Clock Synchronization

Chapter 9

Eidgenddsische Technische Hochschule Zirich
Swiss Federal Institute nu-f‘l"el:hn-ulugr ZFurlch

Acoustic Detection (Shooter Detection)

Shot#1 @ (x,.y,T))

 Sound travels much

slower than radio e “= Y y—dyv _siiing window , S
. 2y -] time
signal (331 m/s) =g o 1
Shot time estimate T } T f(x,y) = [max number of ticks in window] = 3 ’

* This allows for quite
accurate distance

Shooter detection error

. . 16
estimation (cm) 4
. . 12 1
« Main challenge is to 5 10— .
deal with reflections g | =3

and multiple events

o N RO
I

. P
I ;
0 025 05 075 1 125 15 175 2 225 25 275 3 325 35 375 4 L)
error (meter)

Rating

* Area maturity

First steps Text book

* Practical importance

No apps Mission critical

 Theoretical importance

Not really Must have

s |

-

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/3

Overview

« Motivation

« Clock Sources

« Reference-Broadcast Synchronization (RBS)

« Time-sync Protocol for Sensor Networks (TPSN)
« Gradient Clock Synchronization

Motivation

Synchronizing time is essential for many applications

Coordination of wake-up and sleeping times (energy efficiency)
TDMA schedules

Ordering of collected sensor data/events

Co-operation of multiple sensor nodes

Estimation of position information (e.g. shooter detection)

Goals of clock synchronization

Compensate offset* between clocks
Compensate drift* between clocks

*terms are explained on following slides

Properties of Clock Synchronization Algorithms

External versus internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time
— to a leader, to an averaged time, or to anything else

One-shot versus continuous synchronization
— Periodic synchronization required to compensate clock drift

A-priori versus a-posteriori
— A-posteriori clock synchronization triggered by an event

Global versus local synchronization (explained later)

Accuracy versus convergence time, Byzantine nodes, ...

Clock Sources

« Radio Clock Signal:

— Clock signal from a reference source (atomic clock)
is transmitted over a long wave radio signal

— DCF77 station near Frankfurt, Germany transmits at
77.5 kKHz with a transmission range of up to 2000 km

— Accuracy limited by the distance to the sender,
Frankfurt-Zurich is about 1ms.

— Special antenna/receiver hardware required

f
H
H
i

* Global Positioning System (GPS):

— Satellites continuously transmit own position and
time code

— Line of sight between satellite and receiver required
— Special antenna/receiver hardware required

Clock Devices in Sensor Nodes

Platform System clock | Crystal oscillator
Mica2 7.37 MHz 32 kHz, 7.37 MHz
TinyNode 584 | 8 MHz 32 kHz

« Structure Tmote Sky | 8 MHz 32 kHz

— External oscillator with a nominal frequency (e.g. 32 kHz)
— Counter register which is incremented with oscillator pulses
— Works also when CPU is in sleep state

e Accuracy

— Clock drift: random deviation from the nominal rate dependent on power
supply, temperature, etc.

— E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

This is a drift of up to

Perfect 50 us per second
A Clockwith ¢ Clock or 0.18s per hour
@ Drift & ..)
i: K H)’ -...:‘:: Jtte*nqg
% <" Clock
= i A Clok
with Offset

P

Oscillator ‘ Actud Time

Sender/Receiver Synchronization

« Round-Trip Time (RTT) based synchronization

Time accor-
B t 2 ding to B t 3

« Receiver synchronizes to the sender’s clock
« Propagation delay ¢ and clock offset 8 can be calculated
5= (t4 _tl)_(ts _tz)
2

0= (tz _(tl +5))_(t4 _(t3 +5)) _ (tz _tl)+(l3 _14)
2 2

Disturbing Influences on Packet Latency

* |Influences

— Sending Time S (up to 100ms)
— Medium Access Time A (up to 500ms)
— Transmission Time T (tens of milliseconds, depending on size)
— Propagation Time P, 5 (microseconds, depending on distance)
— Reception Time R (up to 100ms)
\\

Timestamp T, \ -

< > Tifnestamp Tg

Critical path

« Asymmetric packet delays due to non-determinism
« Solution: timestamp packets at MAC Layer

/—i

Some Detalils

e -

Y BYTE 1

Different radio chips use different paradigms:
— Leftis a CC1000 radio chip which generates an interrupt with each byte.

