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Abstract. In many enterprise application integration scenarios, middleware has
been instrumental in taking advantage of the flexibility and cost efficiency of clus-
ters of computers. Web servers, application servers, platforms such as CORBA,
J2EE or .NET, message brokers, and TP-Monitors, just to mention a few exam-
ples, are all forms of middleware that exploit and are built for distributed deploy-
ment. The one piece in the puzzle that largely remains a centralized solution is the
database. There is, of course, much work done on scaling and parallelizing data-
bases. In fact, several products support deployment on clusters. Clustered data-
bases, however, place the emphasis on single applications and target very large
databases. By contrast, the middleware platforms just mentioned use clustered
deployment not only for scalability but also for efficiently supporting multiple
concurrent applications. In this paper we tackle the problem of clustered deploy-
ment of a database engine for supporting multiple applications. In the database
case, multiple applications imply multiple and different database instances be-
ing used concurrently. In the paper we show how to build such a system and
demonstrate its ability to support up to 300 different databases without loss of
performance.
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1 Introduction
In many enterprise application integration scenarios, middleware has been instrumental
in taking advantage of the flexibility and cost efficiency of clusters of computers. There
exists a plethora of middleware solutions to create distributed deployments and to par-
allelize a wide range of application types. In addition, distributed deployment across a
cluster of machines is most effective when the same platform can be used for concurrent
applications. Thus, platforms such as J2EE or .NET are clearly designed to be used with
multiple concurrent applications. In spite of this, the piece of the puzzle that still mostly
remains a centralized solution is the database. Even though there is much work done
in the area of cluster and parallel databases [20], the emphasis is always on improving
access to a single database. This is not a trivial distinction. The problem with single
instance optimizations is that they often conflict with the goal of supporting multiple
database instances. For instance, crucial to be able to exploit clusters is the ability to
freely move resources from machine to machine as needed and allocate more or less
machines to different applications as load fluctuates. In the single database case, the
clients simply connect to that database. In a cluster based solution, clients should see a
single image of the system even when databases are dynamically moved around. Sim-
ilarly, efficient use of the resources of the cluster imply that database instances might



Fig. 1. Managing 100 Databases (DBx) on a DBFarm using 3 Master (Mx) and 6 Satellite (Sx)
Servers. Each Database is installed on one Master and may be replicated on different Satellites.

share computing nodes. Care must be taken that work on one instance does not nega-
tively affect work on a different instance. Finally, clients should always see a consistent
state but consistency needs to be accomplished without limiting the scalability of the
cluster and without introducing unacceptable overhead.

These constraints point out to the need for some form of middleware based solution
since database optimizations mostly apply to single instances and somebody has to co-
ordinate the access to multiple, independent instances. The challenge in building such
a middleware based solution is that it must be very light weight so as not to limit scal-
ability. Handling, for instance, 100 databases each running 100 transactions per second
does not allow to spend too much time on each transaction (and our goal is to scale
well beyond that). Yet, that same middleware must guarantee consistency and a single
system image.

In this paper we describe the architecture and implementation of DBFarm, a clus-
ter based database server implemented as a thin middleware layer that can be used to
support several hundred database instances. DBFarm is based on using two kinds of
database servers: master database servers (see Figure 1) and satellites. Master servers
can be made highly reliable by using specialized hardware, RAID systems, hot stand-by
techniques, and sophisticated back-up strategies. This provides the necessary reliability
and does it in a way that the resources are shared among all databases. Scalability is
then provided by a cluster of unreliable satellite machines where copies of the individ-
ual databases are placed. A key aspect of DBFarm is that the users of the databases
are not aware of the fact that they may be working with an unreliable copy rather than
working on the master database. DBFarm ensures that they see a consistent state at all
times. Another key feature of DBFarm is that the load distribution between the master
databases and the satellite copies is done based on the read/write characteristics of the
operations requested by the users. Writes are performed at the master databases, reads
at the copies. This workload distribution allows to significantly reduce the load at the
masters (and thus, be able to support a larger number of databases on the same ma-
chines) while providing a high level of parallelization for the satellites (and, thus, the
basis for high scalability). The distribution also reflects the characteristics of most data-
base loads where updates tend to be small operations with high locality while read-only
transactions typically cause much more I/O (to retrieve data and indexes) and computa-
tion overhead (to perform operations such as joins, order, averages, or group by).

The feasibility and advantages of this approach are demonstrated through an ex-
tensive set of experiments. We show how DBFarm provides more stable and scalable
performance (in both response time and throughput) for a set of up to 300 TPC-W data-



bases than a stand alone database server installation. We also show the performance of
DBFarm using the RUBBoS benchmark (much larger databases with a more complex
load) and discuss how to assign priorities to individual databases so that they get a better
performance than others.

In terms of applications, DBFarm can be used in a wide variety of settings. It can
be used to turn a cluster of machines into a database service that is provided within a
LAN setting (a company, a university), thereby localizing the maintenance and admin-
istration of the databases and the machines on which they run. It can also be used to
implement database services as part of an Application Service Provider where small or
medium companies place their databases at a provider’s DBFarm. The sharing of re-
sources implicit in DBFarm makes this an efficient solution and its simple scalability
enables the support of a large number of users.

Our work exploits a novel form of replication and load distribution that is well
suited to many modern applications such as web servers. Unlike many existing solu-
tions, it provides consistency while remaining light weight. DBFarm does not involve
complex software or hardware layers (e.g., specialized communication infrastructures,
shared disks) or requiring the modification of the application (e.g., special clustering of
the data or submission of complete transactions). Our approach also includes innova-
tive algorithms for transaction routing across a database cluster that avoid many of the
limitations of current database replication solutions. Finally, DBFarm provides a highly
scalable clustering solution for databases.

2 Architecture
2.1 Load Separation

In order to provide scalability in databases, the load must be distributed across a num-
ber of machines. This is a well know problem in replicated, distributed and parallel
databases. In DBFarm the added complication is that the load separation must happen
on a per database instance basis while still maintaining consistency. There are many
ways to implement load separation in single instance settings. [2, 5] use versioning and
concurrency control at the middleware level to route transactions to the appropriate ma-
chines. [17] relies on clients to produce a well balanced load over a cluster, different
cluster nodes are then synchronized using group communication primitives. [13, 18]
assumes the database schema has been pre-partitioned into so called conflict classes,
which are then used for load separation. [1] requires clients to specify the freshness
level of the data and directs transactions to different nodes according to the freshness of
the nodes (i.e., how up-to-date they are). This approach, however, already assumes that
clients do not want to see the most up-to-date state and, thus, represents a relaxation of
concurrency.

