 channels and given a sender hopping
among the channels at a high rate of, for instance, 1500 Hz
and a receiver hopping at a low rate (e.g., 100 Hz), the re-
ceiver will be listening on the frequency where the sender
is transmitting in average 1500/500 = 3 times per second.
Building on this observation, we develop a UFH scheme
that is highly resistant to packet losses and active interfer-
ence by an attacker. It can, thus, be applied in settings where
two nodes wish to establish an unanticipated and sponta-
neous communication without pre-shared keys, which was
so far not feasible using coordinated frequency hopping.

In summary, the main contributions of this work are:
• We address and describe the anti-jamming/key-

establishment circular dependency problem: anti-
jamming spread-spectrum communication techniques
rely on a shared (spreading) key and key establishment
relies on a jamming-resistant communication. This
leads to the following question: in the presence of a
communication jammer, how can two devices that do
not share any secrets establish a shared secret key over
a wireless radio channel?

• As one solution to the addressed problem, we propose
a scheme called UFH (Uncoordinated Frequency Hop-
ping) that enables two nodes to execute a key estab-
lishment protocol in the presence of a jammer; the es-



tablished key can then be used to support later coor-
dinated frequency hopping communication. Our UFH
scheme supports the transmission of messages of arbi-
trary length in a jammed environment without relying
on a shared secret key.

• We introduce a comprehensive DoS attacker model
which captures signal jamming and overshadowing as
well as message insertion and modification.

• We show that, although our UFH scheme achieves
lower communication throughput and incurs higher
storage and processing costs, it achieves the same level
of anti-jamming protection as (coordinated) frequency
hopping (which, however, unlike our UFH, cannot be
used in scenarios where devices do not share secret
spreading keys).

The remainder of the paper is organized as follows: In
Section 2, we specify the system setting and attacker model.
We describe our jamming-resistant UFH scheme in Sec-
tion 3 and demonstrate its use for a key establishment proto-
col in Section 4. In Section 5, we identify possible attacker
strategies and provide a performance analysis of the pro-
posed scheme. We discuss related work in Section 6 and
conclude in Section 7.

2. System and Attacker Models

2.1. System Model

In our system, we focus on two nodes that reside within
each other’s power range, but are initially unaware of their
proximity. The goal of each node is to detect communica-
tion signals from other nodes in its communication neigh-
borhood and to establish communication with the detected
node. Each node is equipped with processing and storage
units, a clock, and a radio transceiving module capable of
frequency hopping communication. We assume that the
nodes are able to store few megabytes of data and can ef-
ficiently perform ECC-based public key cryptography. The
nodes share the same concept of time and their clocks are
assumed to be loosely synchronized in the order of seconds,
e.g., by means of GPS. The transceiver permits each node
to hop within a given set C of available radio frequencies
(spanning a large band of typically several hundred fre-
quencies, c= |C|). The transceiver can be narrowband or
broadband, enabling the node to send and receive signals
on one or more (hopping) frequencies simultaneously; by
cn and cm we denote the number of channels on which
a node can send and receive on, respectively. We assume
that the transceiver does not leak information about its ac-
tive reception channels, that is, that the channels on which
the transceiver is actively listening on cannot be detected
by monitoring its radio signal emissions. Furthermore, the
nodes can switch their input (listen) and output (send) chan-

nels independently of each other and are capable of per-
forming full duplex communications by sending and receiv-
ing in parallel.

We assume that sender A splits its available power uni-
formly over its cn output channels such that it transmits with
the same signal strength on all channels; Pa then denotes the
strength of the signal arriving at a receiver. With respect to
a specific receiver B, we denote by Pt the minimal required
signal strength at B such that B can successfully decode a
message (i.e., the sensitivity of B’s receiver). In this con-
text, the transmission betweenA andB over an undisturbed
channel will be successful if Pa ≥ Pt and if A sends on a
channel on which, at the same time, B is listening.

We further assume that each node holds a public/private
key pair (PK, SK) and is computationally capable of per-
forming public-key operations. The system is supported by
a trusted Certification Authority (CA) that issues public-key
certificates binding node identities and their public keys.
The CA may be off-line or unreachable by the nodes at the
time of the intended communication, but we assume that
each node holds a valid certificate of its own public key
and the valid public key PKCA of the CA. Both were dis-
tributed during the system initialization phase (e.g., after the
procurement of the nodes).

2.2. Attacker Model

We consider an omnipresent but computationally
bounded adversary who controls the communication chan-
nel in the sense that she is able to eavesdrop and insert arbi-
trary messages, but can only modify transmitted messages
by adding her own energy-limited signals to the channel.
This means that the attacker’s ability to alter or erase a mes-
sage is restricted to interfering with the message transmis-
sion and that she cannot disable the communication channel
by blocking the propagation of radio signals (e.g., by plac-
ing a node in a Faraday’s cage).

The attacker’s goal is to interfere with the communica-
tion of the nodes in order to prevent them from exchang-
ing any useful information. That is, the attacker aims at
increasing (possibly indefinitely) the time for the message
exchange in the most efficient way. In order to achieve
this goal, the attacker is not only restricted to message jam-
ming, but can also try to disturb the nodes’ communication
by modifying and inserting messages or by keeping one or
both nodes too busy to participate in or proceed with the
protocol. She can thus choose among the following actions:
• The attacker can insert messages that she generated

by using known (cryptographic) functions and keys as
well as by reusing (parts of) previously overheard mes-
sages (constituting a replay attack). Depending on the
signal strength of the inserted messages, these mes-
sages might interfere with regular transmissions.
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Figure 3. Required signal strengths for differ-
ent attacker strategies. Let sender A transmit
a message to receiver B such that the corre-
sponding signal arrives atB with strength Pa.
If an attacker J interferes using a signal that,
at B, has lower strength than Pj , then B suc-
cessfully receives A’s message (t1 in the fig-
ure); if, however, J ’s signal arrives at B with
a strength between Pj and Po, the transmis-
sion is jammed and B receives no message
(t2); finally, if the strength of J ’s signal at B is
even equal or greater than Po it entirely over-
shadowsA’s transmission andB receives J ’s
message (t3).

• The attacker can modify messages by either flipping
single message bits or by entirely overshadowing orig-
inal messages. In the former, the attacker superim-
poses a signal on the radio channel that converts one or
several bits in the original message from zero to one or
vice versa. In the latter, the attacker’s signal is of such
high power that it entirely covers the original signal at
the receiver. As a result, the original signal is reduced
to noise in the attacker’s signal and the original mes-
sage is replaced by the attacker’s message. In either
case, in this attack the messages must remain readable
by the receiver.