— Right is a CC2420 radio chip that generates a single interrupt for the

packet after the start frame delimiter is received.

BYTE 2 BYTE 3

BYTE 4 \I

4 4 4 4
i ' | i LI

SFD

BYTE 1

BYTE 2

BYTE 3 |

)

BYTE_TIME

In sensor networks propagation
can be ignored (<1us for 300m).

Still there is quite some variance :

I '
by L bz 1z by L byl

100000

10000

1000

in transmission delay because of =

latencies in interrupt handling
(picture right).

10

1

[=a Y

50

60

General Framework

The clock synchronization framework must provide the abstraction
of a correct logical time to the application. This logical time is based
on the (inaccurate) hardware clock, and calibrated by exchanging
messages with other nodes in the network.

Application 4

Time Synchronization Component v

Time Sync o 4 » o Logical Clock

Radio v ¥ Hardware Clock

Reference-Broadcast Synchronization (RBS)

« A sender synchronizes a set of receivers with one another
* Point of reference: beacon’s arrival time

L=t TS TA T Fs TR,
L=4+Sst At B+ Ry
O=t,~-t,= (B s~ B s) (R, —Ry)

* Only sensitive to the difference in propagation and reception time

« Time stamping at the interrupt time when a beacon is received

« After a beacon is sent, all receivers exchange their reception times to
calculate their clock offset

* Post-synchronization possible
« E.g., least-square linear regression to tackle clock drifts
* Multi-hop?

Time-sync Protocol for Sensor Networks (TPSN)

« Traditional sender-receiver synchronization (RTT-based)

* Initialization phase: Breadth-first-search flooding
— Root node at level 0 sends out a level discovery packet

— Receiving nodes which have not yet an assigned level set their level
to +1 and start a random timer

— After the timer is expired, a new level discovery packet will be sent

— When a new node is deployed, it sends out a level request packet after
a random timeout

0 -
/ ~ Why this random timer? /0 °
@ 9\ e
/ g l @
2 (2, @

Time-sync Protocol for Sensor Networks (TPSN)

» Synchronization phase

— Root node issues a time sync packet which triggers a random timer at
all level 1 nodes

— After the timer is expired, the node asks its parent for synchronization
using a synchronization pulse

— The parent node answers with an acknowledgement

— Thus, the requesting node knows the round trip time and can calculate
its clock offset

— Child nodes receiving a synchronization pulse also start a random timer
themselves to trigger their own synchronization

‘F\

(B
Sync pu|sg / ACK]

Time Sync

l\

Time-sync Protocol for Sensor Networks (TPSN)

L=t+tS,TA+P ,+R, -
t,=t,+Sy;+A4,+F, ,*R, t2®/l
[
0:(SA_SB)+(AA_AB)+(PA,B_BQ,A)+(RB_RA) t // 3
2 1@14 /

« Time stamping packets at the MAC layer
* |In contrast to RBS, the signal propagation time might be negligible
* Authors claim that it is "about two times” better than RBS 6f

« Again, clock drifts are taken into account using periodical <~
synchronization messages Hj

* Problem: What happens in a non-tree topology (e.g. grid)?
— Two neighbors may have bad synchronization?