Unfortunately, none of these methods is feasible in the context of a multi instance
cluster. Duplicating concurrency control at the middleware layer would result in a pro-
hibitive overhead per transaction (aside of a complex maintenance issue since the mid-
dleware would have to be aware and maintain versioning and schema information for
hundreds of instances). Group communication as a way to distribute load and maintain
consistency is also out of the question because of the overhead of membership (each
instance would have its own group membership) and the implicit synchronization of



cluster nodes. Similarly, the use of conflict classes requires to parse the incoming trans-
action load to identify the conflict class being accessed which will immediately put a
limit on the number of transactions the middleware can route per second.

The load separation approach used in DBFarm is a direct consequence of these
restrictions. Rather than relying on schema or data partition information, we simply
distinguish between read-only and update transactions. Update transactions are those
that perform an update in the database (can nevertheless contain many read operations
as well). Read-only transactions are those that do not result in a state change at the
database. Such a load separation can be efficiently implemented at the middleware
level without having to parse the statements of the transactions and without the need
to maintain information on the schema of each database instance in the cluster. Such a
separation also has important advantages. The update transactions determine the state
of each instance and define what is consistent data. We only need this stream of trans-
actions to determine correctness and consistency. Read-only transactions are used to
provide scalability by re-routing them to different cluster nodes in the system. This is
based on the nature of many database benchmarks (e.g., TPC-W or RUBBoS) that are
used as representative loads and where the load is clearly dominated by read-only trans-
actions (at least 50% of the transactions in most database benchmarks and typically far
more complex than update transactions).

Load separation based on read/write transactions results in scalability that is limited
only by the proportion of reads and writes in the load. Thus, DBFarm will not provide
any scalability to a database with 100% updates (but such load also results in no scal-
ability for any replicated solution -not just DBFarm- and would severely tax existing
parallel database engines). However, in the common case that read-only transactions
dominate the load, DBFarm provides significant scalability.

2.2 Master and Satellite Servers

As a direct result of the load separation technique used, DBFarm adopts a per instance
primary copy, lazy propagation strategy. The primary copy of an instance is called the
master database. Master databases are always located on master servers (masters). A
master server processes all the update transactions of the hosted master databases. As
such, it is always up-to-date. Each master database is responsible for maintaining its in-
ternal consistency using its own concurrency control and recovery mechanisms. Copies
of the master databases (so called satellite copies) are placed in satellite servers. Satel-
lites are used exclusively for executing read-only transactions. Hence, what is a con-
sistent state is always dictated by the master servers. As a direct result, recovery of
failed satellites and spawning of new database copies is not a complex issue in DBFarm
(unlike other approaches where the transfer of state for creating or removing a copy
involves complex synchronization operations [12,17]). In addition, the master database
of an instance is the fall back solution. If all copies fail, the master server allows clients
to continue working on a consistent version of the managed data (albeit with a reduction
in performance).

Generally, we assume the masters to be large computers with enough resources
(main memory and disk capacity) to accommodate a large number of databases (see
the experimental section for details). We also assume the masters to be highly avail-
able based on either software or hardware techniques. The capacity of a master will



determine how many different databases can be supported by that master and how high
the overall transaction load can be. DBFarm reaches saturation once all masters reach
the limit of update transaction streams they can process. At that point, and unless they
submit exclusively read-only transactions, clients cannot increase the rate at which they
submit transactions since the speed at which the update part of the load is processed is
determined by the masters which, at saturation, have no more available capacity. Scal-
ability can, however, be easily increased by adding more masters and redistributing the
databases across these machines.

Satellites in turn do not need to be as powerful as the masters, nor need they to
be very reliable. There can be an arbitrary number of database copies in each satellite.
Scalability for a single master database is provided by having copies in multiple satel-
lites. The limit in scalability, aside of the limit imposed by the proportion of updates
in the load, is reached when each concurrent read-only transaction executes in its own
satellite server. Beyond that, additional copies will remain idle. Such an extreme de-
gree of distribution can nevertheless be employed in a cluster without loss of efficiency
by placing copies of different instances on the same satellite. Since satellites might be
shared by different database copies, no resources are wasted because each copy is exe-
cuting a single read-only transaction. On the other extreme, in DBFarm it is possible for
an instance to be centralized and without any copy. In such a case, the master processes
both the update and the read-only transaction streams for that database.

An advantage of the approach taken in DBFarm is that it provides a solution for
realistic database applications. The master servers host normal databases. User defined
functions, triggers, stored procedures, etc. can all be placed at the masters and do not
need to be duplicated at the satellites. Most existing database replication solutions as-
sume such features are either not used (e.g., when concurrency control or versioning
happens at the middleware level) or require that they are replicated across all copies
and behave deterministically at all cluster nodes - something not entirely feasible in
the case of triggers in most existing database engines (e.g., when update propagation is
done with group communication).

2.3 Transaction Scheduling in DBFarm

While the load separation approach of DBFarm enables scalability and makes sure that
the master databases are always up-to-date, it does not by itself guarantee consistent
views when copies are being accessed. Therefore, as long as no other measures are
taken, the consistency from the client point of view will depend on how the transactional
load generated by a client is split into read-only and update streams and how these
streams are forwarded to the different database machines in the cluster.

From a client’s perspective, what matters is what has been called strong session
serializability [8]. Briefly explained, strong session serializability requires that a client
always sees its own updates. In other words, a read-only transaction from a given client
must see not only a consistent state but one that contains all committed updates of that
client. This prevents the client from experiencing travel-in-time effects where suddenly
a query returns correct but stale data. Although in principle strong session serializability
would be enough, the approach we take in DBFarm goes a step beyond and makes sure
that a read-only transaction executed at a copy will see all updates executed at the master
database up to the point in time the read-only transaction has arrived at the system. In



doing so, DBFarm effectively becomes transparent to the clients since they will always
read exactly the same they would have read using a single database server.

