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Clustering
Chapter 10



Ad Hoc and Sensor Networks   Roger Wattenhofer   10/2

Traffic Monitoring and Routing Planning (CarTel)

GPS equipped cars for optimal route 

Various other 
applications
e.g. Pothole Patrol
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Rating

Area maturity

Practical importance

Theoretical importance

First steps                                                         Text book

No apps                                                     Mission critical

Not really                                                          Must have
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Motivation

In theory clustering is the answer to dozens of questions in ad hoc 
and sensor networks. It improves almost any algorithm, e.g. in data 
gathering it selects cluster heads which do the work while other 
nodes can save energy by sleeping. Also clustering is related to 
other things, like coloring (which itself is related to TDMA). Here, we 
motivate clustering with routing:

Q: How good are these routing algorithms?!? Any hard results?

A: Almost none! Method-of-

Flooding is key component of (many) proposed algorithms, 
including most prominent ones (AODV, DSR)

At least flooding should be efficient
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Finding a Destination by Flooding
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Finding a Destination Efficiently
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Backbone

Idea: Some nodes become backbone nodes (gateways). Each node 
can access and be accessed by at least one backbone node. 

Routing:

1. If source is not a
gateway, transmit
message to gateway

2. Gateway acts as
proxy source and
routes message on
backbone to gateway
of destination.

3. Transmission gateway
to destination.
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(Connected) Dominating Set

A Dominating Set DS is a subset of nodes such that each node is 
either in DS or has a neighbor in DS.

A Connected Dominating Set CDS is a connected DS, that is, there 
is a path between any two nodes in CDS that does not use nodes 
that are not in CDS.

A CDS is a good choice
for a backbone. 

It might be favorable to
have few nodes in the 
CDS. This is known as the
Minimum CDS problem
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Formal Problem Definition: M(C)DS

Input: We are given an (arbitrary) undirected graph. 

Output: Find a Minimum (Connected) Dominating Set,
that is, a (C)DS with a minimum number of nodes.

Problems

M(C)DS is NP-hard

approximation)

The solution must be local (global solutions are impractical for 
dynamic networks) 
influence decision which nodes belong to (C)DS
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Greedy Algorithm for Dominating Sets

Idea: Greedily

Black nodes are in the DS

Grey nodes are neighbors of nodes in the DS

White nodes are not yet dominated, initially all nodes are white.

Algorithm: Greedily choose a node that colors most white nodes.

One can show that this gives a log approximation, if is the 
maximum node degree of the graph.

The the following slides

It was shown that there is no polynomial algorithm with better 
performance unless P¼¼NP.
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CDS

Idea: start with the root, and then greedily choose a neighbor of the 
tree that dominates as many as possible new nodes.

Black nodes are in the CDS.

Grey nodes are neighbors of nodes in the CDS.

White nodes are not yet dominated, initially all nodes are white.

Start: Choose a node with maximum degree, and make it the root of 
the CDS, that is, color it black (and its white neighbors grey).

Step: Choose a grey node with a maximum number of white 
neighbors and color it black (and its white neighbors grey).



Graph with 2n+2 nodes; tree growing: |CDS|=n+2; Minimum |CDS|=4

tree growing: starting                    

u u u

v v v
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Tree Growing Algorithm

Idea: 

Alternative step: Choose a grey node and its white neighbor node 
with a maximum sum of white neighbors and color both black (and 
their white neighbors grey).
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Analysis of the tree growing algorithm

Theorem: The tree growing algorithm finds a connected set of size 
|CDS| · 2(1+H( )) ¢ |DSOPT|. 

DSOPT is a (not connected) minimum dominating set

is the maximum node degree in the graph

H is the harmonic function with H(n) ¼ log(n)+0.7

In other words, the connected dominating set of the tree growing algorithm 
is at most a O(log ) factor worse than an optimum minimum dominating 
set (which is NP-hard to compute).

With a lower bound argument (reduction to set cover) one can show that a 
better approximation factor is impossible, unless P¼¼NP.
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Proof Sketch

The proof is done with amortized analysis. 

Let Su be the set of nodes dominated by u 2 DSOPT, or u itself. If a 

node is dominated by more than one node in DSOPT, we put it in any 
one of the sets.