Flooding Time Synchronization Protocol (FTSP)

« Each node maintains both a local and a global time

* Global time is synchronized to the local time of a reference node
— Node with the smallest id is elected as the reference node

« Reference time is flooded through the network periodically

reference node

o | o
é f l,\"

* Timestamping at the MAC Layer is used to compensate for
deterministic message delays

« Compensation for clock drift between synchronization messages
using a linear regression table :

From single-hop to multi-hop

« Many protocols don’t even handle single-hop clock synchronization
well. On the left figures we see the absolute synchronization errors
of TPSN and RBS, respectively. The figure on the right presents a
single-hop synchronization protocol minimizing systematic errors.

REBS

Percentage
Percentage

0 10 15 20 25 30 3/ 40 45 o 20 40 60 80 100
Synchronization error (microseconds) Synchronization errer (microseconds)

« Even perfectly symmetric errors will sum up over multiple hops.

— In a chain of n nodes with a standard deviation o on each hop, the
expected error between head and tail of the chain is in the order of aVn.

Best tree for tree-based clock synchronization?

Finding a good tree for clock synchronization is a tough problem
— Spanning tree with small (maximum or average) stretch.

Example: Grid network, with n = m? nodes.

No matter what tree you use, the maximum

stretch of the spanning tree will always be

at least m (just try on the grid figure right...)

In general, finding the minimum max

stretch spanning tree is a hard problem,

however approximation algorithms exist
[Emek, Peleg, 2004].

Local/Gradient Clock Synchronization

1. Global property: Minimize clock skew between any two nodes

2. Local (“gradient”) property: Small clock skew between two nodes if
the distance between the nodes is small.

3. Clock should not be allowed to jump backwards
= You don’t want new events to be registered earlier than older events.

3 Examp|e: Root node

\@Small clock skew

f
G)\'& 9/9\9

Large clock skew

Trivial Solution: Let t = 0 at all nodes and times

1. Global property: Minimize clock skew between any two nodes &

2. Local (gradient) property: Small clock skew between two nodes if &
the distance between the nodes is small.

3. Clock should not be allowed to jump backwards &
» To prevent trivial solution, we need a fourth constraint:

4. Clock should always to move forward.
« Sometimes faster, sometimes slower is OK.
« But there should be a minimum and a maximum speed.

Theoretical Bounds for Clock Synchronization

Network Model:
— Each node i has a local clock L(t)
— Network with n nodes, diameter D.
— Reliable point-to-point communication with minimal delay u
— Jitter ¢ is the uncertainty in message delay

Two neighboring nodes u, v cannot distinguish whether message is faster
from u to v and slower from v to u, or vice versa. Hence clocks of
neighboring nodes can be up to ¢ off.

Vv > \Y | | >
0 1 '2 '3 0 "o '3
u p+e U+e u
u i : l] > u | I l >

Hence, two nodes at distance D may have clocks which are €D off.

This can be achieved by a simple flooding algorithm: Whenever a node
receives a new minimum value, it sets its clock to the new value and T
forwards its new clock value to aII its neighbors. . M

Local/Gradient Clock Synchronization

Model

Each node has a hardware clock H,(-) with a clock rate h(t) such that
(1-e)t < h(t) < (1+e)t

The hardware clock of node i at time t is Hi(¢) = Ih (7)dt

Each node has a logical clock L(-) which increases at the rate of H(*)

Employ a synchronization algorithm A4 to update the logical clock using
the hardware clock and neighboring messages

The message transmission delay is in (0,1]

Time is 142 Time is 152

— B e P

Synchronization Algorithms: 4max

* Question: How to update the logical clock based on the messages
from the neighbors?
« Idea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if greater than local clock value)

« Poor local property: Fast propagation of the largest clock value
could lead to a large skew between two neighboring nodes

— First all messages take 1 time unit, then we have a fast message!

New time is D+x New time is D+x skew D|
Time is D+x Time is D+x Time is D+x —A—

> - > >

|- »
» =- > EER >

Clock value: Old clock value: Old clock value: Old clock value:
D+x D+x-1 x+1 X

Synchronization Algorithms: Amax

« The problem of 4™ is that the clock is always increased to the
maximum value

« |dea: Allow a constant slack y between the maximum neighbor clock
value and the own clock value

« The algorithm 47+ sets the local clock value L) to
Li(t) = max(Li(t),max ;_y Li(t)—y)

— Worst-case clock skew between two neighboring nodes is still
©(D) independent of the choice of v!