For simplicity in the explanations, and without loss of generality, we describe the
details of the DBFarm transaction scheduling with a single master database server. As
clients communicate only with masters, they are not aware of any satellites. Therefore,
incoming read-only transactions need to be forwarded by the master to the satellites in
a way that consistency is guaranteed. Update transactions for a given database instance
are executed locally on the master database. The result is, conceptually, a series of con-
sistent states of the database each of which contains the updates of all the transactions
committed up to that point. The master takes advantage of this conceptual ordering by
capturing the writesets of update transactions in commit order. A writeset is a precise
representation of what has been changed (i.e., the tuple id and the new value). The mas-
ter then uses this commit order to forward the writesets to all needed satellites using
FIFO queues. Satellites then apply these writesets in the same order they are received.
It is easy to see and formally prove that, if the execution of transactions at the master
database was correct, then the application of changes to a copy in the commit order
established by the master guarantees that the copy will go through the same sequence
of consistent states as the master database and will eventually reach the same correct
state as the master database.

Conceptually, the way this is done in a DBFarm is as follows. For every successful
committed update transaction, the master sends back to the client a commit acknowl-
edgment message. The latest sent commit acknowledgment therefore reflects the oldest
state that any client should see when sending the next transaction. Hence, if DBFarm
sends a commit acknowledgment to a client that executed transaction Tk, then all later
incoming read-only transactions from any client must observe a state of the database
that includes the effects of writeset WSk (the writeset that includes the changes done
by transaction Tk). Therefore, once a request for a read-only transaction arrives at the
master, the master can deduce (by keeping track of the sent commit acknowledgment
messages) the minimum state of the database that the read-only transaction must ob-
serve. Of course, the management of tracking commit acknowledgment messages and
assuring consistency for read-only transactions must be done by DBFarm for each data-
base separately. A possible approach to ensure that a read-only transaction sees no stale
data is to block it on the master and then only forward its operations to the target satel-
lite once it has reported the successful application of all needed writesets. However,
this approach has several disadvantages: first, there is additional logic, communication
and complexity; second, the master must implement transaction queuing; third, over-
head is introduced due to the round-trip times of the involved messages and, as a result,
read-only transactions may be unnecessarily blocked. In practice, the way the system
works achieves the same result but without blocking transactions longer than needed
and without imposing additional load on the master. The solution is based on a tagging
mechanism. Every time an update transaction commits, the master not only extracts the
writeset, but also atomically creates an increasing number which gets shipped together
with the writeset. We call this number the change number for database DB (denoted by
CN(DB)). Note that the change number is no longer client specific but applies to all
update transactions executed on the database. When re-routing read-only transactions
to satellite nodes, the master tags the begin operation of such transactions with the cur-



Algorithm 1: Master Transaction Handling

1: INPUT DB: Database Name
2: INPUT T: Incoming Transaction
3: INPUT M: Mode of T, M ∈ {Read-Only, Update}

4: if M == ’Update’ then
5: /* T must be executed on the master */
6: Start a local update transaction in database DB
7: for all Incoming statements S in T do
8: if S == ’ROLLBACK’ then
9: Abort the local transaction

10: Send abort response back to client
11: RETURN
12: end if
13: if S == ’COMMIT’ then
14: ENTER CRITICAL SECTION
15: Commit the local update transaction
16: if Commit operation failed then
17: LEAVE CRITICAL SECTION
18: Abort the local update transaction
19: Send error response back to client
20: RETURN
21: end if
22: Determine T’s commit number CN
23: Set CUR-CN(DB) := CN
24: LEAVE CRITICAL SECTION
25: Send successful commit reply to client
26: Retrieve T’s encoded writeset WS from DB
27: Forward (DB, WS, CN) to all satellites that

host a copy of database DB
28: RETURN
29: end if
30: Execute S locally
31: if Execution of S fails then
32: Abort the local transaction
33: Send error response back to client
34: RETURN
35: end if
36: Send result of S back to client
37: end for
38: end if
39: /* T is Read-Only, try to execute on a satellite */
40: if ∃ satellite N with a copy of DB then
41: Use load balancing to select a satellite N
42: MIN-CN := CUR-CN(DB)
43: Forward (DB, T, MIN-CN) to N
44: Relay all incoming statements S in T to N
45: RETURN
46: end if
47: /* Need to execute T locally */
48: Start a local read-only transaction in database DB
49: for all Incoming statements S in T do
50: if S ∈ {COMMIT, ROLLBACK} then
51: Commit the local read-only transaction

52: Send response back to client
53: RETURN
54: end if
55: Execute S locally
56: if Execution of S fails then
57: Abort the local read-only transaction
58: Send error response back to client
59: RETURN
60: end if
61: Send result of S back to client
62: end for

Algorithm 2: Satellite Transaction Handling

1: INPUT DB: Database Name
2: INPUT T: Incoming Transaction
3: INPUT MIN-CN: Min. committed State needed to exe-

cute T

4: Wait until CUR-CN(DB) ≥ MIN-CN
5: /* Execute T locally in read-only mode */
6: Start a local read-only transaction in database DB
7: for all Incoming statements S in T do
8: if S ∈ {COMMIT, ROLLBACK} then
9: Commit the local read-only transaction

10: Send response back to client
11: RETURN
12: end if
13: Execute S locally
14: if Execution of S fails then
15: Abort the local read-only transaction
16: Send error response back to client
17: RETURN
18: end if
19: Send result of S back to client
20: end for

Algorithm 3: Satellite Writeset Application

1: INPUT DB: Database Name
2: INPUT WS: Writeset
3: INPUT CN: Committed State produced by WS

4: Turn WS into a set of SQL statements
5: Wait until CUR-CN(DB) == (CN-1)
6: Start a local update transaction in database DB
7: Apply the produced SQL statements
8: Commit the local transaction
9: if Application of WS failed then

10: Report ERROR to the master
11: Disable further processing for database DB
12: RETURN
13: end if
14: Set CUR-CN(DB) := CN

rent change number of the respective database. This number is also maintained for the
copies of database DB: if a satellite applies a writeset to a copy, then the copy is known
to have achieved the writeset’s assigned change number.