Each node we color black costs 1. However, we share this cost and 
charge the nodes in the graph for each node we color black. In 
particular we charge all the newly colored grey nodes. Since we 
color a node grey at most once, it is charged at most once. Coloring 
2 nodes black will turn °° nodes from white to grey, hence each of 
the °° nodes will be charged cost 2/°°. We will show that the total 

charge on the vertices in Su is at most 2(1+H( )), for any u.
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Charge on Su

Initially |Su| = u0 (in the example picture u0 = 9).

Whenever we color some nodes of Su, we call this a step.

The number of white nodes in Su after step i is ui.

After step k there are no more white nodes in Su.

In the first step u0 u1 nodes are colored 
(grey or black). Each vertex gets a charge of 
at most 2/(u0 u1).

After the first step, node u becomes eligible to be colored (as 
part of a pair with one of the grey nodes in Su). If u is not 
chosen in step i (with a potential to paint ui nodes grey), then 
we have found a better (pair of) node. That is, the charge to 
any of the new grey nodes in step i in Su is at most 2/ui. 

u



Adding up the charges in Su
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Discussion of the tree growing algorithm

We have an extremely simple algorithm that is asymptotically 
optimal unless P¼NP. And even the constants are small.

Are we happy?

Not really. How do we implement this algorithm in a real (dynamic) 
network? How do we figure out where the best grey/white pair of 
nodes is? How slow is this algorithm in a distributed setting?

We need a fully distributed algorithm. Nodes should only consider 
local information. 
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The Marking Algorithm

Idea: The connected dominating set CDS consists of the nodes that 
have two neighbors that are not neighboring.

1. Each node u compiles the set of neighbors N(u)

2. Each node u transmits N(u), and receives N(v) from all its neighbors

3. If node u has two neighbors v,w and w is not in N(v) (and since the 
graph is undirected v is not in N(w)), then u marks itself being in the 
set CDS.

+ Completely local; only exchange N(u) with all neighbors

+ Each node sends only 1 message, and receives at most 

+ Messages have size O( )

Is the marking algorithm really producing a 
connected dominating set? How good is the set?
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Example for the Marking Algorithm

[J. Wu]
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Correctness of Marking Algorithm

We assume that the input graph G is connected but not a clique. 

Note: If G was a clique then constructing a CDS would not make 
sense. Note that in a clique (complete graph), no node would get 
marked.

We show: 

The set of marked nodes CDS is

a) a dominating set

b) connected

c) a shortest path in G between two nodes of the CDS is in CDS
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Proof of a) dominating set

Proof: Assume for the sake of contradiction that node u is a node 
that is not in the dominating set, and also not dominated. We study 
the nodes in N+(u) := u [ N(u):

If a node v 2 N(u) has a neighbor w outside N(u), then node v would be 

in the dominating set (since u and w are not neighboring).

In other words, nodes in N+(u) only have neighbors in N+(u). If any two 
nodes v,w in N(u) are not neighboring, node u itself would be in the 
dominating set. In other words, our graph is the complete graph (clique) 
N+(u).  We precluded this in the assumptions, therefore we have a 
contradiction.
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Proof of b) connected, c) shortest path in CDS

Proof: Let p be any shortest path between the two nodes u and v, 
with u,v 2 CDS.

Assume for the sake of contradiction that there is a node w on this 
shortest path that is not in the connected dominating set.

Then the two neighbors of w must be connected, which gives us a 
shorter path. This is a contradiction.

w
vu
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Improved Marking Algorithm

If neighbors with larger ID are connected and cover all other 
CDS

5

6

1

9

4

7

2

3

8



Correctness of Improved Marking Algorithm

Theorem: Algorithm computes a CDS S

Proof (by induction of node IDs):

assume that initially all nodes are in S

look at nodes u in increasing ID order and remove from S if higher-ID 
neighbors of u are connected

S remains a DS at all times: (assume that u is removed from S)

S remains connected:
replace connection v-u- -n1 nk- ni: higher-ID neighbors of u)

u

higher-ID
neighbors

lower-ID
neigbors

higher-ID neighbors
cover lower-ID neighbors



Quality of the (Improved) Marking Algorithm

Given an Euclidean chain of n homogeneous nodes

The transmission range of each node is such that it is connected to 
the k left and right neighbors, the IDs of the nodes are ascending.