• The attacker can jam messages by transmitting signals
that cause the original signal to become unreadable by
the receiver. The portion of a message the attacker has
to interfere with in such a manner depends on the used
coding scheme and can be as high as 15% of the mes-
sage size [13]. As mentioned, we do not consider the
case where the attacker can block a message by placing
one (or both) of the nodes in a Faraday’s cage.

Based on the above actions, we denote by AI , AM , and
AJ the strategies where the attacker only inserts, modifies,
or jams messages, respectively. Additionally, we use the
term AIMJ for the resulting mixed strategy. A0 denotes
the attacker’s strategy to not interfere at all.

Regarding the interception and jamming of messages, we
assume that the attacker is aware of the location and con-
figuration of all nodes so that her capabilities are only re-
stricted by the performance of her transceiver. We can there-

fore abstract away from physical parameters such as node
distances, node characteristics (e.g., their antenna gains),
and environmental influences, and only consider the power
of the original and of the attacker’s signal at the receiver.
For a given Pa (the strength of the original signal at B),
we denote by Pj (Po) the minimal required strength of the
attacker’s signal at B in order to jam (overshadow) a mes-
sage sent from A to B (see Figure 3). We assume that
Pt < Pa, Pj < Po and that a message from A is success-
fully received by B if the strength of the attacker’s signal at
B is less than Pj . In addition, we assume that the maximal
transmission power of the attacker is finite and we denote
by PT the signal strength that the attacker is able to achieve
at the receiver B if she transmits with maximal transmis-
sion power on a single channel. However, we do not as-
sume any restrictions on the attacker’s energy supply, that
is, she is considered to be mains-operated. The attacker’s
resulting strength in terms of her ability to insert, jam, and
overshadow messages will be analyzed in Section 5.2.

3. Enabling Robust Communication using
Uncoordinated Frequency Hopping

Having described the system and attacker model, we now
present the basic intuition behind UFH as countermeasure
against communication jammers. We then present and an-
alyze our UFH scheme that enables two nodes to exchange
messages of arbitrary length in the presence of a jammer.

3.1. Uncoordinated Frequency Hopping

With UFH, two communicating nodes hop among a set
of known frequency channels in an uncoordinated and ran-
dom manner. The communication is based on the observa-
tion that, at some point in time, the sender and the receiver
will be sending and listening on the same frequency chan-
nel fj (Figure 2). In an undisturbed setting, the receiver will
receive each fragment with a small but positive probability
that increases with the number of transmission attempts.

LetM denote the message that the sender wants to trans-
fer to the receiver. Due to the sender’s rapid change of out-
put channels (as countermeasure against a jammer),M does
not fit in one transmission slot, but has to be split into the
fragments M1, M2, . . . , Ml. These fragments are transmit-
ted one after another with a high number of repetitions. The
UFH scheme we consider is randomized in the sense that
the sender does not relate the frequency fj for fragment
Mi with the channels used and the fragments sent before.
Although splitting M into fragments is a straight-forward
operation, the reassembly of the received fragments at the
receiver is non-trivial if an attacker inserts additional frag-
ments or modifies transmitted ones (that may be hard to dis-
tinguish from legitimate fragments).
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Figure 4. Hash-linked UFH scheme. Each
packet consists of an identifier (id) indicating
the message the packet belongs to, a frag-
ment number (i), the message fragment (Mi),
and the hash of the next packet (h(mi+1)).
The packets are built in reverse order start-
ing with the last packet ml linked to the first
fragment M1. The linked packed sequence is
called packet chain.

Receiving a fragment with (coordinated or uncoordi-
nated) frequency hopping requires the receiver to listen on
the correct channel for the complete transmission of the
fragment. If the sender’s and receiver’s hopping frequen-
cies were identical (and with it the time that both stay on
a channel before hopping to the next), the successful trans-
mission of a fragment would require precisely synchronized
transmission and reception slots to avoid only partially re-
ceived fragments. In UFH, we do not require the slots to be
synchronized by permitting the receiver to switch the chan-
nels less often than the sender (Figure 2), thus reducing the
number of partially received fragments.

The throughput of the communication with UFH is con-
siderably lower than for coordinated hopping. Given that
the nodes did not establish a secret shared key before, the
sender will need numerous sending attempts for transmit-
ting each fragment. From the attacker’s point of view, the
probability to jam a transmitted fragment with randomized
uncoordinated frequency hopping is equal to the jamming
probability in coordinated frequency hopping, since, for
each transmitted fragment, she needs to guess the transmis-
sion frequency.

3.2. UFH Message Transfer

In this section, we describe our UFH-based message
transfer protocol; this protocol enables the transfer of mes-
sages of arbitrary lengths using UFH. We specify the mes-
sage fragmentation and transmission carried out by the
sender and the reassembly at the receiver.

Fragmentation. Before its transmission, a message M is
split into l fragments of d |M |

l e bits. Each fragment Mi

is then encapsulated in a packet mi := id|i|Mi|h(mi+1),
comprising a message identifier (id), the fragment number
(i), the fragment itself (Mi), and the hash value of the next
packet (h(mi+1)), where h(·) is a collision-resistant hash
function (see Figure 4). The packets are build in reverse

order starting with the last packet which is, exceptionally,
linked to the first fragment (ml := id|l|Ml|h(M1)), since
a link to the complete first packet would result in an un-
breakable cyclic dependency in the message fragmentation.
The purpose of the hash values is to facilitate the reassem-
bly of the fragmented message. Hash-linking each packet to
its successive packet ensures that the attacker cannot exces-
sively increase the complexity of the message reassembly
process by inserting or modifying packets. The sender then
applies a coding scheme to the packet and distributes the
bits of each code within the packet using a pseudo random
bit interleaver; here, the used codes and the seed of the bit
interleaver are publicly known. The purpose of this coding
and interleaving is to make the packets more resistant to bit
errors [13]. The vulnerability of this scheme depends on the
coding as well as on the type and strength of the jammer as
discussed in Section 5.3.

Transmission. The message is transferred over the UFH
channel with a high number of repetitions in order to com-
pensate for the lacking coordination. The sender repeats
transmitting the sequence of packets m1, . . . , ml on ran-
domly selected channels and, in parallel, listens on the input
channels to record all incoming packets. The sender imme-
diately starts the reassembly phase for the received pack-
ets but continues sending the message packets either until
it succeeds in reassembling an expected reply or until the
execution of the protocol reaches a threshold value (in time
or number of repetitions). A protocol abortion could be due
to, e.g., too strong jamming capabilities of the attacker or
the non-availability of the second node.