A satellite that receives a tagged read-only transaction will only start executing it
after it has applied the needed writesets. This is how we make sure a read-only transac-
tion sees all updates performed up to the point it starts executing, not only those from
that particular client. The blocking of read-only transactions is therefore delegated to
the satellites, where it can be efficiently handled.



It is important to note that other than checking that every read-only transaction
observes the newest consistent state, no concurrency control is needed outside the data-
bases and scheduling therefore has a low overhead in our approach. This is in contrast to
existing replication strategies that require additional concurrency control and versioning
mechanisms outside the databases [2, 6, 18].

The details of the algorithms used by DBFarm to handle transactions on the master
and satellite servers, as well as writeset handling, are given in algorithms 1, 2 and 3.

Algorithm 1 describes the routing on a master. Lines 4-38 handle update transac-
tions. These are executed locally on the master, statement by statement, until the client
either decides to rollback (abort the transaction, in line 8) or to commit (line 13). In
case of a rollback, the transaction can simply be aborted on the master. No further ac-
tion is required. If the client wishes to commit, then the master commits the transaction
on the master database DB, extracts the encoded (compressed) writeset and forwards
it to all satellites that keep a copy of the database. Also, the master atomically updates
the CN(DB) value. The handling of read-only transactions is described in lines 39-62.
Basically, such transactions are always tagged with CN(DB) and re-routed if possible.
If no copies are available, then the transaction has to be executed on the master.

Algorithms 1 and 2 describe the handling of read-only transactions and writesets on
the satellites. Line 4 in algorithm 2 is where we make sure that read-only transactions
never observe stale data. Transactions re-routed to satellites are always started in read-
only mode. If a client inside a declared read-only transaction tries to update database
elements, then the underlying database will automatically abort the transaction.

3 Implementation
The current implementation of DBFarm runs on top of PostgreSQL 8.1. The core part
of DBFarm are the adapters, which are distributed middleware components used to
integrate the concepts of the previous section (see Figure 2). As the adapters make up
the main component of our implementation we are going to describe them first.

3.1 The Adapter Approach

Clients access the DBFarm by establishing a connection to an adapter at a master server.
If the requested database instance is not locally hosted as a master database, then the
connection is transparently forwarded to the correct master. Database copies hosted on
satellites are not directly accessible by the clients. In Figure 2 the adapter on the master
(the master adapter) intercepts all incoming client connections and re-routes read-only
transactions to satellites. The actual routing is more fine grained, since clients never
send transactions as a block. The master adapter therefore needs to inspect the data
stream on each client connection and handle operations accordingly. To be able to iden-
tify read-only transactions the master adapter assumes that clients use the standard SQL
mechanisms to either declare the whole session as read-only or decorate the begin op-
eration of submitted read-only transactions with the READ ONLY attribute. In Java
clients, for example, this can be forced by executing the Connection.setReadOnly()
method. If a client does not give any information, then the adapter assumes that the
client is starting an update transaction.

The master adapter also extracts the latest changes produced by each update oper-
ation (the writesets) from the master databases and sends them to the corresponding



Fig. 2. Adapters in an example DBFarm with one Master Server and a set of Satellites.

satellite adapters. In contrast to [6] we use writesets rather than the original SQL up-
date statements since it has been shown that they are a more efficient way to propagate
changes in replicated systems [14]. The writesets consist of a compact, encoded de-
scription of the tuples that need to be inserted, changed or deleted. At the target adapter,
they are translated and executed as a minimal set of SQL statements. The extraction of
the writeset for a given transaction occurs after the transaction commits and it is done
for the entire transaction. Thus, when the master adapter propagates changes, it does so
for all the changes of a given transaction.

Adapters on the satellites (satellite adapters) receive operations from read-only
transactions and execute them on the locally installed copies making sure that con-
sistency is preserved. To maintain consistency, satellite adapters constantly apply the
received writesets and respect the tags at the beginning of re-routed read-only transac-
tions.

Upon startup, each adapter configures and starts the local PostgreSQL installation
(each PostgreSQL installation typically contains several master databases or satellite
copies). All needed PostgreSQL configuration files are then dynamically generated so
that the PostgreSQL database software only binds itself to the local loopback network
interface. As a result, all PostgreSQL installations are not accessible by clients directly
from the network. After the local PostgreSQL installation is up, the adapter connects to
it and scans for installed databases. As a last step, the adapter starts its own listener on
the external network interface. However, unless an adapter has been further configured
by the administration console, it denies all client requests - until then it is simply not
aware if it is running as a master or satellite. Information about the overall DBFarm
configuration is at this stage centralized and provided by the administration console.
Only after a master has been informed by the administration console about its mode



and about other masters and the available satellite adapters (and the database copies that
they host) it can establish all needed writeset and transaction re-routing connections and
is then ready to process client transactions.

Currently, only the master adapters distribute read-only transactions across the satel-
lites, for load-balancing purposes a round-robin assignment is used. At a later point of
time, we plan to explore more sophisticated assignments to improve overall perfor-
mance. The need for more sophisticated assignments arises from the fact that some
read-only transactions may take a long time to execute (hours in some cases). If the
scheduling would take load into consideration, it would do a better job distributing the
incoming transactions. Nevertheless, for the purposes of demonstrating the characteris-
tics of DBFarm, round robin scheduling suffices.

For efficiency reasons, connections from the master to other adapters are organized
in pools: for each local database and for each known peer adapter there is a connection
pool. The reason for using a pool for each local database (instead of one pool for the
whole PostgreSQL installation) lies in a limitation of the PostgreSQL on-wire protocol:
one cannot switch the selected schema and database user after a connection has been
established and authenticated. Connections to other adapters are mainly used for two
purposes: first, to send tagged read-only transactions and second, to stream writesets to
the satellites. Connections are generated lazily; once a connection is no longer used, it
will be put back into its pool. Pooled connections that are not used for a certain period
of time will be closed and removed.

