TinyOS 2.x & nesC

Chapter X

Eidgenddsische Technische Hochschule Firich
Swiss Federal Institute -u-‘FTel:hnnlngr Turich



Sensor Nodes

- System Constraints
— Slow CPU
— Little memory
— Short-range radio
— Battery powered

=
]
- |

2
%

: : « AL

Ad Hoc and Sensor Networks — Nicolas Burri —  X/2



Operating System Requirements

Measure real-world phenomena
— Event-driven architecture

Resource Contraints
— Hurry up and sleep!

PermaSense Project
Pictures by
Jan Beutel

Adapt to changing technologies
— Modularity & re-use

Applications spread over many small nodes
— Communication is fundamental

[
=]
Q
Q
O
D
7
@,
o
¢V
o
O
Q)
=3
O
=)
0
S,
=
O
QL
O
°
D
-
Q
=3
O
-

— Robustness

0;1;. targeting 3‘ years
unattended lifetime



TinyOS

« TinyOS consists of a scheduler & graph of components

Ad Hoc and Sensor Networks — Nicolas Burri —  X/4



Programming Model

provide ,hooks” for
component wiring

Separate construction and composition

Programs are built out of components connected by interfaces

Two types of components:
* Modules: Implement program logic
« Configurations: Wire components together

Components use and provide interfaces

Interfaces are or.
bidirectional MPonent g




Programming Model

* Interfaces contain definitions of
« Commands
e Events

« Components implement the events (event handlers)
they use and the commands they provide

l ' can call commands,
must implement event handlers
C

can signal events,
must implement commands

sosn

provides
——)




Programming Model

« Components are wired together by connecting interface users with

interface providers

e Commands flow downwards
— Control returns to caller

« Events flow upwards
— Control returns to signaler

« Commands are non-blocking
requests

Modular construction kit

Application

Componen; A

command

Communicatio
Abstraction

event

Radio Driver




Concurrency Model

» Coarse-grained concurrency only
— Implemented via tasks

G =

« Tasks are executed sequentially by the TinyOS scheduler
— “Multi-threading” is done by the programmer
— Atomic with respect to other tasks (single threaded)
— Longer background processing jobs

watch out for

 Events (interrupts) data races

— Time critical
— Preempt tasks
— Short duration (hand off computation to tasks if necessary)

P




Memory Model

bye-bye complex

« Static memory allocation
data structures

— No heap (malloc)
— No function pointers

 (Global variables
— One namespace per component

 Local variables
— Declared within a function
— Saved on the stack

>10kB

« Conserve memory
« Use pointers, don't copy buffers




TinyOS Distribution

« TinyOS is distributed in source code
— nesC as programming language

* Nested C (nesC)
— Dialect of C
— Embodies the structural concepts and execution model of TinyOS
— Module, configuration, interface
— Tasks, calls, signals
— Pre-processor produces native C code

« nesC limitations
— No dynamic memory allocation
— No function pointers




nesC — Hello World

configuration BlinkAppC({
}
implementation ({
camponents MainC, BlinkC, LedsC;
camponents new TimerMilliC ()
as Timer0;

BlinkC —-> MainC.Boot;

RlinkC.BlTimer —> TimerO;
BlinkC.lLeds —> LedsC;

module BR1inkC {
uses interface Timer<TMilli>
as BlTimer;
uses 1nterface lLeds;
uses interface Boot;
}
implementation{
event void Boot.booted() ({
call BlTimer.startPeriodic (1000) ;
}
event void BlTimer.fired () {
call lLeds.led0Toggle();

}




The End

TiNnyOS

Thanks to Pascal von Rickenbach for many of the slides