Reassembly. The structure of the hash-linked message
avoids an exhaustive search for assembling the received
fragments into reasonable messages. Received packets can
directly be linked to each other when their preceding or
successive packet is received (m1 is linked to Ml). More
precisely, on the reception of a new packet mi the receiver
tries to identify mi as successor (predecessor) of any re-
ceived packet mi−1 (mi+1) by comparing, first, the mes-
sage identifiers and, second, the hash in mi−1 (mi) with
h(mi) (h(mi+1)). This involves the computation of one
hash function as well as string comparisons. If the verifi-
cation succeeds for a pair of packets mi−1 and mi (mi and
mi+1), the receiver connects the fragments to form or ex-
tend a packet chain. After enough repetitions, B will have
received all l packets and the packet chain will be complete.
Once the possible combinations of fragments have been re-
assembled to one or more messages, the receiver starts to
process the semantic meaning of the message and to com-
pose his reply message.



3.3. Security Analysis of the UFH Message Trans-
fer Protocol

We now analyze the security properties of the presented
UFH message transfer protocol and motivate our choice of
the scheme, focusing on the properties introduced by the
hashes.

Each packet in a packet chain is linked to its successor
by a hash. This makes it infeasible for the attacker to create
a branch in the original packet sequence chainA(M) built
by the sender A so that the receiver B has to pursuit dif-
ferent successors for a single packet (see Figure 5), which
would lead to an exponential growth of the search space
for the reassembly process at the receiver. More precisely,
given two consecutive packets mi−1 = id|i|Mi−1|hi and
mi = id|i|Mi|hi+1 where hi = h(mi) and 2<i≤ l, an
attacker (as defined in Section 2.2) cannot create a packet
m′

i = id|i|M ′
i |h′i+1 such that the fragment M ′

i is accepted
as a genuine successor of Mi−1 by a correct receiver. The
reason is that in order for the fragmentM ′

i to be accepted as
a genuine successor of Mi−1, the hash value of m′

i must be
equal to hi, i.e., hi = h(id|i|Mi|hi+1) = h(id|i|M ′

i |h′i+1)
must hold. However, finding a fragment M ′

i and a hash
value h′i+1 such that this condition is met means finding a
collision for h(·), which is considered infeasible for a com-
putationally bounded attacker.

Besides the regular hash links, the last packet in a chain
is linked to the fragment of the first packet, thus avoiding
that the attacker can insert additional chain heads that all
point to the same chain. More precisely, given a packet
m1 = id|1|M1|h2 the attacker cannot create a packet
m′

1 = id|1|M ′
1|h2 such that M ′

1 is accepted as a gen-
uine head fragment for the chain started by h2, because
she would have to find a fragment M ′

1 such that h(M ′
1) =

h(M1) = hl. However, finding such a fragmentM ′
1 means

finding a collision for h(·), which is considered infeasible
for the attacker.

The attacker therefore cannot create branches neither in
legitimate packet chains transmitted by the sender nor in
packet chains that she created and inserted herself.

In summary, without linked packet chains the attacker
can insert arbitrary packets that, as long as they comply
with the described packet structure (Figure 5), the receiver
cannot distinguish from legitimate packets. Since the num-
ber of fake packets that the attacker could insert for each
legitimate packet mi is proportional to the number of trans-
missions, the message reassembly would require time that
is exponential in the number of message repetitions (given
that the receiver can identify the correctly reassembled mes-
sage). On the other hand, with packet chains, the at-
tacker can only introduce entire replayed or self-constructed
chains, otherwise her packets will be dropped without that
the receiver reassembles them. The reassembly of the le-
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Figure 5. Packet chains created by the mes-
sage transfer protocol. chainA(M) represents
the legitimate packet sequence transmitted
by sender A (marked in gray). The attacker
can send (replayed or own) packet chains
and, with sufficient power, try to prevent the
reception of all repeated transmissions of
each legitimate packet mi. Although she can
create a fusion from her own chain to the
original chainA(M) (m′

2 linked tom3), she can-
not purposefully create a packet m′

i such that
m′

i is linked to mi−1 (branch at m1 to m′′
2 or at

m2 to m′′′
3 ). A fake first packet m′

1 contain-
ing the correct hash but a fake message M ′

1

will be detected when the last packet ml is
received (which may even happen before the
reception of m1).

gitimate packet chain is thus independent of the number of
packets inserted by the attacker.

We point out that the attacks in which the attacker inserts
or replays messages (i.e., complete packet chains) cannot
be eliminated by the UFH message transfer protocol. These
attacks must thus be identified by the (key establishment)
protocols running on top of the UFH protocol (Section 4),
e.g., by making use of signatures, timestamps, and message
buffering. The impact of these attacks on the message trans-
fer is discussed in Sections 5.4 and 5.5.

3.4. Discussion of Alternative Schemes

A limitation of the proposed UFH message transfer pro-
tocol is that all packets of a message must be received before
the message can be reassembled. In principle, forward error
correction techniques (e.g., based on erasure [18] or foun-
tain codes [14]) allow for schemes where a message can
be reassembled if only a subset of all packets is available.
However, as discussed above, to avoid that the attacker can
exponentially increase the reassembly time at the receiver,
each of these subsets must be identifiable as belonging to
the same message without relying on a shared key. Us-
ing a single hash chain to link packets of the same mes-
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Figure 6. Use of Uncoordinated Frequency
Hopping (UFH). The jamming-resistant com-
munication using UFH does not rely on a se-
cret spreading code (key). Hence, UFH can
be used by two nodes without pre-shared
keys to execute a key establishment protocol
in the presence of a jammer, resulting in a
secret key shared between the nodes. This
key then serves as input for a coordinated
spread-spectrum system. Once the key is set
up, UFH is abandoned in favor of, e.g., coor-
dinated frequency hopping.

sage is not beneficial because verifying this packet chain
requires that the receiver receives all packets, which nulli-
fies the advantage of the forward error correction. A possi-
ble solution to this problem could be to append more than
one hash link to each packet such that subsets of packets
will be connected to a complete chain with high probabil-
ity. Another promising approach might be to use distilla-
tion codes [11] that use (RSA authenticated) Merkle hash
trees as one-way accumulators. As for the multiple-chains
case, here each packet would contain more than one hash
value. This increases the overhead per packet (and thus the
total number of packets per message) in favor of a reduced
number of required successful packet receptions. We leave
the evaluation and adaption of these and new fragmenta-
tion/reassembly schemes as a topic for future research.

