Acoustic Detection (Shooter Detection)

Shot #1 @ (x,.y..T\) ®
£y
Clock Synchronization [u—
DG o
Chapter 9 e I o e
d, “ “
ca — Q
* Sound travels much
slower than radio heaw U e _somuetn, W
. = A R
. signal (331 m/s) n o]
B T iy . . estmate T = < =
> ~ : i « This allows for quite _— P ———
= < i accurate distance Shooter detection error
2 . . 18
estimation (cm
- - . 5 * Main challenge is to § 0 =
- . ™~ deal with reflections L
@ - - and multiple events ; l | | I I
: o L] L !l ?
Eidgendssische Technische Hachschule Zirich Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/1 Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/2

‘Swiss Federal Institute of Technology Zurich

Rating Overview

* Area maturity * Motivation

Clock Sources

Reference-Broadcast Synchronization (RBS)

» Time-sync Protocol for Sensor Networks (TPSN)
* Practical importance » Gradient Clock Synchronization

First steps Text book

No apps Mission critical

» Theoretical importance

Not really Must have

0‘

oy

Ad Hoc and Sensor Networks Roger Wattenhofer 9/3 Ad Hoc and Sensor Networks Roger Wattenhofer 9/4

Motivation

» Synchronizing time is essential for many applications
— Coordination of wake-up and sleeping times (energy efficiency)
— TDMA schedules
— Ordering of collected sensor data/events
— Co-operation of multiple sensor nodes
— Estimation of position information (e.g. shooter detection)

» Goals of clock synchronization
— Compensate offset* between clocks
— Compensate drift* between clocks

*terms are explained on following slides

Properties of Clock Synchronization Algorithms

External versus internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time
— to aleader, to an averaged time, or to anything else

* One-shot versus continuous synchronization
— Periodic synchronization required to compensate clock drift

* A-priori versus a-posteriori
— A-posteriori clock synchronization triggered by an event

* Global versus local synchronization (explained later)

» Accuracy versus convergence time, Byzantine nodes, ... Q

Clock Sources

» Radio Clock Signal:

— Clock signal from a reference source (atomic clock)
is transmitted over a long wave radio signal

— DCF77 station near Frankfurt, Germany transmits at
77.5 kHz with a transmission range of up to 2000 km |

— Accuracy limited by the distance to the sender,
Frankfurt-Zurich is about 1ms.

— Special antenna/receiver hardware required

» Global Positioning System (GPS):

— Satellites continuously transmit own position and
time code

— Line of sight between satellite and receiver required
— Special antenna/receiver hardware required

Clock Devices in Sensor Nodes

Platform System clock | Crvstal oscillator
Mica2 7.37 MHz 32 kHz, 7.37 MHz
« Structure Toote Sky |8 MHy | 3 kit

— External oscillator with a nominal frequency (e.g. 32 kHz)

— Counter register which is incremented with oscillator pulses

— Works also when CPU is in sleep state

» Accuracy
— Clock drift: random deviation from the nominal rate dependent on power
supply, temperature, etc.
— E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

This is a drift of up to
50 ps per second
or 0.18s per hour

Messured Time

Oscillator ' Actud Time Q

Sender/Receiver Synchronization

* Round-Trip Time (RTT) based synchronization

Time accor-
B t 2 dingto B -t 3

Request Answer
from A from B

Time accor-
ding to A

A t, — — t,

* Receiver synchronizes to the sender’s clock
» Propagation delay ¢ and clock offset 6 can be calculated
5= (t4 _tl)_(tS _tz)
2
0= (tz _(t1 +5))_(t4 _(t3 +5)) _ (tz _t1)+(ts _t4)
2 2

-y,

Disturbing Influences on Packet Latency

Influences
— Sending Time S (up to 100ms)
Medium Access Time A (up to 500ms)
Transmission Time T (tens of milliseconds, depending on size)
(
(

Propagation Time P, g microseconds, depending on distance)
Reception Time R up to 100ms)

\ \
Timestamp T, \ \ N
Timestamp Ty
Critical path

Asymmetric packet delays due to non-determinism
Solution: timestamp packets at MAC Layer

y,

Some Details

« Different radio chips use different paradigms:
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Rightis a CC2420 radio chip that generates a single interrupt for the
packet after the start frame delimiter is received.

(T T
\ I BYTEY BYTE 2 BYTES BYTE4 \ g 5o BYTE 4] [H | BYTE 3] L3
i / /

+ + ¢ + +

By 1 byl b b By By Ll
EYTE_TME

* In sensor networks propagation
can be ignored (<1us for 300m).

[Tevp——

+ Still there is quite some variance
in transmission delay because of
latencies in interrupt handling
(picture right).

