
Chapter 3

Discrete Event Systems

Fall 2008

Specification models:

High-level modeling techniques and related
analysis methods for the computer assisted

verification of DES

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/2

Motivation (1)

• Modern systems consist of many different components (HW +
SW !), yielding a very high degree of complexity

• Systems have to fulfill a set of requirements, defined by a
specification as given by a contractor, customer or legislation

• What are these kinds of requirements?

– Functionality:

Coke vending machines either delivers drink or returns my money

– Performance:

Voice-of-IP requires max. delay of a IP-packet < xxx msec.

– Energy-consumption, heating characteristics

– Reliability: 99,999% of emergency calls must be routed correctly

– Safety / Security requirements (can been seen as part of functionality)

– Economic requirements: costs, amortization etc.

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/3

Motivation (1)

Why do we need more sophisticated methods other
than finite state machines?

• States are atomic

– no hierarchic structuring possible

– usage of variables

• Partitioning of systems in (parallel operating) components not
possible

– modularization?

• FSM are easily very large and thus not human readable anymore

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/4

Motivation (3)

Methods for assessing a systems behavior

Mathematical
Analysis

Monitoring /
Testing

Simulation

Real System Representative
(model)

Empirical Analytical

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/5

Computer-assisted analysis/verification (1)

What’s the general strategy for formally and automatically analyzing
models?

1. Take a design of the system behavior, given as some high-level model
such as an SDL-specification, PN, network of TA, or ……

2. Take (a set of) formal system requirements, e.g. given in terms of a set
of Message Sequence Charts, as safety or progress properties, …

3. Validate that each requirement is indeed satisfied by the system design.

This will be covered here

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/6

Computer-assisted analysis/verification (2)

What are the techniques for formally analyzing models?

1. Theorem proving

– Strategy: generate a formal proof that D satisfies φφφφ.

– Applicable if design D can be represented in some adequate mathematical

theory

2. State space exploration

– Strategy: check systematically and exhaustively each reachable state

in D satisfies φφφφ.

– Applicable if the behavior of D can be finitely represented.

– One is enabled to show the presence and absence of errors!

3. Simulation or Testing of models

– Strategy: Check whether φ holds on some executions of D.

– Applicable if D is in some sense executable.

– One may be able to show the presence of errors, but not the absence!

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/7

(State-based) Computer-assisted analysis/verification (3)

What are the requirements to be verified

(by state-based methods)?

1. Safety: A safety property to be verified asserts that a system under
analysis never reaches a (set of) dedicated state, e.g. like error
states, or in particular a deadlock. The mutual exclusion property is
one of the most prominent examples of a safety property.

(constraint on finite behaviour)

2. Liveness or progress: A liveness property guarantees that a
system under analysis is executing a (set) of dedicated activities
infinitely often (constraint on infinite behaviour)

3. Starvation exists if there is an infinite run, where a dedicated
action is never executed.

Dijkstra’71: Dining Philosophers Problem

en.wikipedia.org/wiki/Dining_philosophers_problem

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/8

‘Magic Engine’

NO YES

(State-based) Computer-assisted analysis/verification (4)

formal description
of system behavior

formal description of
desired behavior

modification next
requirement

ready

requirement real system

specification formalization

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/9

(State-based) Computer-assisted analysis/verification (5)

What are the practical obstacle?

• State Space Explosion:
The number of possible state combinations exponentially
in the number of concurrent processes or independent activities.

• Captures your model the reality ?

– You can only assert those properties which are captured by the model.

– Consistency check between model and reality (= model validation,
not covert here).

What’s the principal obstacle?

• Decidability:
full generality it is undecidable whether D satisfies φ.
This depends on the specification, and the requirement.

Does a design D satisfy a requirement φ?

���� Halting problem

���� Space and CPU-time is limited

���� Validation of model

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/10

Validation ↔ Verification

• Validation (“doing right things”)

– Comparing theory to reality

– Make observation for providing evidence that the theory is correct, e.g.

• show the absence of a specific error in different runs

• show that program delivers correct result with respect to a given input

– If possible try to find counter-examples (Falsification)

• Verification (“doing things right”)

– Proof correctness of system design

– formal model with unique interpretation

– formal system, i.e. formal model and unique set of deductive rules for

operating on (or transforming) the model.

– If incorrect behavior is detected, counter-example is automatically

provided

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/11

• Systems have to fulfill a set of requirements, defined by a
specification as given by a contractor, customer or legislation

• Showing (proving) a dedicated behavior of a system needs
exhaustive analysis:

– Testing, monitoring and simulation of real system or a model is in
principle not sufficient (rare events?)

• Verification of systems require their formal description

• What does formal mean?

– Model posses a unique interpretation (unique set of deductive
rules to operate on the model)

• Drawback: Reality far from trivial
=> level of detail bounded by capabilities of (mathematically)

handling a model (run-time and memory is limited)

• Abstraction:
Keep models simple as possible but as complex as necessary!
You can only check what you have modeled!

Specification Models (at glance)

Early

versions of
UML-state

charts ?

Discrete Event Systems – R. Wattenhofer / K. Lampka 3/12

What are we doing?

• Lecture 23.10:

– Specification and Description Language SDL

– Message Sequence Charts

– Related Analysis methods: The TAU-Tool-suite

• Lecture 30.10:

– Petri Nets

– Symbolic Analysis methods (for finite models)

• Lecture: 6.11:

– Timed Automata

– Introduction to model checking