4. UFH Key Establishment

Having presented our UFH message transfer protocol,
we now show how it supports a jamming-resistant key es-
tablishment by which the nodes can establish a shared hop-
ping sequence for later coordinated frequency hopping (see
Figure 6).

Our UFH key establishment is divided into two stages.
In stage 1, the nodes execute a key establishment proto-
col and agree on a shared secret key K using UFH; var-
ious key establishment protocols can be used in this step.
Then, in stage 2, each node transforms K into a hopping
sequence (using linear feedback shift registers and channel
mappers [16]) and, subsequently, the nodes communicate
using coordinated frequency hopping. The first message
in stage 2 would typically be a key confirmation verify-
ing the successful key agreement and, additionally, it would

be used for the frequency hopping synchronization between
the nodes. Note that the established key is not used for en-
crypting or signing sensitive data but exclusively for estab-
lishing the hopping sequence; a weak choice does thus not
disclose any confidential data.

A requirement for the key establishment protocol in our
scenario is the authentication of all exchanged messages in
order to prevent the insertion of fake messages. The pro-
tocol we propose therefore contains the exchange of pub-
lic key certificates issued by the CA, which can be omitted
in the case where the nodes exchanged or preloaded their
certificates prior to the protocol execution. In addition, the
protocol uses timestamps to preclude replay attacks and a
(short-term) history buffer to detect and drop duplicate mes-
sages during the validity of the timestamps. Messages can
be received more than once during their validity either due
to replay attacks or due to the repetitive message transmis-
sions which are inherent to our UFH message transfer pro-
tocol.

As an example, we consider an authenticated Diffie-
Hellman key agreement protocol in which A will establish
a key with any node in its power range. We focus on the El-
liptic Curve Cryptography (ECC) based Station-to-Station
(STS) Diffie-Hellman protocol [3]. It is executed as follows
(see Figure 7): Let P be the generator of a cyclic group G
with prime order p. Let SigX(·) be the signature by nodeX
of the string in brackets and let {·}K be its encryption with
key K. A selects a (pseudo-)random element rA ←R Zp

and broadcasts its public key certificate, a timestamp TA,
and the credential rAP , including the digital signature of
the message. Any node B in the transmission range may
reply with a symmetric message containing its credential
rBP and A’s timestamp TA. Based on the received mes-
sages, both compute the shared key, K = rA(rBP ) for A
and K = rB(rAP ) for B. Due to the nature of the DH-
key exchange and the fact that public key certificates can be
prepended to the DH-messages, two UFH messages are suf-
ficient in order to agree on a key. In stage 2, A uses coordi-
nated frequency hopping to provide an authenticated proof
of its secret knowledge by sending an encrypted signature
{SigA(rAP ‖ rBP )}K .

Discussion. The DH-protocol we consider is not manda-
tory for the UFH scheme and can be optimized for size (e.g.,
using short signature schemes [6]) or be replaced by other
protocols such as a key transport protocol [8] or an ID-based
key negotiation using bilinear maps [7]. Common to the de-
sign of the UFH key establishment protocols is that each
message is authenticated with a digital signature and either
contains a timestamp or a previously contributed random
value (Figure 7). Hence, the authenticity and freshness of
all received messages can be verified: fake messages will
fail the signature verification and replayed messages will
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Figure 7. UFH key establishment using an authenticated DH protocol. In stage 1, A uses UFH to
broadcast its certified public key and its key contribution rAP for the elliptic curve DH protocol. Re-
play attacks are prevented by the timestamp TA and the signature of the message. Any node B in
the power range may answer by sending its DH-contribution. In stage 2, A transmits a key acknowl-
edgment, then the nodes can send arbitrary messages using coordinated frequency hopping.

be detected due to an expired timestamp or an entry in the
(short-term) history buffer. The period during which a mes-
sage is considered valid is defined by the receiver and is
usually in the order of time that is required to successfully
transmit the message using our UFH scheme. Messages
which are replayed by the attacker during their validity pe-
riod are thus of no harm and might even help the sender to
deliver them. Although an attacker may be able to replay the
authenticated message of the receiver within the acceptable
time interval in another protocol session, this does still not
enable her to defer the secret hopping sequence from it (the
key contribution of the legitimate device remains secret).

Apart from authenticating the sender of a message, the
attached signatures suit a second purpose on the UFH mes-
sage transfer level. Once the possible combinations of frag-
ments have been reassembled to one or more messages, the
signature of each message is used to verify the reassembly.
Thus, we do not need to add checksums to the messages
because the signature provides the same type of error detec-
tion check.

5. Performance Analysis and Evaluation

In this section, we evaluate the efficiency of the pre-
sented UFH message transfer protocol in terms of its
throughput and resource requirements. We show that, com-
pared to insertion (AI ), modification (AM ), and mixed
strategies (AIMJ ), jamming (AJ ) is the best attacker’s
strategy (see Figure 10). Throughout this analysis, we as-
sume that the hopping frequency of the receiver fB is much
slower than the hopping frequency of the sender fA (Fig-
ure 2). We can therefore neglect packet losses caused by
the lack of synchronization between sender and receiver as
they only affect every fA

fB
-th packet and are thus rare events

compared to the likelihood that the receiver listens on an in-
correct channel (i.e., fB

fA
� (1− 1

c )). We also assume that

the number of devices in the neighborhood of the receiver
that use the same channels is low (i.e., � c) and that the
impact of unintentional interference is thus negligible.

Given an attacker strategy Ax (x ∈ {0, I,M, J, IMJ}),
we use the expected number of packets that have to be sent
in order for a message to be successfully received (Nx) as
the main metric for the performance of our UFH message
transfer protocol. For ease of comparison, we additionally
derive therefrom the relative throughput of UFH (Φx) with
respect to coordinated frequency hopping. We note that our
UFH scheme is probabilistic in nature and that the probabil-
ity that a message is successfully received depends on the
strength of the attacker and the number of times the message
has been (re)sent (see Figure 11(a)).