1 il il
0 =0 ()

o " m 0

Ticks

General Framework

The clock synchronization framework must provide the abstraction
of a correct logical time to the application. This logical time is based
on the (inaccurate) hardware clock, and calibrated by exchanging
messages with other nodes in the network.

| Application »

Time Synchronization Component b 4
Time Sync 4 ¢—» 4 Logical Clock

Reference-Broadcast Synchronization (RBS)

Time-sync Protocol for Sensor Networks (TPSN)

» Asender synchronizes a set of receivers with one another
* Point of reference: beacon’s arrival time

L=6+SstA+F,tR,
L=4+Sst At Byt R,

O=t,—t,= (Bss— B p) T (R, —Ry)

» Only sensitive to the difference in propagation and reception time

» Time stamping at the interrupt time when a beacon is received

» After a beacon is sent, all receivers exchange their reception times to
calculate their clock offset

* Post-synchronization possible
* E.g., least-square linear regression to tackle clock drifts

+ Multi-hop? Q

+ Traditional sender-receiver synchronization (RTT-based)
* Initialization phase: Breadth-first-search flooding
— Root node at level 0 sends out a level discovery packet

— Receiving nodes which have not yet an assigned level set their level
to +1 and start a random timer

— After the timer is expired, a new level discovery packet will be sent

— When a new node is deployed, it sends out a level request packet after
a random timeout

@ =
o/l\ﬂ Why this random timer?
/ 9 1\9

7y,

Time-sync Protocol for Sensor Networks (TPSN)

Time-sync Protocol for Sensor Networks (TPSN)

» Synchronization phase

— Root node issues a time sync packet which triggers a random timer at
all level 1 nodes

— After the timer is expired, the node asks its parent for synchronization
using a synchronization pulse

— The parent node answers with an acknowledgement

— Thus, the requesting node knows the round trip time and can calculate
its clock offset

— Child nodes receiving a synchronization pulse also start a random timer
themselves to trigger their own synchronization

Time Sync T\
Sync pulstg/gACK § l\

.

L=4+S, AP s+ R, .
t4:t3+SB+AB+PB,A+RA t, @A/l \
t
p G A) BB R[] |
_ . S
(A ZH

+ Time stamping packets at the MAC layer
» In contrast to RBS, the signal propagation time might be negligible
» Authors claim that it is “about two times” better than RBS

» Again, clock drifts are taken into account using periodical «_~
synchronization messages

* Problem: What happens in a non-tree topology (e.g. grid)?

— Two neighbors may have bad synchronization? Q

Flooding Time Synchronization Protocol (FTSP)

» Each node maintains both a local and a global time

» Global time is synchronized to the local time of a reference node
— Node with the smallest id is elected as the reference node

» Reference time is flooded through the network periodically

(©_reference node

+ Timestamping at the MAC Layer is used to compensate for
deterministic message delays

+ Compensation for clock drift between synchronization messages

using a linear regression table -

From single-hop to multi-hop

« Many protocols don’t even handle single-hop clock synchronization
well. On the left figures we see the absolute synchronization errors
of TPSN and RBS, respectively. The figure on the right presents a
single-hop synchronization protocol minimizing systematic errors.

D ey -

« Even perfectly symmetric errors will sum up over multiple hops.

— In a chain of n nodes with a standard deviation & on each hop, the
expected error between head and tail of the chain is in the order of oVn.

@y,

Best tree for tree-based clock synchronization?

« Finding a good tree for clock synchronization is a tough problem |
|
— Spanning tree with small (maximum or average) stretch.

« Example: Grid network, with n = m? nodes.

* No matter what tree you use, the maximum
stretch of the spanning tree will always be
at least m (just try on the grid figure right...)

* In general, finding the minimum max
stretch spanning tree is a hard problem,

however approximation algorithms exist
[Emek, Peleg, 2004].

Local/Gradient Clock Synchronization

1. Global property: Minimize clock skew between any two nodes

2. Local (“gradient”) property: Small clock skew between two nodes if
the distance between the nodes is small.

3. Clock should not be allowed to jump backwards
= You don’t want new events to be registered earlier than older events.

Examp|e: Root node

P,
N

Large clock skew

Trivial Solution: Let t = 0 at all nodes and times

1. Global property: Minimize clock skew between any two nodes &

2. Local (gradient) property: Small clock skew between two nodes if &
the distance between the nodes is small.

3. Clock should not be allowed to jump backwards &
» To prevent trivial solution, we need a fourth constraint:
4. Clock should always to move forward.

* Sometimes faster, sometimes slower is OK.
* But there should be a minimum and a maximum speed.

oy,

Theoretical Bounds for Clock Synchronization

* Network Model:

Each node i has a local clock Lj(t)

Network with n nodes, diameter D.