The adapters have been implemented as a thin layer of Java software. The software
for the master and satellite adapters is the same, however, depending on its configuration
an adapter either acts as the master or a satellite. The advantage of having identical
adapters at both master and satellites is that it will eventually also allow us to move a
master to one of the satellite machines. This makes DBFarm more dynamic but also
changes the properties of the resulting architecture since the satellites are, in principle,
unreliable. For reasons of space we do not further pursue such an approach in this paper
but use the idea to emphasize the flexibility that the DBFarm architecture provides.

3.2 Assuring Consistency

Following up on our previous work on consistent database replication [22], we use snap-
shot isolation (SI) [3, 23] as correctness criteria for the master and satellite databases.
Common database products that make use of SI are Oracle, PostgreSQL and Microsoft
SQL Server 2005. SI is used to prevent complex read operations from conflicting with
updates and viceversa. The way it works is by giving every transaction a snapshot of
the database at the time it starts (the snapshot contains all committed changes up to that
point). Since each transaction works on a different snapshot, conflicts between concur-
rent reads and writes do not occur. In the original definition of SI, the check for conflicts
between transactions that perform updates is only done at commit time: if concurrent
transactions try to modify a common item, the first committer wins rule is applied (the
first one to commit succeeds, all others will be aborted). However, real implementations
all rely on more efficient, incremental conflict detection methods. Read-only transac-
tions are not checked for conflicts. SI avoids the four extended ANSI SQL phenomena
as described in [3] (which is a prerequisite for an implementation of a SERIALIZABLE



isolation level). However, one has to be aware that this is not the same as the classic de-
finition of conflict serializability, e.g., as given in [4]. Fortunately, this does not impose
problems in real applications, e.g., [11] has shown that transactions can be re-structured
so that running them in SI based databases leads to serializable executions.

Using SI makes it relatively simple to implement consistency requirements by DB-
Farm to provide clients with a consistent view. Since a read-only transaction is executed
in a copy using SI and the copy will provide consistent snapshots, a read-only transac-
tion will always read a snapshot that has existed in the master database. This has im-
portant practical advantages since it allows a copy to constantly keep applying updates
without having to abort or interfere with concurrently running read-only transactions
from the clients.

3.3 PostgreSQL Frontend

In the current implementation of DBFarm a master adapter, as seen from the client side,
looks like a normal PostgreSQL installation (the adapter listens on TCP port 5432). We
have implemented server and client-side support for the low-level PostgreSQL proto-
col. The server side is used to implement the PostgreSQL frontend end, the client side
is used to communicate with the locally installed PostgreSQL databases. When rout-
ing transactions between different adapters, the adapters use a slightly extended vari-
ant of the PostgreSQL client/server protocol (e.g., it is possible to switch the database
schema/user for the current connection and transactions can be tagged with commit
numbers; in addition, the mechanism for transportation of writesets was added).

Since master adapters implement the standard PostgreSQL server interface, DB-
Farm can be used by a plethora of application types and platforms: C, C++, Java, Perl,
Phyton, .NET (with the PostgreSQL ADO provider), etc. - actually every application
that is designed to be used with PostgreSQL. In fact, it can be used with already ex-
isting applications without requiring any changes as long as those applications use the
standard PostgreSQL interface. This is in sharp contrast to other replication proposals,
where clients need to be changed (or need special drivers) to be able to use the database
system (e.g., [2, 6, 17]).

3.4 Writeset Extraction

We have implemented and tested different variants of writeset extraction. Currently,
DBFarm supports two approaches. The basic, generic approach, is similar to what is
being done in other systems (e.g., [6]): we simply collect all DML (data modification
language) statements of transactions in the master adapter and use them as writeset. This
method was only used for testing, since it has many open problems. For instance, one
cannot handle updates that have been produced by triggers, since those are not visible
to the adapter. Also, there are problems with statements that instruct the database to
insert function based values into tuples (e.g., random numbers or the current time in
milliseconds, which will, obviously, not lead to the same result when being executed on
different cluster nodes).

The second approach is based on triggers: we have implemented a shared library
which can be loaded into PostgreSQL at run-time. The library contains functions which
will then be assigned by the master adapters as triggers to all tables that need replica-
tion. Whenever there is a change on a table, then our trigger function will capture the



new values - no matter if the change was directly provoked by the user or by a stored
procedure inside the database. The writeset is then simply collected in memory. At the
end of a transaction a master adapter can then call another function in the shared library
to extract the writeset. This is very fast, since writeset collection does not involve any
disk accesses. Our implementation is also able to capture schema changes due to DDL
(data definition language) commands (e.g., table and index creation) and to produce
special writesets which lead to the corresponding changes of the database schema on
the copies.

To keep different database copies synchronized, other replication systems often re-
play the server’s complete redo-log on the replicas - e.g., [27] have implemented this
for PostgreSQL. Unfortunately, such an approach only works for very simple setups,
where each replicated PostgreSQL installation has the same content and page layout.
This considerably reduces the flexibility. In DBFarm, the source and destination Post-
greSQL installations may contain different sets of databases, and therefore we need
to extract and apply writesets per database. Currently, we are working on an approach
where it is possible to extract the redo-information for a subset of the databases in a
PostgreSQL installation.

3.5 Administration Console

The administration console has been implemented as a platform independent graphical
Java application. It is used to remotely start, stop and configure the adapters. Further-
more it helps to inspect the state of each cluster node. All communication between the
administration console and the DBFarm cluster nodes is encrypted. What we require is
that each node runs an OpenSSH [19] daemon. To be able to use the SSH-2 protocol
from within Java, we use our own open source, pure Java SSH-2 client library [21].

4 Performance Evaluation

In general our approach makes no restrictions on how resources can be shared across
different databases. However, in this paper we only evaluate the performance of static
setups where a single powerful server hosts all master databases and a set of smaller,
less reliable satellites are used to host the read-only copies. We present the results from
our experiments involving a DBFarm deployment that uses 360 customer databases on
a master database server and up to 30 additional satellite machines to offer improved
performance for clients.

To produce realistic measurements, we used database setups based on two different
standard benchmarks: TPC-W (as defined by the Transaction Processing Council [26])
and RUBBoS (defined by the Object Web Consortium [24]). The TPC-W benchmark
models customers that access an online book store, while RUBBoS models a bulletin
board similar to the Slashdot website [25]. For TPC-W we use the default shopping mix
workload which consists of 80% read-only interactions. The workload defined by the
RUBBoS benchmark consists of 85% read-only interactions.