5.1. Communication without an Attacker (At-
tacker Strategy A0)

First of all, we evaluate the performance of the presented
UFH message transfer protocol in the absence of an at-
tacker, which is equal to the situation where the attacker
embarks on strategy A0. In this case, the probability that a
particular packet is successfully received is

pA0
m = 1−

cm−1∏
i=0

(
1−min

{
cn
c− i

, 1
})

(1)

≥ 1−
(
1− cn

c

)cm

where cn ≤ c (cm ≤ c) is the number of channels on which
the sender (receiver) simultaneously sends (receives). From
the receivers point of view, the transfer of an entire mes-
sage is completed once it has successfully received all l
message fragments. Let the random variable Y represent
the number of times that the sender is required to retransmit
the sequence of packets in order to successfully transfer the
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Figure 8. Input and output channel configura-
tion of the attacker. We denote by cs the num-
ber of channels that the attacker can sense
in parallel and by ts (tj) the required time
to switch the frequency of the input (output)
channels. The number of channels on which
the attacker can send (γt), jam (γj), and over-
shadow (γo) is bounded by her transmission
power.

message. The probability that a message transfer is still in-
complete after i (re)transmissions is then P[Y ≥ i + 1] =
P[Y > i] = 1 − (1 − (1 − pA0

m )i)l. Hence, the expected
total number of packets that have to be transmitted in order
to successfully transfer a message is N0 = N(pA0

m ), where

N(pA0
m ) :=

∞∑
i=0

P[Y = i]il

=
∞∑

i=0

(P[Y ≥ i]− P[Y > i]) il

=
∞∑

i=0

(
1−

(
1−

(
1− pA0

m

)i
)l

)
l. (2)

5.2. Jamming Performance of the Attacker

As introduced in Section 2.2, we assume that the max-
imal transmission strength of the attacker is finite, and de-
note by PT the signal strength that the attacker is able to
achieve at the receiver B if she transmits with maximal
transmission power on a single channel. We also assume
that the frequency-dependent variance in the signal attenu-
ation is negligible over the communication frequency range
of C and that the attacker can divide her transmission power
arbitrarily among all c channels. The only restriction is
therefore that for all combinations of output channel assign-
ments in which the attacker sends on γt, jams on γj , and
overshadows on γo channels, γtPt + γjPj + γoPo ≤ PT

and 0 ≤ γt, γj , γo ≤ cmust hold at all times. Consequently,
we can derive bPT

Pt
c, bPT

Pj
c, and bPT

Po
c as upper bounds on

the number of channels on which the attacker can simulta-
neously send (ct), jam (cj), or overwrite (co), respectively.
The number of channels that the attacker can concurrently
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Figure 9. Probability that a packet is jammed
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nels for different jammer types.

sense is denoted by cs. Furthermore, we assume that the
attacker is able to receive and transmit in parallel and that
the channels on which she receives and transmits can be
switched independently of each other. The required time to
switch the frequency of the input (output) channels is de-
noted by ts (tj) (see Figure 8).

Using the above introduced terms, the jamming capabil-
ities of the attacker can then be expressed as the probabil-
ity pj with which a packet mi is jammed. This probabil-
ity depends on the length of the packet and on the strength
of the attacker: the longer the packet is and the stronger
the attacker is, the more likely it is that the packet will get
jammed. More precisely, let tp be the time to transmit a
packet mi on frequency channel fi and tp be the minimum
jamming period during which the attacker has to interfere
with the transmission of mi such that it cannot be decoded.
Following previous classifications [16], we distinguish be-
tween static, sweep, random, responsive, and hybrid jam-
mers (see Figure 9).

Static, sweep, and random jammers do not sense for on-
going transmissions but permanently jam on cj channels.
However, whereas sweep and random jammers switch the
output channels after a duration of tp, static jammers remain
on the same channels for a time t� tp. Also, sweep jam-
mers systematically update the output channels in a way that
after d c

cj
e jamming cycles all channels have been jammed

once (but do not have to follow a particular order). Random
jammers, on the other hand, always choose cj channels at
random and might thus jam the same channels more than
once in subsequent jamming cycles. The number of jam-
ming cycles per packet is in both cases nj := tp/(tp + tj).
Hence, the probability that a packet is jammed is pj ≤ cj

c
for a static, pj ≤ min{njcj

c , 1} for a sweep, and pj ≤
1− (1− cj

c )nj for a random jammer.
Responsive jammers differ from the above mentioned in

that they initially solely sense for ongoing transmissions



and enable the output channels only when a signal has
been detected. Hybrid jammers, finally, are a combina-
tion of responsive and permanent jammers that have their
output channels already enabled while they are scanning
for signals. During an ongoing transmission of a packet,
the attacker can switch the input channels at most ns :=
(tp − tp − tj)/ts times such that the transmission is de-
tected early enough to adapt the output channels and jam the
packet for a duration of tp. Hence, for a responsive-sweep
jammer the probability that a packet is successfully jammed
is pj ≤ γ

c + (1 − γ
c ) min{nscs

c−γ , 1}, γ = min{njcj , c}.
Similar derivations yield a jamming probability of pj ≤
cj

c + (1− cj

c ) min{ nscs

c−cj
, 1} for responsive-static, and pj ≤

β+(1−β) min{nscs

c , 1}, β = 1−(1− cj

c )nj for responsive-
random jammers. It follows that, of the introduced jam-
mer types, responsive-sweep jammers are the most power-
ful ones (Figure 9).

As illustrated in Figure 9, for all considered jammer
types the jamming probability increases with the number
of channels that the attacker can jam in parallel. Clearly,
this probability is 1 if all channels can be jammed at once
(i.e., if cj = c). However, since the attacker needs to jam
only a fraction of a packet to prevent the successful recep-
tion of the packet and because a reactive jammer actively
searches for transmissions, the attacker’s jamming proba-
bility can reach 1 even for cj < c. In the example given in
Figure 9 a responsive-sweep jammer is able to jam all pack-
ets if its transmission power allows the attacker to jam≥ 80
channels in parallel.

Following the above analysis, we can also deduce the
probability po that a packet is (systematically) overwritten
by substituting cj with co in the expressions for pj .

5.3. Impact of the Packet Coding on the Minimum
Jamming Period

The minimum jamming period tp during which the at-
tacker has to interfere with the transmission of a packet
such that it cannot be decoded by the receiver depends on
the coding scheme applied to the packet as well as on the
type and strength of the jammer. Here, we assume that jam-
ming always causes a bit error whereas a realistic assump-
tion would be that jamming results in an error with a prob-
ability of 0.5 [13]; our presented results therefore represent
upper bounds on the attacker’s performance.