An optimal algorithm (and also the tree growing algorithm) puts 
every kth node into the CDS. Thus |CDSOPT| ¼¼ n/k; with k = n/c for 

some positive constant c we have |CDSOPT| = O(1).

The marking algorithm (also the improved version) does mark all the 
nodes (except the k leftmost and/or rightmost ones). Thus 
|CDSMarking| = n k; with k = n/c we have |CDSMarking| = (n).

This is as bad as not doing anything!

Is there at all a fast distributed way to compute a dominating set?



there are some complicated algorithms that achieve 
non-trivial results, e.g. in k rounds of communications

[Kuhn, Moscibroda, et al., 2006]



Better and faster algorithm

Assume that graph is a 
unit disk graph (UDG)

Assume that nodes 
know their positions
(GPS)

1

u

v
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Grid Algorithm

1. Beacon your position

2. If, in your virtual grid cell, you are the node closest to the center of 
the cell, then join the DS, else do not join.

3.

1 transmission per node, O(1) approximation.

If you have mobility/dynamics, 
as fast as your application/mobility wants you to.
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The model determines the distributed
complexity of clustering

Comparison

Complicated algorithm 

Algorithm computes DS

k2+O(1) transmissions/node

O( O(1)/k log ) approximation

General graph

No position information

Grid algorithm

Algorithm computes DS

1 transmission/node

O(1) approximation

Unit disk graph (UDG)

Position information (GPS)
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General Graph

Captures obstacles

Captures directional radios

Often too pessimistic

UDG & GPS

UDG is not realistic

GPS not always available

Indoors

2D 3D?

Often too optimistic

too pessimistic too optimistic

look at models in 
between these extremes!
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Why are models needed?

Formal models help us understanding a problem

Formal proofs of correctness and efficiency

Common basis to compare results

Unfortunately, for ad hoc and sensor networks, a myriad of models 
exist, most of them make sense in some way or another. On the 
next few slides we look at a few selected models
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Unit Disk Graph (UDG)

Classic computational geometry model, special case of disk graphs

All nodes are points in the plane, 
two nodes are connected iff (if and 
only if) their distance is at most 1, 
that is {u,v} 2 E , |u,v| · 1

+ Very simple, allows for strong analysis

If you gave me $100 for each paper written with the 

Particularly bad in obstructed environments (walls, hills, etc.)

Natural extension: 3D UDG
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Quasi Unit Disk Graph (UDG)

Two radii, 1 and ½, with ½ · 1

|u,v| · ½ {u,v} 2 E

1 < |u,v| {u,v} 2 E

½ < |u,v| · 1 it depends!

on an adversary

on probabilistic model

+ Simple, analyzable

+ More realistic than UDG

Still bad in obstructed 
environments (walls, hills, etc.)

Natural extension: 3D QUDG
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Bounded Independence Graph (BIG)

How realistic is QUDG?

u and v can be close but not adjacent

model requires very small ½

in obstructed environments (walls)

However: in practice, neighbors are often also neighboring

Solution: BIG Model

Bounded independence graph

Size of any independent set grows 
polynomially with hop distance r

e.g., f(r) = O(r2) or O(r3)

BIG model also known as bounded-growth

Unfortunately, bounded-growth has other meanings...



Unit Ball Graph (UBG)

9 metric (V,d) with constant doubling dimension.

Metric: Each edge has a distance d, with 

1. d(u,v) ¸ 0 (non-negativity)

2. d(u,v) = 0 iff u = v (identity of indiscernibles)

3. d(u,v) = d(v,u) (symmetry)

4. d(u,w) · d(u,v) + d(v,w) (triangle inequality)

Doubling dimension: log(#balls of radius r/2 to cover ball of radius r)

Constant: you only need a constant number of balls of half the radius

Connectivity graph is same as UDG:

such that:  d(u,v) · 1 : (u,v) 2 E
such that: d(u,v) > 1  : (u,v) 2 E



Connectivity Models: Overview

too pessimistic too optimistic

General
Graph

UDG

Quasi
UDG

Bounded 
Independence

Unit Ball
Graph
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Models are related

QUDG

UBG

BIG

GG

UDG

BIG is special case of general graph, BIG µ GG

UBG µ BIG because the size of the independent 

sets of any UBG is polynomially bounded

QUDG(constant ½) µ UBG

QUDG(½=1) = UDG
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-

All nodes have unique IDs, chosen at random.