We installed 300 TPC-W databases (using scaling factors 100/10,000, which results
in 497 MB per database) on the master server, as well as 60 RUBBoS databases (us-
ing the extended data set, which results in 2,440 MB disk consumption per database).
The denoted sizes include all the diskspace needed for a given single database (e.g.,
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including index files). The overall disk space occupied by these databases on the master
machine exceeds 417 GB. All databases were reasonably configured with indexes.

The master database server is a dual Intel(R) Xeon CPU 3.0 GHz machine with
4 GB RAM and an attached RAID-5 (ICP-Vortex GDT8586RZ PCI controller with 5
Hitachi HDS722525VLAT80 SATA 250 GB disks) which results in 931 GB of avail-
able space (we use a XFS partition which spawns the whole RAID-5), running Fedora
Core 4 (2.6.13-1.1532smp). The thirty satellite machines have dual AMD Opteron(tm)
250 processors (2.4 GHz), 4 GB RAM and a Hitachi HDS722512VLAT80 disk (120
GB). These machines run Red Hat Enterprise Linux AS release 4 (2.6.9-11.ELsmp).
All machines are connected with 100MBit links over a local area network (all machines
are attached to the same ethernet switch). The adapter software was run with the Java-
Blackdown 1.4.2-02 JVM. We used an unmodified version of PostgreSQL 8.1 for all
experiments.

To measure the performance of our setups we use a Java based loadclient software
that is able to reproduce the database loads that are generated by the TPC-W and RUB-
BoS benchmarks. One has to emphasize that we are not running the entire benchmarks,
but only the database part to stress DBFarm (e.g., a full TPC-W implementation would
also have to measure the performance of the used web- and application servers).

The loadclient uses worker threads to simulate a number of clients. On startup, the
loadclient generates a pool of connections to the target databases on the master. If the
number of workers is less than the number of target databases, then for each database
one connection is put into the pool. Otherwise, the loadclient generates connections
to the target databases in a round-robin fashion, until the amount of connections is as
large as the set of worker threads. Also, for each connection per target database there
is a state machine that dictates the next transaction type to be executed. Each worker
thread, in an endless loop, randomly chooses a connection from the pool and executes a
transaction according to the connection’s state machine. After the transaction has been
executed, the worker puts the connection back into the pool. It is important to note that
between the executions of the different transactions the workers use no thinking time -
each worker is intended to stress the tested setup as hard as possible.

When benchmarking the system, the loadclient uses varying numbers of workers.
Whenever the number of workers changes, the loadclient uses a warm up time of several
minutes until the system is stable. Then, a benchmarking phase of two minutes follows.
During the benchmarking phase, the loadclient measures the response times for all ex-
ecuted transactions. At the end of a run it reports the mean response time as well as the
90-percentile response time.

To be able to calculate the 90-percentile response time, the loadclient keeps an inter-
nal histogram. Please refer to Figure 3 for an example. The figure only shows a section
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of the overall collected historical data - internally the loadclient keeps track of all mea-
sured response times with a 1 ms resolution over the range from 0 to 20 seconds.

4.1 Part A: Handling Many Concurrent Databases

In the following experiments we show that DBFarm is able to handle situations where
many databases are being accessed concurrently. We use a set of satellites to execute ex-
pensive read-only transactions, and therefore we can reduce the number of page fetches
on the master. At the same time, more resources are available for update transactions on
the master. In the experiments we use a simple satellite setup - for each database on the
master we created only one satellite copy. These copies were then evenly spread over
the available satellites.

Results for TPC-W: In these experiments we compared the achievable performance
for a large amount of TPC-W databases that are accessed concurrently. First, we used
the loadclient to stress the master alone. Then, we put the DBFarm system in place and
measured the performance again.

In the first experimental round we used 100 concurrent TPC-W databases (Figure
4). One can observe that the master server already is at its limits with 300 concurrent
TPC-W shopping workers, since a mean response time of 1 second and a 90-percentile
response time of almost 4 seconds is probably not acceptable for most interactive ap-
plications.

By applying the same load to DBFarm with 10 attached satellites (each containing
10 database copies), one can observe that the system is able to scale-up to a much
higher number of concurrent clients while at the same time giving acceptable response
times. These results are particularly telling since there is only one copy of each master
database. Performance could be improved even more by adding more satellite machines
and having 2 copies for each master database.

With the DBFarm setup, each satellite hosts 10 TPC-W database copies. This makes
up a data set of about 5 GB that has to be handled by each satellite. Due to the fact
that the TPC-W workloads mainly access hot-spot data (e.g., queries for the best seller
books in the store), the 4 GB of main memory on each satellite is sufficient to keep the
number of disk accesses low. Also the update transactions that appear in the TPC-W
workload (mainly operating on the customer’s shopping cart and placing new orders)
need only on a small fraction of the data in each database. Therefore, the master server
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in the DBFarm setup (executing only update-transactions) can easily handle update-
transactions for all accessed databases with the in-memory buffer cache. Most of its
disk accesses are related to writing the latest changes to disk - this is also true for the
satellites, which, after the warm-up phase, mainly access their disks to commit the latest
received writesets.

Encouraged by the good results for 100 concurrent databases we also tried to handle
300 TPC-W databases. The results are given in Figure 5. Clearly, without the DBFarm
approach the load of 300 concurrently accessed TPC-W databases is too much for our
master server, the response times are not acceptable. Due to the fact that the machine is
mainly doing disk I/O, the results are rather unstable - performance is dictated by the
RAID-5 controller and seek times of the attached disks.

The same experiment over a DBFarm setup with the same 300 databases using thirty
satellites (each holding 10 database copies) shows that DBFarm is able to handle the
load and to offer acceptable response times for such a scenario.

Results for RUBBoS: The RUBBoS databases are not only larger (each database is
over 2 GB) than the benchmarked TPC-W databases, but the used workload is also
more complex, as the resulting transactions not only use hot-spot data but also touch a
wide range of tuples inside the databases.

As before, we first measured the performance of the master server alone. The re-
sults are given in Figure 6. The results show that the master machine alone cannot han-
dle many RUBBoS databases concurrently, already 10 databases lead to performance
problems as shown by the large 90-percentile results.

