Learning Transferable Visual Models
From Natural Language Supervision

Presentation by:
Muhammad Ferjad Naeem



“Classic” Image Classification
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“Classic” Image Classification
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Retrain the model with cross entropy loss
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One label classification setting is not flexible

e \What is in this image?
o Zebra
o Goat
o Grazing plane




Humans don’t describe images to single words often.

A zebra and three goats are grazing Enjoying a nice sunset on a beach. The
on a grass plane day is clear with some clouds.

The man in the red shirt tackles the
man in the white shirt during a football
game.




Can we introduce the nuance of language in
our Vision Models?



The building blocks to achieve this

Vision Encoder

Language
Encoder
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The language block
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The Contrastive loss vs Classification loss

Vision Language
Encoder Encoder

The two representations of the same concepts
should be aligned together

exp(sim(z;, 2;)/7)
Ziﬁl (k1] exp(sim(z;, z)/7) ,

&',j = — log

The contrastive loss function

A& — | Resnet

Feature
Classification

The embedding of the image should be classified
into the correct class



The CLIP Model while training

(1) Contrastive pre-training
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The CLIP Model while training

(1) Contrastive pre-training
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image_encoder - ResNet or Vision Transformer
text_encoder - CBOW or Text Transformer

I[n, h, w, c] - minibatch of aligned images
Tilink: 21 - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] - learned proj of text to embed
t - learned temperature parameter

HoH o H R R

xtract feature representations of each modality
image_encoder(I) #[n, d_i]
text_encoder(T) #[n, d_t]

— H 3

e
_f
_f

oint multimodal embedding [n, d_e]
12_normalize(np.dot(I_f, W_i
12_normalize(np.dot(T_f, W_t

axis=1)
axis=1)

# L
I_e )is
T_e ),

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2



The CLIP Model while training

(1) Contrastive pre-training
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Contrastive loss is batch size and data hungry!
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# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer

# I[n, h, w, c] - minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed

# W_t[d_t, d_e] - learned proj of text to embed

# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2



Training details

e Closed source WIT dataset consisting of 400M image and caption pairs
e Batch size of 32,000
e Trained on 256V100 for 12 days



Using the pretrained backbone for inference

(2) Create dataset classifier from label text

A photo of

a f{object}

(8) Use for zero-shot prediction

Image
Encoder

Text
Encoder
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The Zero-Shot Transfer paradigm

e CLIP is trained on 400M Image Caption pairs from the internet
e This training data has covered almost all concepts available
e Use this pretrained model to transfer to datasets using language prompts



Measuring Zero-shot transfer across diverse CV datasets
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.



Prompt Engineering and ensembling can improve
performance without any retraining!
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Figure 4. Prompt engineering and ensembling improve zero-
shot performance. Compared to the baseline of using contextless
class names, prompt engineering and ensembling boost zero-shot
classification performance by almost 5 points on average across
36 datasets. This improvement is similar to the gain from using
4 times more compute with the baseline zero-shot method but is
“free” when amortized over many predictions.
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Figure 4. Prompt engineering and ensembling improve zero-
shot performance. Compared to the baseline of using contextless
class names, prompt engineering and ensembling boost zero-shot
classification performance by almost 5 points on average across
36 datasets. This improvement is similar to the gain from using
4 times more compute with the baseline zero-shot method but is
“free” when amortized over many predictions.

a photo ofa _

a photo of many _

a drawing of a _

a painting of the _

a pixelated photo of the _

A total of 80 such handcrafted prompts



Contrastive objective vs caption prediction

N
wv
!

4X efficiency g 3X efficiency
|

o

[ary
w
1

iy
o
1

—8— Bag of Words Contrastive (CLIP)
Bag of Words Prediction
—8— Transformer Language Model

Zero-Shot ImageNet Accuracy
N
o

w
1

0 T T T T
2M 33M 67M 134M 268M 400M
# of images processed

Figure 2. CLIP is much more efficient at zero-shot transfer
than our image caption baseline. Although highly expressive,
we found that transformer-based language models are relatively
weak at zero-shot ImageNet classification. Here, we see that it
learns 3x slower than a baseline which predicts a bag-of-words
(BoW) encoding of the text (Joulin et al., 2016). Swapping the
prediction objective for the contrastive objective of CLIP further
improves efficiency another 4x.



