
Deep Equilibrium Models

authors:
Shaojie Bai, J. Zico Kolter, Vladlen Koltun

presented by:
Matthias Otth



Overview

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 

● Reinterpret deep NN

● Same performance with less memory 
consumption



Classical deep feedforward NN

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 



Weight-tied Network

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 



Weight-tied, input-injected Network

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 



Infinite depth network

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 



Equilibrium formulation
● Almost any non-linear function:
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Equilibrium formulation
● Almost any non-linear function:

● Assume equilibrium point exists:

● Reformulate as root finding problem:

● Gives rise to a single (implicit) layer model



Implicit layer formulation

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 



DEQ

Graphics inspired by [2]: http://implicit-layers-tutorial.org/ 

● Equivalent to infinite-depth network!

● Different interpretation of deep networks

● We can backpropagate through equilibrium 
point: O(1) memory



Previous Work



Previous work: Implicit Layers
● Applied to small scales

● Very specific models and tasks



Previous work: Reversible Networks

Papers: Gomez et al. [2], MacKay et. al [3]

● O(1) memory consumption

● Strong restriction in model architecture



Previous work: Gradient Checkpointing

Paper: Chen et al. [5]



Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 1: High-level backpropagation 

➔ Can calculate in O(m) memory 



Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 2: Low-level backpropagation  



Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 2: Low-level backpropagation  

✔ }



Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 2: Low-level backpropagation  

➔ Can calculate   in O(     ) memory 



Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Summary:

● Cost: O(S + m)  
● L = S × m
● Can achieve   memory usage for 2x training time
● Can theoretically achieve O(log L) memory usage, if applied recursively



DEQ

● Equivalent to infinite-depth network!

● Different interpretation of deep networks

● We can backpropagate through equilibrium 
point: O(1) memory



Forward pass
Find fixpoint: 



Forward pass

Animation: wikipedia.org [6]

For example with Newton’s method:



Forward pass
Find fixpoint: 

For example with Newton’s method:

Can use any black-box root-finding algorithm 



Backward pass: 1st Approach 
Procedure:

1. Fix a RootFind algorithm (e.g. Newton’s method)
2. Unroll the Newton iterations
3. Do backpropagation through all iterations



Backward pass: 1st Approach 
Procedure:

1. Fix a RootFind algorithm (e.g. Newton’s method)
2. Unroll the Newton iterations
3. Do backpropagation through all iterations

Problems:

● Need knowledge of RootFind algorithm (Not a blackbox)
● Need to store intermediate results (Not O(1))



Backward pass: 2nd Approach 
Procedure:

● Find root:

● Calculate loss:
 

●  Theorem 1: 



Backward pass: 2nd Approach 
Procedure:

● Find root:

● Calculate loss:
 

●  Theorem 1: 

Advantages

● Independent of RootFind!
● Single step to backpropagate through ‘infinite depth’ network.



Broyden’s Method
Problem: Calculating Jacobian Inverse is expensive

Solution: Use quasi-Newton methods.



DEQ



Guarantees:

● O(1) memory consumption for backpropagation

Memory consumption independent of depth



Guarantees:

Idea: Stack multiple DEQs together, to get more representational power.

Sufficiency of a Single DEQ “Layer”



Guarantees:

Idea: Stack multiple DEQs together, to get more representational power.

Theorem: A single DEQ “layer” is enough.

Sufficiency of a Single DEQ “Layer”



Guarantees:

Proof sketch:

● Stack the two layers
● Use output of first layer as input to 

second layer

Sufficiency of a Single DEQ “Layer”
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Guarantees:

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep 
weight tied, input-injected network with linear increase in width.

Universality of Weight-tied, Input-injected Networks
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Guarantees:

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep 
weight tied, input-injected network with linear increase in width.

Setting:
We have:

We want:

Universality of Weight-tied, Input-injected Networks



Guarantees:

Proof:
We have:

We want:

This is not done in practice!

Universality of Weight-tied, Input-injected Networks



Evaluation



Universal Transformer

Dehghani et al. [9]



TrellisNet: Atomic Level

Image: Bai et al. [10] 



TrellisNet

Image: Bai et al. [10]



Results: Penn Treebank 

Bai et al. [1]



Results: WikiText-103

Bai et al. [1]
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Results: WikiText-103
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Results: Broyden’s Method 

Bai et al. [1]



Results: Runtime 

Bai et al. [1]



DEQs Today

Paper: Bai et al. [7]

● Close to state of the art
● Very versatile (segmentation and classification)



DEQs Today

Paper: Wang et al. [8]



Conclusion 
● Constant memory consumption
● New perspective on deep feed-forward NNs
● Slower to train
● Convergence to fix-point not guaranteed
● Theoretically equivalent to general network with linear width increase
● Every layer must have the same structure
● More restrictive than gradient checkpointing
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Results: Fixpoint