 How can we do better?
— Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?

— ldea: Take the clock of all neighbors into account by choosing the
average value? 6f

D

Synchronization Algorithms: 498

« A%¢ sets the local clock to the average value of all neighbors:

Li(t) = max(Li(t),% Z.Lj(t))

« Surprisingly, this algorithm is even worse!

« We will now show that in a very natural execution of this algorithm,
the clock skew becomes really large!

Time is x+(n-1)? nq Timeis x+(n-2)? Time is x+4 o Time is x+1 1
Clock value: Clock value: Clock value: Clock value:
x+(n-1)2 x+(n-2)2 X+1 X
A\ J

hd

skew 2n-3 @

Synchronization Algorithms: 498

« Consider the following execution: All messages arrive
after 1 time unit!

n n-1 %

[
|

»
>

B
»

Clock rate: Clock rate: Clock rate:
h,=1 h,,=1-¢. h,=1-¢,

« All gforie{1,...,n-1} are arbitrary values with & > 0.

 The clock rates can be viewed as relative rates compared
to the fastest node n. We will show:

Theorem: In the given execution, the largest skew between
neighbors is 2n-3 € ©(D). Hence, the global skew is ©(D?).

Synchronization Algorithms: 498

We first prove two lemmas:

Lemma 1: In this execution it holds that Vi, Vi € {2,...,n}:
L.(t) —L; ,(t) = 2i — 3, independent of the choices of ¢ > 0.

Proof:

Define AL (t) := L,(t) — Li(t-1). It holds that V t V i: AL(t) < 1.

L,(t) = L,(t-1), because node 1 has only one neighbor (node 2).
Since AL,(t) = 1 for all t, we know that L,(t) — L,(t) < 1 for all t.

Assume now that it holds for Vt, Vj < i: Lj(t) —L;4(t) = 2] — 3.
We prove a bound on the skew between node i and i+1:
Fort=0itis trivially true that L;,,(t) — Li(t) = 2(i+1) — 3,
since all clocks start with the same time.

Synchronization Algorithms: 498

« Assume that it holds for all t' <t. For t+1 we have that
Lit1(t) + Li—1(¢)

Li(t+1) > 5
Liyq1(t) + Li(t) — (2i — 3)
— 2
Lip1(t) + Li(t+1) —1—(2i—3)
- 2
> Liy1(t+1)—(2GE+1)—3).

« The first inequality holds because the logical clock value is always
at least the average value of its neighbors.

* The second inequality follows by induction.

» The third and fourth inequalities hold because AL (t) < 1.

Synchronization Algorithms: 498

Lemma2:Vie{1,..,n}:lim . __ AL(t) = 1.

Proof:
« Assume AL, _4(t) does not converge to 1.
* Argument for simple case:
Jde>0suchthatVit AL (1)1 -c¢.
As AL (t) is always 1, if there is such an g, then
lim, . L.(t)-L,(t) = oo, a contradiction to Lemma 1.
« A bit more elaborate argument:

AL, 4(t) = 1 only for some t, then there is an unbounded
number of times t’ where AL, ,(t) < 1, which also implies that

lim, . L.(t)-L, () = o0, again contradicting Lemma 1.
Again, lim, , _ AL, 4(t) = 1.

* Applying the same argument to the other nodes, it follows
inductively that Vi € {1,...,n}: lim, , __ AL(t) = 1.

Synchronization Algorithms: 498

Theorem: The skew between neighbors / and /-1converges to 2/-3.