A non-responsive (i.e. static, sweep, or random) jammer
does not scan the channel for transmissions and thus does
not know when a packet starts. The attacker therefore can-
not exploit her knowledge about the used coding schemes
and bit interleaving to jam the packets more efficiently. For
this jammer, the minimum jamming period tp is thus deter-
mined by the number of bits that the used coding scheme
can correct. More precisely, if the coding scheme can cor-

rect t out of n bits we get tp ≥ t+1
n tp, where tp is the time

to transmit a packet.
If an attacker using a non-responsive jammer has precise

information about the start of a packet (but does not know
on which channel it is transmitted) she can leverage on this
knowledge in order to reduce the required jamming period
to a minimum. If this attacker synchronizes her jamming
burst with the transmission time of t + 1 bits of a code
word, the corresponding byte can no longer be correctly
decoded by the receiver and thus the entire packet will be
faulty. The required information about the positions of the
bits in the packet can easily be obtained as the coding and
bit interleaving schemes are publicly known. The minimum
jamming period for this jammer is therefore tp ≥ (t+1) tb,
where tb is the time to transmit one bit. We note that obtain-
ing the starting time of a packet and synchronizing the jam-
ming bursts with the bit transmissions without sensing the
packet is difficult. Even if the attacker observes the trans-
mission of one of the predecessors of a packet, variances
in the radio stack of the sender and random delays due to
the switching of the radio channel between two successive
packet transmissions complicate the prediction of the packet
starting time. Consequently, the attacker is likely to jam not
only single bits but bit groups in order to account for the
imprecision in her timing information. Finally, we note that
this jamming attack can be mitigated by randomly delaying
packet transmissions or by randomly choosing the applied
bit interleaving scheme out of a set of possible schemes.
Since de-interleaving a packet is considered to be an effi-
cient operation, using more than one interleaving scheme to
chose from increases the work per packet for the receiver
only marginally but increases the required minimum jam-
ming period for the attacker (almost) proportionally to the
number of used schemes.

In the case of a responsive jammer, a packet is consid-
ered to be jammed if its transmission is detected before the
already transmitted data allows the receiver to decode the
packet. Here, tp therefore corresponds to the minimum re-
maining transmission time of a packet without which the
receiver is not able to decode the packet; that is tp ≥ t+1

n tp.
We note that with respect to a responsive jammer, send-

ing a non-encoded, shorter packet might be beneficial for
the sender and receiver. Such a scheme would, however, be
vulnerable to non-responsive (proactive) jamming. There-
fore, in order to maintain resistance against non-responsive
jamming, coding and interleaving schemes need to be used.

5.4. Communication in the Presence of an Attacker

Having analyzed the capabilities of different jammer
types, we next analyze the impact of the various attacker
strategies on the throughput of our UFH transfer protocol
(see Figure 10).
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Figure 10. Impact of different attacker strate-
gies on the probability that a packet is suc-
cessfully received by the receiver. The most
effective choice for the attacker is therefore
to use a hybrid responsive-sweep jammer
and to choose strategy AJ (jamming).

Attacker Strategy AJ . We express the jamming strength
of an attacker as the probability pj with which a packet is
successfully jammed. Following (1), the probability that a
particular packet is successfully received is in this case

pAJ
m = 1−

cm−1∏
i=0

(
1−min

{
cn
c− i

, 1
}

(1− pj)
)

(3)

resulting in an expected number of required packet trans-
missions of NJ = N(pAJ

m ).

Attacker Strategy AI . We assume that the receiver can
handle all additionally inserted messages and only consider
their impact on the throughput of the UFH message transfer;
the additional resource requirements that maliciously in-
serted messages can introduce are discussed in Section 5.5.
By definition of Pj , packets of the attacker whose corre-
sponding signal strength at the receiver is less than Pj do
not interfere with regular packets and thus do not have any
impact on their transmission. As the attacker can send on at
most cj channels with a signal strength ≥ Pj , the probabil-
ity that a particular packet is successfully received is

pAI
m ≥ 1−

cm−1∏
i=0

(
1−min

{
cn
c− i

, 1
} (

1− cj
c

))
(4)

and the expected number of required packet transmissions
is NI = N(pAI

m ).

Attacker Strategy AM . Modifying the content of a reg-
ular packet such that it is still accepted by the receiver is
assumed to be infeasible for the considered attacker due to
the hash links (see Section 3.3). Partially modifying pack-
ets is thus an (expensive) form of jamming and its impact

is considered in the analysis of AJ . Consequently, pack-
ets must be entirely replaced (i.e., overwritten) by the at-
tacker with valid alternatives in order to be accepted. The
attacker’s ability to modify messages is therefore equal to
her overwriting capabilities which, as shown in Section 5.2,
can be expressed as the probability po with which a packet
is successfully overwritten. Hence, when the attacker ap-
plies strategyAM , the probability that a particular packet is
successfully received is

pAM
m = 1−

cm−1∏
i=0

(
1−min

{
cn
c− i

, 1
}

(1− po)
)

(5)

resulting in NM = N(pAM
m ) required packet transmissions.

Optimal Strategy. Based on the above analysis, we state
that jamming is the best strategy for the attacker.

Theorem 1. For all attacker types (Section 5.2), the optimal
attacker’s strategy, which minimizes the throughput of the
UFH message transfer, is jamming (AJ ).

Proof. By definition of pj and po, and as a consequence
of co = bPT

Po
c ≤ bPT

Pj
c = cj we have pj ≥ po and

pj ≥ cj

c . From (3), (4), and (5), we can directly de-
duce pAJ

m ≤ pAI
m and pAJ

m ≤ pAM
m . Hence, it follows

that NJ ≥ NI and NJ ≥ NM , which means that jam-
ming is the best strategy for an attacker that can only per-
form one single action at a time. In the general case, the
task of finding the best mixed strategy can be formulated as
an optimization problem: The function to be minimized is
pAIMJ

m = 1−
∏cm−1

i=0 (1−min{ cn

c−i , 1}ψ(γt, γo, γj)), where
ψ(γt, γo, γj) =

(
1− γt

c

)
(1 − po|co=γo)(1 − pj |cj=γj )

with the constraints γt, γo, γj ∈ N+
0 , 0 ≤ γt, γo, γj ≤

c, and PT ≥ γoPo + (γj + γt)Pj . Given cn and cm,
pAIMJ

m is minimal if and only if ψ(γt, γo, γj) is minimal.
Moreover, by definition of pj and po, we have ∀γ, 0 ≤
γ ≤ c : pj |cj=γ = po|co=γ and pj |cj=γ ≥ γ

c . Hence,
ψ(γt, γo, γj) ≥ (1− pj |cj=γt

)(1− pj |cj=γo
)(1− pj |cj=γj

)
and, because Pj < Po, it follows that pAIMJ

m is minimized
if γt = 0, γo = 0, and γj = bPT /Pjc; that is, if the attacker
solely jams.