Reliable point-to-point communication with minimal delay u
Jitter ¢ is the uncertainty in message delay

» Two neighboring nodes u, v cannot distinguish whether message is faster
from u to v and slower from v to u, or vice versa. Hence clocks of
neighboring nodes can be up to ¢ off.

* Hence, two nodes at distance D may have clocks which are ¢D off.
+ This can be achieved by a simple flooding algorithm: Whenever a node

receives a new minimum value, it sets its clock to the new value and
forwards its new clock value to all its neighbors. Q

Local/Gradient Clock Synchronization

* Model

— Each node has a hardware clock H(-) with a clock rate h(t) such that
(1-)t < h(t) < (1+e)t ,

— The hardware clock of node i at time ¢ is Hi() = J.hi(t)dt

0

— Each node has a logical clock L(-) which increases at the rate of H(-)

— Employ a synchronization algorithm A to update the logical clock using
the hardware clock and neighboring messages

— The message transmission delay is in (0,1]

‘ Time is 142 Time s 152
. . -
Time is 140 S Time is 150

Synchronization Algorithms: Amax

» Question: How to update the logical clock based on the messages
from the neighbors?
* Idea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if greater than local clock value)

» Poor local property: Fast propagation of the largest clock value
could lead to a large skew between two neighboring nodes
— First all messages take 1 time unit, then we have a fast message!

New time is D+x NG e (5 Bs skew D!
Time is D+x Time is D+x Time is D+x —M—
Clock value: Old clock value: Old clock value: Old clock value:

D+x D+x-1 x+1 X

Synchronization Algorithms: 4max’

« The problem of 47 is that the clock is always increased to the
maximum value

+ Idea: Allow a constant slack y between the maximum neighbor clock
value and the own clock value

« The algorithm 4"+ sets the local clock value L(t) to
Li(?) = max(Li(?),max ;_y Li(t)—y)

— Worst-case clock skew between two neighboring nodes is still
O(D) independent of the choice of vy!

* How can we do better?
— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

— Idea: Take the clock of all neighbors into account by choosing the
average value? 6

- .

Synchronization Algorithms: 4e¢

« A<z sets the local clock to the average value of all neighbors:

1

1

Li(t) = max(Li(t),— > Li())

JENI

« Surprisingly, this algorithm is even worse!

« We will now show that in a very natural execution of this algorithm,
the clock skew becomes really large!

n Timeis x+(n-1)2 | 4 Time is x+(n-2)? Time is x+4 P Time is x+1 1
Clock value: Clock value: Clock value: Clock value:
x+(n-1)? x+(n-2)? x+1 X

H—/

skew 2n-3 Q

Synchronization Algorithms: 4+¢

» Consider the following execution: All messages arrive

after 1 time unit!

[

Clock rate: Clock rate: Clock rate:
hy=1 Py =1 - 0q hy=1-¢

* All gforie{1,...,n-1} are arbitrary values with &> 0.

* The clock rates can be viewed as relative rates compared
to the fastest node n. We will show:

Theorem: In the given execution, the largest skew between
neighbors is 2n-3 € O(D). Hence, the global skew is ©(D?).

.

Synchronization Algorithms: 4¢

We first prove two lemmas:

Lemma 1: In this execution it holds that Vt, Vi € {2,...,n}:
L,(t) —L;.4(t) = 2i — 3, independent of the choices of ¢, > 0.

Proof:

Define AL (t) := Lj(t) — Li(t-1). It holds that V t V i: AL;(t) < 1.

L4(t) = Ly(t-1), because node 1 has only one neighbor (node 2).
Since AL,(t) < 1 for all t, we know that L,(t) — L,(t) < 1 for all t.

Assume now that it holds for vt, vj < i: Lj(t) —L4(t) < 2j - 3.
We prove a bound on the skew between node i and i+1:
Fort=0itis trivially true that L,,(t) — Li(t) < 2(i+1) - 3,

since all clocks start with the same time. Q

Synchronization Algorithms: 4e¢

« Assume that it holds for all t’ < t. For t+1 we have that
Liyq1(t) + Li—1(t)

Li(t+1) > 5
o Lia(®) + Li(t) — (2i - 3)
- 2
> Li+1(t)+Li(t+1)—1—(2i—3)
- 2
> Lip1(t+1)—-(2@G+1)-3).

» The first inequality holds because the logical clock value is always
at least the average value of its neighbors.

* The second inequality follows by induction.

» The third and fourth inequalities hold because ALj(t) < 1.

.

Synchronization Algorithms: 4e¢

Lemma2:Vie {1,...,n}:lim _, AL(t) = 1.