Proof:
« WeshowthatVie{2,...,n}lim , _ L(t)—L_(t)=2i-3.
* According to Lemma 2, it holds that lim, , __ L,(t) — L,(t) = AL,(t) = 1.
* Assume by induction that v j <i: lim, , Li(t) — Lj4(t) = 2j - 3.
« AccordingtoLemmas 1 & 2, lim, , _ L,4(t) — Li(t) = Q for a value
Q < 2(i+1)-3. If (for the sake of contradiction) Q < 2(i+1)-3, then

Li1(t—1)+ Liy1(t—1)

lim L;(t) = Iim

t—00 t—o00 2
— Jim 2Li(t—-1) - (21 -3)+Q
T 00 2

and thus lim, , _ AL,(t) <1, a contradiction to Lemma 2.

Synchronization Algorithms: A4bound

* |dea: Minimize the skew to the slowest neighbor

— Update the local clock to the maximum value of all neighbors as long as
no neighboring node’s clock is more than B behind.

« Gives the slowest node time to catch up

» Problem: Chain of dependency

— Node n-1 waits for node n-2, node n-2 waits for node n-3, ...
— Chain of length O(n) = ©(D) results in ©(D) waiting time

- O(D) skew!
n Time is x n-1 Time is x-B n-2 Time is x-2B
Clock value: Clock value: Clock value:

X X-B X-2B

Synchronization Algorithms: A7

« How long should we wait for a slower node to catch up?

— Do it smarter: Set B = O(\/B) — skew is allowed to be O(\/B)
— waiting time is at most O(D/ B) = O(\/B) as well

Waiting time O(+/D)
A
-~ N

Node with i
fast clock b=t W —

Jk Skew O(/D)
Node with |
slow clock [== e

} oW/p

Chain of <
length O(\/B)

Synchronization Algorithms: A7

 When a message is received, execute the following steps:

max = Maximum clock value of all neighboring nodes
min := Minimum clock value of all neighboring nodes

if (max > own clock and min + U~'D +1 > own clock
own clock := min(max, min + U\ D +1)
inform all neighboring nodes about new clock value

end if

« This algorithm guaranteeeﬂhéﬁhe worst-case clock skew between
neighbors is bounded by

Some Results

« All natural/proposed clock synchronization algorithms seem to fail
horribly, having at least square-root skew between neighbor nodes.

* Indeed [Fan, Lynch, PODC 2004] show that when logical clocks
need to obey minimum/maximum speed rules, the skew of two
neighboring clocks can be up to Q2(log D / log log D), where D is the
diameter of the network.

* Nice open problem...? Unfortunately not! In 2008 a O(log D) clock
skew algorithm was presented at [Lenzen et al., FOCS 2008]. Also,
the lower bound seems to be Q(log D)...

Theory vs. Practice

« Can these theoretical findings be applied to practice?
— Do the theoretical models represent reality?
 Example: Experimental evaluation on a ring topology

N AN NN o
> 14 b 3 11 { 9 {10 17 4 {20 8)
—/ N \—/H(/FO N <\ Node 8 and Node 15 are leaves

(16) s 18 Yol M‘M§4@ H‘Q@ «— of two different subtrees

AN AN AN

» Results: Synchronization error between Node 8 and Node 15

— Tree-based synchronization (FTSP, left) leads to a larger
error than a simple gradient clock synchronization algorithm (right)

100 T 100
80 ‘ 80
80 80

70 70

ization Error (us)

G0 60

nization Ermor {us)

50 S 50

40 40

| il | =
: “f’uW uﬂ h*' :

I} o by 29 kP B A A
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Neighbor Synchro

Neighbor Synchro

Open Problem

« As listed on slide 9/6, clock synchronization has lots of parameters.

Some of them (like local/gradient) clock synchronization have only
started to be understood.

* Local clock synchronization in combination with other parameters
are not understood well, e.g.

— daccuracy vs. convergence

— fault-tolerance in case some clocks are misbehaving [Byzantine]
— clock synchronization in dynamic networks