The impact of the attacker’s jamming capabilities on the
performance of our UFH message transfer protocol is de-
picted in Figure 11. We observe that increasing the number
of channels c is less harmful than increasing the number
l of packets per message. Also, sending or receiving on
more than one channel significantly reduces the number of
required transmissions.

5.5. Resource Requirements

In the case that an attacker inserts her own messages
(for instance by replaying previously recorded packets), the
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Figure 11. Impact of the attacker’s jamming probability on the performance of the UFH message
transfer protocol (a)-(c). One can observe that increasing the number of channels c is less harmful
than increasing the number of packets per message l (b). Also, being able to send or receive on
more than one channel significantly reduces the number of required packet transmissions (c).

number of messages that a receiver can handle in parallel
becomes a critical factor. In this context, handling a mes-
sage means to receive, assemble, and store its associated
packets as well as, in the case of the presented key estab-
lishment protocol, to verify the appended signature.

Reception and assembling. As the number of received
packets per time unit is less or equal to coordinated fre-
quency hopping, we can assume that the receiver is able to
receive all packets. Assembling a packet essentially means
computing its hash value and comparing it to potential pre-
decessors, which both can be implemented very efficiently
(even on computationally weak devices), and is thus also
considered to be feasible for all packets.

Storage. In order to assess the required storage space, we
assume that, once there is no more space for new packets
left, the oldest packets (i.e., the packets with the longest
duration since their reception) will be deleted first. Thus,
a receiver must at least be able to store all received pack-
ets between the first and the last packet of a regular mes-
sage. The expected maximal time period between the first
and the last packet of a message is NJ sender hops (see
Section 5.4). During this time, an expected amount of less
than NJ

∑cm−1
i=0 min{ ct

c−i , 1} ≤ NJcm additional packets
is received. To be more concrete, we give an example: For
a typical packet length of |mi| = 40 bytes, a fragmentation
into l = 10 packets, a set of c = 200 channels, cm = cn =
1 channel for sending and receiving, ct = 50 attacker chan-
nels for insertion, and a jamming probability of 80%, we get
NJ ≈ 30 000 for the number of packets transmitted by the
sender (see Figure 11(b)). This results in the reception of
about 7 500 packets and corresponds to a required storage
capacity of about 290 kbytes on the receiver side. We argue

that nowadays this amount of space is clearly available on
notebook- or handheld-class devices.

Signature verification. The expected number of pack-
ets that the attacker must send in order to insert a mes-
sage which is received by the receiver is N(pt), where
pt ≤ 1 −

∏cm−1
i=0 (1 − min{ ct

c−i , 1}) is the probability
that a packet inserted by the attacker is successfully re-
ceived. The expected number of additional messages that
can be inserted by the attacker during the transfer of a
regular message is thus NJ/N(pt), resulting in a total of
NJ/N(pt) + 1 signature verifications per message trans-
fer. Using the parameters of the above example, this gives
a total of about 160 signature verifications. Again, we ar-
gue that this is clearly within the realms of possibility with
today’s hardware. For instance, it takes only about 6 s to
verify 160 ECDSA-256 bit signatures on a typical handheld
device with a 206 MHz StrongARM CPU, and less than a
second on a notebook-class device [17].

5.6. Comparison of Coordinated and Uncoordi-
nated Frequency Hopping

Let fH be the hopping frequency of a given transceiver
and |m∗

i | ∝ 1/fH be the resulting length of a packet for a
coordinated frequency hopping scheme; |M∗

i | then denotes
the length of a fragment sent per packet in that scheme.
Provided that the fragment length is large enough to com-
prise the shortest possible fragment of our UFH scheme
(i.e., |M∗

i | ≥ 1 + |h(·)|), our UFH message transfer proto-
col enables anti-jamming communication without a shared
key and achieves the same jamming robustness as the co-
ordinated scheme at the expense of a lower throughput and
an increased storage consumption. More precisely, using



the same coding scheme and packet length (i.e., |mi| =
|m∗

i |) results in the same probability that a packet gets
jammed for coordinated and uncoordinated frequency hop-
ping. The hash value added in the UFH scheme, however,
decreases the payload per packet to |Mi| = |M∗

i | − |h(·)|
and thus increases the number of packets per message to
l = d|M |/|Mi|e > l∗ = d|M |/|M∗

i |e. The relative
throughput of the presented UFH protocol compared to co-
ordinated frequency hopping is thus ΦJ = NJ/N

∗
J , where

N∗
J = N(1− pj)|l=l∗ (see Figure 12(b)).

5.7. Illustrative Example

We illustrate the feasibility of the proposed jamming-
resistant key establishment protocol by showing a possible
implementation for a Bluetooth-like transceiver. Although
Bluetooth was not designed to resist advanced jamming at-
tacks, it is nevertheless a representative example for what
can be achieved with low-cost hardware. According to [1],
we assume a sender (receiver) hopping frequency of 1.6 kHz
(160 Hz) and a symbol rate of 1 Mbit/s. Other than for Blue-
tooth, the number of frequency channels is assumed to be
200. Regarding the key establishment protocol, we fol-
low the current NIST recommendations [4] and advocate
a mid-term security level of 128 bits for keys and signatures
as well as a short-term security level of 112 bits for hash
links. Hence, we assume 256-bit prime fields for the ellip-
tic curves (|Sig(·)| = |PKX | = 512 bits) and a hash size
of 112 bits for the hash links. Identities and time-stamps
are encoded with 64 bit integers. The size of the exchanged
messages is thus |M | = 2176 bits = 272 bytes (Figure 7).

A packet mi consists of a message id (34 bits), a frame
id (6 bits), the payload Mi (168 bits), and the hash value
of the next packet (112 bits). We assume the application
of a Reed-Solomon error-correcting code that encodes 8-
bit blocks into 15-bit blocks, achieving a jamming ratio of
20% [13]. The length of an encoded packet is thus 320 · 15
/ 8 = 600 bits and fits well in a hopping slot of 1/1600 Hz ·
1 Mbit/s = 625 bits. The number of packets per message is
l = d272 / 21e = 13 for uncoordinated and l∗ = d272
/ 35e = 8 for coordinated frequency hopping. The re-
sulting duration for a key establishment and the achievable
throughput with respect to coordinated frequency hopping
are depicted in Figures 12(a) and 12(b), respectively. We
observe that even under harsh conditions where 80% of all
packets are jammed, the expected duration to establish a key
is well below one minute.