Algorithm for each node:

1. Send ID to all neighbors

2. Tell node with largest ID in neighborhood that it has to join the DS

Algorithm computes a DS in 2 rounds (very local!)

4

6
7

92

8

10

5
3

1
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1

To simplify analysis: assume graph is UDG
(same analysis works for UBG based on doubling metric)

We look at a disk S of diameter 1:

S

Diameter: 1

Nodes inside S have
distance at most 1.
! they form a clique

How many nodes in S
are selected for the DS?



S

Largest 2

1 11

Nodes which select nodes in S are in disk of radius 3/2 which
can be covered by S and 20 other disks  Si of diameter 1
(UBG: number of small disks depends on doubling dimension)



3

How many nodes in S are chosen by nodes in a disk Si?

x = # of nodes in S, y = # of nodes in Si:

A node u2S is only chosen by a node in Si if 

(all nodes in Si see each other).

The probability for this is: 

Therefore, the expected number of nodes in S chosen by nodes in 
Si is at most:

Because at most |S_i| nodes in Si can choose
nodes in S and because of linearity of expectation.
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Analysis 4

From |S| · n and |Si| · n, it follows that

Hence, in expectation the DS contains at most              nodes
per disk with diameter 1.

An optimal algorithm needs to choose at least 1 node in the disk 
with radius 1 around any node.

This disk can be covered by a constant (9) number of disks of 
diameter 1.

The algorithm chooses at most               times more disks than an 
optimal one



For typical settings very good
dominating sets (also for non-UDGs)

-approximation (analysis is tight).

complete
sub-graph

complete
sub-graph

nodes

Optimal DS: size 2

alg:

bottom nodes choose 
top nodes with 
probability¼¼1/2

1 node every 2nd group
nodes
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Maximal Independent Set (MIS)

A Maximal Independent Set (MIS) is a non-extendable set of pair-
wise non-adjacent nodes:

An MIS is also a dominating set:

assume that there is a node v which is not dominated

v MIS, (u,v) E ! u MIS

add v to MIS

In contrast: A Maximum Independent Set (MaxIS) 
is an independent set of maximum cardinality.
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Computing a MIS

Lemma: On BIG: |MIS| · O(1)¢|DSOPT|

Proof:

1. Assign every MIS node to an adjacent node of DSOPT

2. u2DSOPT has at most f(1) neighbors v2MIS

3. At most f(1) MIS nodes assigned to every node of DSOPT

|MIS| · f(1)¢|DSOPT|

Time to compute MIS on BIGs: O(log*n) [Schneider et al., 2008]

-
a value to end up with 1 or less. Even if n was the number of atoms in 
the universe, we have log*n = 5.
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MIS (DS) CDS

MIS gives a dominating set.
But it is not connected.

Connect any two MIS nodes 
which can be connected by 
one additional node.
Connect unconnected MIS 
nodes which can be connected 
by two additional nodes.
This gives a CDS!
#2-hop connectors · f(2)¢|MIS|
#3-hop connectors · 

2f(3)¢|MIS|

|CDS| = O(|MIS|)

Similarly, one can compute
other structures, e.g. coloring, 
very fast!
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Open problem

This chapter got a lot of attention from the research community in 
the last few years, and it made remarkable progress. Many 
problems open just a few years ago are solved now.

However, some problems are still open. The classic open problem 
in this area is MIS for general graphs. A randomized algorithm [Luby

1985, and others] constructs a MIS in time O(log n). It is unknown 
whether this can be improved, or matched by a deterministic 
algorithm.

Another nice open question is what can be achieved in constant 
time? For instance, even though we know that an MIS (or CDS or 
¢-coloring) can be computed in O(log*n) time on a UDG [Schneider 

et al., 2008], it is unclear what can be done in constant time!