By looking at the results for the DBFarm setup, one can observe that it is crucial
that the number of copies on each satellite does not exceed a certain threshold. In the
experiment where we used only two satellites (each containing 5 RUBBoS database
copies) the performance improvement over a single master machine is insignificant.
This is due to the fact that DBFarm has a similar problem as a single master server:
the working set of 5 databases is too big for the available memory, and therefore the
throughput on the satellites is limited by the available disk I/O-bandwidth. One can
interpret the result as having moved the bottleneck from the master database server to



the satellites. This may look like a waste of resources, but one should keep in mind
that the overall setup has improved: by taking away load from the master, there is more
available capacity for other concurrently accessed databases. We will point out this
feature in the next section. To verify that the satellites are really the bottleneck, we
then tested the same workload on a DBFarm setup with 10 satellites, therefore having
only 1 RUBBoS copy per satellite. One can observe how the performance significantly
improves over a setup with only 2 satellites.

In a last experiment set we tried to handle 60 concurrent RUBBoS databases with
DBFarm. We used a setup with 30 satellites, each holding two database copies. It was
impossible to perform the same experiment with a single master server, as the machine
was stuck with disk-I/O and no stable results could be achieved (the throughput never
got higher than a few transactions per second). The results in Figure 6 show that, again,
DBFarm can handle such a scenario. Interestingly, the achieved performance is slightly
lower than for the experiment based on 10 copies on 10 satellites. There are two reasons:
first, by having two RUBBoS copies on each satellite, the buffer cache of the satellites is
not big enough two hold both databases in memory. However, this is only a minor prob-
lem, as could be verified by observing the number of disk reads on the satellites during
the experiment. Second, with 60 concurrent RUBBoS databases, the master server is
becoming a bottleneck, since the data needed for each update transaction is not always
in memory (the machine was performing more read operations than in the 10 databases
experiment). One can learn the following from this experiment: when using a system
like DBFarm, it is very important to optimize the structure of update-transactions: one
has to try to keep the number of read operations (e.g., select operations or index scans
for update statements) small, otherwise the master databases become the bottleneck of
the system. This can, e.g., be achieved by introducing appropriate indexes specific to
master databases.

4.2 Part B: Scaleout for selected Databases

In the preceding experiments we used database copies on satellites to extend the ca-
pacity of a master database server. In all setups, we used no more than one copy per
database on the master server. We could show that with such a system setup we can
handle bursts over a set of databases.

In the last experiment we show how a single RUBBoS database can benefit from
the DBFarm approach. For instance, one could think of having a high priority customer
database that needs a certain guaranteed response time since there may be a service level
contract with the customer. The approach to solve the problem is to assign a set of satel-
lites, each holding exactly and exclusively one copy of the customer’s database on the
master server. In this way, the customer’s read-only transactions can be load-balanced
over different satellites which are at the same time guaranteed not to be affected by other
customers. Again, there are two measurements: first we measured the performance of a
pure PostgreSQL installation on the master server, then we measured the performance
of the DBFarm setup. However, this time the load for the DBFarm was made much
harder: to make things more interesting, in parallel to the RUBBoS load 200 TPC-W
databases were also loaded by 100 worker threads with the shopping-mix. Copies of the
200 TPC-W databases were located on 20 separate satellites (each holding 10 copies).
In case of the RUBBoS database, we used 3 satellites each holding exactly one copy.
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Fig. 7. Detailed Scale-Out Results for the RUBBoS Database. Note that DBFarm had to handle
simultaneously 100 clients that randomly accessed 200 TPC-W databases (not included in TPM).

The results for the two experiments are given in Figure 7. Clearly one can observe that
the high priority RUBBoS customer database is performing much better than with the
single server setup - even though DBFarm has to concurrently deal with 200 TPC-W
databases. The detailed results show that the throughput (given in TPM, transactions
per minute) for the RUBBoS database has more than doubled.

5 Related Work
DBFarm builds upon the ideas developed in several previous projects in our group
[15, 16, 22] as well as on a wealth of related work on middleware based database repli-
cation. In [22] we presented a system for replicating single database instances using
snapshot isolation. The current version of DBFarm uses that implementation for pro-
viding snapshot isolation consistency to the clients.

On the theoretical side, [8] has extensively studied the problem of session consis-
tency as a more meaningful correctness criterion for replicated databases than standard
1-copy-serializability. Their algorithms are targeted at offering serializability for a sin-
gle, fully replicated database and they have so far only simulated the algorithms they
describe. DBFarm offers a stronger notion of consistency (not only one’s own updates
but all updates until a certain timestamp) using mechanisms that should not result in
a loss of performance when compared to those presented in [8]. [9] proposes gener-
alized snapshot isolation, a technique for replicated databases where readers may use
older snapshots. Again, our system offers scale-out without giving up consistent views
for all clients. In our current implementation, we also use snapshot isolation as a con-
currency control mechanism. [11] investigated research in the serializability aspects of
snapshot isolation. The consistency guarantees of systems that allow the use of other
concurrency control mechanisms in parallel to snapshot isolation have been investi-
gated in [10], these results directly apply to our system, as we are able to mix different
concurrency control mechanisms on the different database nodes.

In terms of implemented systems, [1] applies the techniques presented in [22] to
provide a travel-in-time feature where clients can requests older snapshots. Although
this technique can easily be implemented in DBFarm, the goal of DBFarm is to support
full consistency and On Line Transaction Processing (OLTP) loads ( [1] uses TPC-R as



