Illuminating protein space with a programmable generative model

J Ingraham, M Baranov, Z Costello, V Frappier, A Ismail, S Tie, W Wang, V Xue, F Obermeyer, A Beam, G Grigoryan

December 1, 2022

Presented by Meret Ackermann

Proteins – the chief actors in cells

Structure – the key component of function

Protein Structure Prediction

Protein Sequence prediction

Structure first – Protein Design

Generative diffusion process

Forward SDE. **Training**. Data to Noise.

Reverse SDE. Generation. Noise to Data

Whitening transformation

Correlated diffusion as uncorrelated diffusion in whitened space

$$z = R(x-\mu)$$

Correlated forward SDE process

$$d\boldsymbol{x} = \boldsymbol{R}d\boldsymbol{z} = -\frac{\boldsymbol{\beta}_t}{2}\boldsymbol{R}\boldsymbol{z}dt + \sqrt{\boldsymbol{\beta}_t}\boldsymbol{R}dw$$

Constraints as a de-whitening transform

$$F(x) = \sum_{i,j} A_{i,j} x_i x_j$$

 $\mathbb{E}_{p(\boldsymbol{x}_t|\boldsymbol{x}_o)}[F(\boldsymbol{x})] = \alpha_t F(\boldsymbol{x}_0) + (1 - \alpha_t) \mathbb{E}_{p_{model(\boldsymbol{x})}}[F(\boldsymbol{x})]$

Constraint – Chain Structure ^b2 b_1 ^bN r₀ \mathbf{r}_{N} r $r_{i,j} \sim \mathcal{N}(0, \gamma^2 |i - j|)$ $\mathbb{E}_{p(\boldsymbol{x_t}|\boldsymbol{x_0})} \left[D_{ij}^2(\boldsymbol{x_t}) \right] = \alpha_t D_{ij}^2(\boldsymbol{x_0}) + (1 - \alpha_t) 3\gamma^2 |\mathbf{i} - \mathbf{j}|$

Constraint - Radius of Gyration

Reverse-time SDE

t

Correlated Reverse-time SDE

$$d\boldsymbol{x} = \left(-\frac{1}{2}\boldsymbol{x} - \boldsymbol{R}\boldsymbol{R}^{T}\boldsymbol{\nabla}_{x}\log\boldsymbol{p}_{t}(\boldsymbol{x})\right)\beta_{t}dt + \sqrt{\beta_{t}}\boldsymbol{R}d\widetilde{\boldsymbol{w}}$$

Score Estimation

 $p_{data}(x)$

 $\nabla_x \log p_{data}(x)$

 $\sim \nabla_x \log p(x)$

Optimized denoiser

$$\nabla_{\mathbf{x}} \log p_t(\mathbf{x}) = \left((1 - \alpha_t) \mathbf{R} \mathbf{R}^T \right)^{-1} \left(\sqrt{\alpha_t} \hat{\mathbf{x}}_{\theta}(\mathbf{x}, t) - \mathbf{x} \right)$$

$$\mathcal{L}_{\mathbf{x}}^{\text{reg}}(\mathbf{x}; \theta) = -\mathbb{E}_{\mathbf{x}_t \sim p(\mathbf{x}_t | \mathbf{x}), t \sim \text{Unif}(0, 1)} \left[\frac{\alpha_t \beta_t}{2(1 - \alpha_t)^2} \left\| \left(\mathbf{R}^{-1} + \omega \mathbf{I} \right) \left(\hat{\mathbf{x}}_{\theta}(\mathbf{x}_t, t) - \mathbf{x} \right) \right\|_2^2 \right]$$

Optimized denoiser

Reduced computational complexity

Random Graph Neural Network

> O(NlogN) or O(N) edges

Sub- $\mathcal{O}(N^2)$ scaling - Random edge sampling

Backbone graph neural network

Equivariant geometry solver

Invariant local frame relations

Equivariant geometry solver

Sampling of the backbone - overdispersion

Low temperature sampling – reweight and concentrate

Annealed reverse-time SDE

Score evolution

Score evolution

Annealed Langevin dynamics

From backbone to sequence and heavy atom position

Design Network

Conditional modeling

Conditional modeling

Bayes' rule

$$p(x|y) = \frac{p(x)p(y|x)}{p(y)}$$

Bayes' rule for score functions

score

Conditional modeling

Symmetry and substructure guided diffusion

Evaluation

- 50,000 single chains, 10,000 complexes qualitative
- 10,000 single chain proteins quantitative
- $\lambda_0 = 10$
- ψ = 2
- 200 steps
- Single chain lengths N: p(N) = 1/N
- Complex # chain and N = # chain and N of random complex from PDB

Evaluation – Secondary structurs

Evaluation – Residue interactions

Evaluating Chroma by structure prediction with OmegaFold

Evaluation - TM-scores

Evaluation - TM-scores

Evaluation - Novelty and structural homology

Evaluation - TERMs

Evaluation - Closest-match RMSD for TERMs

Limitations

- + combination of promising maturities in GDMs
- + elegant way they implement empirical knowledge
- missing experimental characterization
- no quantitative evaluations for many designs and design choices
- no benchmarking
- sequential generation of backbone, sequence and rotamers
- choice of model to evaluate folding

Illuminating chroma?!