6. Related Work

Wireless communication jammers have been widely an-
alyzed and categorized in terms of their capabilities (e.g.,
broadband or narrowband) and behavior (e.g., constant, ran-
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Figure 12. (a) Duration for a key establish-
ment and (b) relative throughput with respect
to coordinated frequency hopping as a func-
tion of the attacker’s jamming probability for
a Bluetooth-like transceiver using 200 chan-
nels. In addition to the analytical result, the
average and standard deviation of 100 000
simulated key establishments is shown.

dom, responsive, sweep) [12, 16, 25]. The jammer mod-
els used in prior works [12, 16, 21, 24, 25] cover the inter-
ference with transmissions in terms of signal jamming or
dummy packet/preamble insertions. In our work we ex-
tend these models by covering also protocol-specific DoS
attacks. Therefore, our attacker model captures signal jam-
ming and overshadowing as well as message modification
and insertion.

As well-known countermeasures against these commu-
nication jamming attacks, spread-spectrum techniques such
as DSSS, chirp [2], and in particular frequency hopping
[1, 16] achieve frequency diversity over the communication
channel. Specific coding strategies [13] can additionally
strengthen the jamming resistance of transmitted messages
by increasing the fraction of the packet that the attacker
needs to interfere with in order to prevent its successful de-
coding at the receiver.

Recently, anti-jamming strategies have been analyzed
more intensely in the area of sensor networks; a common
strategy taken in those approaches is to detect and localize
the jammer in order to avoid the jammed region [12,23,25]
or the jammed frequencies [24] during further communica-
tions. In [21] the authors note that wired sensor pairs as
well as coordinated and uncoordinated (random) channel
hopping can be used for the timely delivery of short warning
message in sensor networks. The channel hopping solutions
proposed in these previous works are, however, very spe-
cific to the considered sensor-networking applications and
cannot be used to solve the key establishment problem ob-
served in this paper.

Pre-establishing keys between devices in ad-hoc net-
works for subsequent frequency hopping communication
suffers from scalability and network dynamics problems.
Key-establishment approaches that rely on device proxim-



ity [19] [15] [10] [22] [9] can be used in this context, but
require the nodes to be physically close to each other and
to use communication channels that are not being jammed
(e.g., infrared, wire, or visual). Unlike these approaches,
the proposed UFH scheme enables key establishment over
longer ranges using radio communication channels.

In a way, bootstrapping coordinated frequency hopping
starting from uncoordinated hopping resembles the process
of privacy amplification [5], where secret shared informa-
tion is distilled from a larger body of shared information
that is only partially secret.

To the best of our knowledge, there is no prior work that
elaborates on the anti-jamming/key establishment circular
dependency problem in the described setting, or that pro-
poses a solution to this problem. Furthermore, we have
not been able to identify any solutions prior to our UFH
scheme that would enable the transfer of messages of arbi-
trary length across a jammed channel in the absence of a
shared secret.

7. Conclusion

In this paper, we elaborated the problem of how two de-
vices that do not share any secrets can establish a shared
secret key over a wireless radio channel in the presence
of a communication jammer. We addressed the cyclic de-
pendency between anti-jamming spread-spectrum commu-
nication and key establishment that is inherent to this prob-
lem, and proposed a novel anti-jamming technique called
Uncoordinated Frequency Hopping (UFH) as a solution to
break this dependency. We further presented a UFH mes-
sage transfer protocol and illustrated on the example of an
authenticated Diffie-Hellman-protocol how it can be used
to establish a shared secret key between two parties in the
presence of a jammer. We performed a detailed analysis of
our UFH scheme and showed its feasibility, both in terms of
execution time and resource requirements. Moreover, our
analysis showed that, although our UFH scheme has lower
communication throughput and incurs higher storage and
processing costs, it achieves the same level of anti-jamming
protection as (coordinated) frequency hopping. Finally, we
provided an example which illustrates that UFH key estab-
lishment can be executed using current technology with a
running time well below one minute (with 80% jamming
probability); we point out that this time is reasonably short,
given that with known anti-jamming techniques the devices
would not be able to communicate and therefore could not
execute a key establishment protocol.

We hope that our work will encourage further research to
improve the design of our proposed scheme and to provide
an even more efficient and reliable solution under a poten-
tially refined threat model.
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Generalized privacy amplification. IEEE Transaction on In-
formation Theory, 41(6):1915–1923, Nov. 1995.

[6] D. Boneh and X. Boyen. Short signatures without random
oracles. In EUROCRYPT 2004, Springer LNCS 3027.

[7] D. Boneh and M. Franklin. Identity-based encryption from
the weil pairing. SIAM Journal on Computing, 32(3):586–
615, 2003.

[8] C. Boyd and A. Mathuria. Protocols for Authentication and
Key Establishment. Springer Verlag, 2003.

[9] C. Gehrmann, C. J. Mitchell, and K. Nyberg. Manual au-
thentication for wireless devices. RSA Cryptobytes, 7(1),
2004.

[10] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and
E. Uzun. Loud and clear: Human-verifiable authentication
based on audio. In Proceedings of the IEEE International
Conference on Distributed Computing Systems, 2006.

[11] C. Karlof, N. Sastry, Y. Li, A. Perrig, and D. Tygar. Distil-
lation codes and applications to DoS resistant multicast au-
thentication. In Proceedings of the Network and Distributed
Systems Security Symposium (NDSS), 2004.

[12] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jam-
ming attacks and network defense policies in wireless sensor
networks. In IEEE International Conference on Computer
Communications (INFOCOM), 2007.

[13] G. Lin and G. Noubir. On link layer denial of service in data
wireless lans: Research articles. Wireless Communications
& Mobile Computing, 5(3), 2005.

[14] M. Luby. LT codes. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 2002.

[15] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-
believing: Using camera phones for human-verifiable au-
thentication. In Proceedings of the IEEE Symposium on Se-
curity and Privacy, 2005.

[16] R. A. Poisel. Modern Communications Jamming Principles
and Techniques. Artech House Publishers, 2006.



[17] I. Riedel. Protocols and elliptic curve cryptography on
an embedded platform. Master’s thesis, Ruhr-Universität
Bochum, Germany, 2003.

[18] L. Rizzo. Effective erasure codes for reliable computer com-
munication protocols. ACM SIGCOMM Comput. Commun.
Rev., 27(2), 1997.

[19] F. Stajano and R. J. Anderson. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In Proceed-
ings of the 7th International Workshop on Security Proto-
cols, pages 172–194, London, UK, 2000. Springer-Verlag.

[20] Symantec. Securing enterprise wireless networks. White
Paper, 2003.
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