benchmark, a data mining load). Note that once consistency is relaxed, scalability can be
significantly increased (and, in fact, the concept of scalability changes since clients are
accessing historical rather than actual data). The work described in [2] centers around
a technique called distributed versioning. The key idea is to use a centralized middle-
ware based scheduler which does bookkeeping of versions of tables in all the replicas.
Every transaction that updates a table increases the corresponding version number. At
the beginning of every transaction, clients have to inform the scheduler about the tables
they are going to access. The scheduler then uses this information to assign versions of
tables to the transactions. Our time tagging of transactions resembles the per table ver-
sioning of [2] but ours introduces clearly less overhead as it does not require any parsing
of statements nor schema information at the middleware layer. C-JDBC [6], an open
source database cluster middleware, has been primarily designed for fault tolerance. To
be able to access a C-JDBC cluster, clients need to use a special Java JDBC driver.
The system implements variants of the Read-One Write-All approach with consistency
guaranteed through table level locking at the middleware level. The backend databases
are accessed over JDBC, so the system can be used with different database implementa-
tions, they only need to provide a JDBC interface. The downside of this approach is the
need for duplicating logic from the backend databases into the middleware, since JDBC
does not supply mechanisms to achieve a fine grained control over an attached database.
One example for this is locking, which, again, has to be done at the middleware level by
parsing the incoming statements and then doing table-level locking. Another example
is the writesets, which are not supported by the JDBC standard, so the middleware has
to broadcast SQL update statements to all replicas to keep them in-sync. Also, when
encountering peaks of updates, this leads to a situation where every backend database
has to evaluate the same update statements. To circumvent these scalability problems,
C-JDBC offers also the partition of the data on the backend replicas in various ways
(called RAIDb-levels, in analogy to the RAID concept). However, static partitions of
data restrict the queries that can be executed at every node. Like the solution in [2],
C-JDBC cannot be used in the context of DBFarm because of the overhead it intro-
duces at the middleware level it does not scale to hundreds of database instances. [7]
presents a replication architecture based on partial replication and refresh transactions.
To offer consistent views for readers, the system relies on the ordering properties of
global FIFO multicast of the underlying network and as well as on maximum message
delivery times.

There are also a number of systems that use group communication to implement sin-
gle instance database replication [15,16,17]. These systems do not consider the problem
of load balancing (they assume clients distribute themselves evenly across all copies)
and impose severe restrictions on the transactional load. For instance, they require that
transactions are submitted as a single block since the system can only reason about
complete transactions. This is in contrast to DBFarm where clients can submit transac-
tions statement by statement as it is done in most database applications. From the point
of view of clustered databases with multiple instances, the biggest drawback of group
communication based replication is the high overhead of group communication itself.
With hundreds of database instances and several copies of each, the number of messages
to be handled by the group communication system can be very high. Also, maintain-



ing a membership group for each instance is very expensive and limits the flexibility
in allocating copies to satellites. Since these system also adopt an update everywhere
approach, each database copy must also duplicate application logic in addition to data
(triggers, user defined functions, etc.). In the context of DBFarm this is simply not
practical. Finally, group communication primitives rely on all nodes involved making
suitable progress at roughly the same pace. In DBFarm, where a node may contain a
potentially large amount of database instances, such forced synchronization will make
it impossible for the system to scale. The approach proposed in [13] and [18] where
load is partitioned using conflict classes is also not feasible in the context of multiple
instances.

Oracle RAC (Real Application Clusters) is a commercial clustering solution that
also uses snapshot isolation. It relies on the use of special hardware (all nodes in the
database cluster need access to a set of shared disks) or the use of special network file
systems. Therefore, unlike our approach, the system cannot easily be installed on a set
of commodity servers.

6 Conclusions
This paper presents the architecture and implementation of DBFarm, a multi-instance
database cluster solution that can handle hundreds of client databases concurrently. Ad-
ditionally, it supports controlled scale-out for selected customer databases. DBFarm
offers consistency at all times, to the clients it looks like an ordinary database server.
There is no need to change any client code to be able to use the system. Our light
weight adapter approach offers many advantages over classic middleware based repli-
cation solutions. Our experiments show that the approach is feasible and that the system
can efficiently schedule transactions for relatively large amounts of customer databases
while offering good performance for large sets of concurrent clients.

Our future work will concentrate on the dynamic aspects of the system. By allocat-
ing satellites and establishing database copies as demand requires, we plan to build an
autonomic database service provider.

References
1. F. Akal, C. Türker, H.-J. Schek, Y. Breitbart, T. Grabs, and L. Veen. Fine-Grained Repli-

cation and Scheduling with Freshness and Correctness Guarantees. In Proceedings of the
31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 -
September 2, 2005, pages 565–576.

2. C. Amza, A. L. Cox, and W. Zwaenepoel. A Comparative Evaluation of Transparent Scaling
Techniques for Dynamic Content Servers. In ICDE ’05: Proceedings of the 21st Interna-
tional Conference on Data Engineering (ICDE’05), pages 230–241.

3. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A Critique of ANSI
SQL Isolation Levels. In Proceedings of the SIGMOD International Conference on Man-
agement of Data, pages 1–10, May 1995.

4. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

5. E. Cecchet. C-JDBC: a Middleware Framework for Database Clustering. IEEE Data Engi-
neering Bulletin, Vol. 27, No. 2, June 2004.

6. E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible Database Clustering Mid-
dleware. In USENIX Annual Technical Conference, FREENIX Track, pages 9–18, 2004.

7. C. Coulon, E. Pacitti, and P. Valduriez. Consistency Management for Partial Replication in
a High Performance Database Cluster. In Proceedings of the 11th International Conference
on Parallel and Distributed Systems (ICPADS 2005), Fuduoka, Japan, July 20-22, 2005.



8. K. Daudjee and K. Salem. Lazy database replication with ordering guarantees. In Proceed-
ings of the 20th International Conference on Data Engineering (ICDE 2004), 30 March - 2
April 2004, Boston, MA, USA, pages 424–435.

9. S. Elnikety, F. Pedone, and W. Zwaenepoel. Database Replication Using Generalized Snap-
shot Isolation. In SRDS ’05: Proceedings of the 24th IEEE Symposium on Reliable Distrib-
uted Systems.

10. A. Fekete. Allocating Isolation Levels to Transactions. In PODS ’05: Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems, pages 206–215, June 2005.

11. A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making Snapshot Isolation
Serializable. ACM Trans. Database Syst., 30(2):492–528, 2005.

12. R. Jiménez-Peris, M. Patiño-Martı́nez, and G. Alonso. An Algorithm for Non-Intrusive,
Parallel Recovery of Replicated Data and its Correctness. In 21st IEEE Int. Conf. on Reliable
Distributed Systems (SRDS 2002), Oct. 2002, Osaka, Japan, pages 150–159.
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