Proof:
» Assume AL, 4(t) does not converge to 1.
* Argument for simple case:
Je>0suchthatVt AL 4(t)<1-e.
As AL (t) is always 1, if there is such an ¢, then
lim,_, . Ln(t) - L,.4(t) = 00, @ contradiction to Lemma 1.
* A bit more elaborate argument:

AL, _4(t) = 1 only for some t, then there is an unbounded
number of times t' where AL, (t) < 1, which also implies that

lim, _, . La(t) - L,4(t) = 00, again contradicting Lemma 1.
Again, lim, _, . AL, 4(t) = 1.
* Applying the same argument to the other nodes, it follows
inductively that Vi e {1,...,n}: lim, , ALi(t) = 1. Q

Synchronization Algorithms: 4+¢

Theorem: The skew between neighbors i and i-1converges to 2i-3.

Proof:
* WeshowthatVie {2,...,n}: lim,_, Li(t)— L_(t)=2i - 3.
» According to Lemma 2, it holds that lim, _, . L,(t) — L;(t) = AL4(t) = 1.
* Assume by induction that V' j < i: lim, _, Lj(t) — L4(t) = 2j - 3.
» According to Lemmas 1 & 2, lim, _, . L,4(t) — Li(t) = Q for a value
Q < 2(i+1)-3. If (for the sake of contradiction) Q < 2(i+1)-3, then

Li1(t—1)+Lip1(t—1)

lim L;(t) = lim
t—oo t—oo 2
— iim 2Li(t—1)—-(2i—-3)+Q
t—oo 2

and thus lim, _, . AL(t) < 1, a contradiction to Lemma 2.

.

Synchronization Algorithms: Ao

* Idea: Minimize the skew to the slowest neighbor

— Update the local clock to the maximum value of all neighbors as long as
no neighboring node’s clock is more than B behind.

* Gives the slowest node time to catch up
* Problem: Chain of dependency

— Node n-1 waits for node n-2, node n-2 waits for node n-3, ...
— Chain of length ©(n) = O(D) results in ©(D) waiting time

- O(D) skew!
n Time is x n-1 Time is x-B n-2 Time is x-2B
_
Clock value: Clock value: Clock value:
X XxX-B X-2B

Synchronization Algorithms: A

* How long should we wait for a slower node to catch up?

— Do it smarter: Set B=0(/D) — skew is allowed to be O(D)
— waiting time is at most O(D/B) = O(\/B) as well

Waiting time O(v'D)
A

Node with)
fast clock p— —
JL Skew O(D)
Node with [-
slow clock = it
} oDy
Chain of
length O(/D)

Synchronization Algorithms: A4

« When a message is received, execute the following steps:

max := Maximum clock value of all neighboring nodes
min := Minimum clock value of all neighboring nodes

if (max > own clock and min + Uv D +1> own clock

own clock := min(max, min + UVD +1)

inform all neighboring nodes about new clock value
end if

» This algorithm guaranteeﬂhéﬁhe worst-case clock skew between
neighbors is bounded by

Some Results

« All natural/proposed clock synchronization algorithms seem to fail
horribly, having at least square-root skew between neighbor nodes.

* Indeed [Fan, Lynch, PODC 2004] show that when logical clocks
need to obey minimum/maximum speed rules, the skew of two
neighboring clocks can be up to Q(log D / log log D), where D is the
diameter of the network.

* Nice open problem...? Unfortunately not! In 2008 a O(log D) clock
skew algorithm was presented at [Lenzen et al., FOCS 2008]. Also,
the lower bound seems to be Q(log D)...

Theory vs. Practice

» Can these theoretical findings be applied to practice?
— Do the theoretical models represent reality? o
« Example: Experimental evaluation on a ring topology

- ‘. S=——_ Node 8 and Node 15 are leaves
T2 {16 18 5 \,»—-"ls\-d"m\,—-/'z\. o 18) «— of two different subtrees
R S S e S S S S

S

N N N N e
Vo4 bl 3 11 o 9 hnf 10 had 17 el 4 Y20
a3 "l R AT A Y

» Results: Synchronization error between Node 8 and Node 15

— Tree-based synchronization (FTSP, left) leads to a larger
error than a simple gradient clock synchronization algorithm (right)

Mmgtar Syreheorgabon Dl

Open Problem

» As listed on slide 9/6, clock synchronization has lots of parameters.
Some of them (like local/gradient) clock synchronization have only
started to be understood.

» Local clock synchronization in combination with other parameters
are not understood well, e.g.

— accuracy vs. convergence

— fault-tolerance in case some clocks are misbehaving [Byzantine]
— clock synchronization in dynamic networks