Linear probing protocol

e Take a pretrained representation/ classification model

e Keep the feature extractor frozen and only train the linear classification layer
using training dataset supervision

e Evaluate on the test set



Linear probe Evaluation and data efficiency
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Figure 6. Zero-shot CLIP outperforms few-shot linear probes.
Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.



75

Linear Probe CLIP

70

65 qZero-Shot
% CLIP

BiT-M (ImageNet-21K

[e)]
o
L

[04)
w
1

Average Score (%)
(9,
o

01 2 4 8 16
# of labeled training examples per class

Figure 6. Zero-shot CLIP outperforms few-shot linear probes.
Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.

Linear probe Evaluation and data efficiency
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Figure 7. The data efficiency of zero-shot transfer varies
widely. Calculating the number of labeled examples per class
a linear classifier on the same CLIP feature space requires to match
the performance of the zero-shot classifier contextualizes the ef-
fectiveness of zero-shot transfer. Values are estimated based on
log-linear interpolation of 1, 2, 4, 8, 16-shot and fully supervised
results. Performance varies widely from still underperforming a
one-shot classifier on two datasets to matching an estimated 184
labeled examples per class.



Zeroshot performance correlates with linear probe
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Figure 8. Zero-shot performance is correlated with linear
probe performance but still mostly sub-optimal. Comparing
zero-shot and linear probe performance across datasets shows a
strong correlation with zero-shot performance mostly shifted 10 to
25 points lower. On only 5 datasets does zero-shot performance
approach linear probe performance (<3 point difference).



CLIP representations outperform SSL approaches

Linear probe average over Kornblith et al.'s 12 datasets
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CLIP features vs Imagenet features

SST2 +23.6
Country211 ’
HatefulMemes
StanfordCars
GTSRB
SUN397
Kinetics700
RESISC45
FER2013
Food101
FGVCAircraft ;
UCF101 +3.1
KITTI Distance
Birdsnap
Flowers102
Caltech101

OxfordPets

-0.8H CIFAR10

-1.28| PatchCamelyon
-1.78 CIFAR100

-2.4 CLEVRCounts
T -:-130 lmaqe!\IEt T T T T
-10 -5 0 5 10 15 20 25

A Score (%)
Logistic Regression on CLIP vs. EfficientNet L2 NS

Figure 11. CLIP’s features outperform the features of the best
ImageNet model on a wide variety of datasets. Fitting a linear

classifier on CLIP’s features outperforms using the Noisy Student
EfficientNet-L2 on 21 out of 27 datasets.



Robustness to distribution shift
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Comparison to human performance
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Figure 16. The hardest problems for CLIP also tend to be the hard-

est problems for humans. Here we rank image categories by diffi-
culty for CLIP as measured as probability of the correct label.



Beyond this paper.

CLIP features continue to be very general across multiple topics including

Detection

Segmentation in Images
Segmentation in 3D scenes
NERFs



Limitations

e \While CLIP has one model that generalizes to many datasets, it is below the
SOTA performance on most datasets

e CLIP’s setup is classification focused and can not directly work on other CV
tasks

e \While CLIP generalizes to distribution shifts, it does not generalize to datasets
that are out of distribution in its pretraining e.g. MNIST, Satellite Images etc

e \While CLIP can generate classifiers on the fly, it still requires on hand crafting
the classification space

e CLIP is not data efficient,

e CLIP’s dataset is closed source. Open source initiatives have recollected it.



Conclusion

e CLIP provides a novel paradigm to train a single model on large amount of
data

e This single pretrained model can achieve competitive performance on wide
variety of tasks

e CLIP features are more general than ImageNet and allow for open set
learning

e Open source is awesome! CLIP models have been reproduced at
https://github.com/mlfoundations/open_clip



https://github.com/mlfoundations/open_clip

