
Deep Equilibrium Models

authors:
Shaojie Bai, J. Zico Kolter, Vladlen Koltun

presented by:
Matthias Otth

Overview

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

● Reinterpret deep NN

● Same performance with less memory
consumption

Classical deep feedforward NN

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

Weight-tied Network

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

Weight-tied, input-injected Network

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

Infinite depth network

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

Equilibrium formulation
● Almost any non-linear function:

Equilibrium formulation
● Almost any non-linear function:

● Assume equilibrium point exists:

Equilibrium formulation
● Almost any non-linear function:

● Assume equilibrium point exists:

● Reformulate as root finding problem:

Equilibrium formulation
● Almost any non-linear function:

● Assume equilibrium point exists:

● Reformulate as root finding problem:

● Gives rise to a single (implicit) layer model

Implicit layer formulation

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

DEQ

Graphics inspired by [2]: http://implicit-layers-tutorial.org/

● Equivalent to infinite-depth network!

● Different interpretation of deep networks

● We can backpropagate through equilibrium
point: O(1) memory

Previous Work

Previous work: Implicit Layers
● Applied to small scales

● Very specific models and tasks

Previous work: Reversible Networks

Papers: Gomez et al. [2], MacKay et. al [3]

● O(1) memory consumption

● Strong restriction in model architecture

Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 1: High-level backpropagation

➔ Can calculate in O(m) memory

Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 2: Low-level backpropagation

Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 2: Low-level backpropagation

✔ }

Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Step 2: Low-level backpropagation

➔ Can calculate in O() memory

Previous work: Gradient Checkpointing

Paper: Chen et al. [5]

Summary:

● Cost: O(S + m)
● L = S × m
● Can achieve memory usage for 2x training time
● Can theoretically achieve O(log L) memory usage, if applied recursively

DEQ

● Equivalent to infinite-depth network!

● Different interpretation of deep networks

● We can backpropagate through equilibrium
point: O(1) memory

Forward pass
Find fixpoint:

Forward pass

Animation: wikipedia.org [6]

For example with Newton’s method:

Forward pass
Find fixpoint:

For example with Newton’s method:

Can use any black-box root-finding algorithm

Backward pass: 1st Approach
Procedure:

1. Fix a RootFind algorithm (e.g. Newton’s method)
2. Unroll the Newton iterations
3. Do backpropagation through all iterations

Backward pass: 1st Approach
Procedure:

1. Fix a RootFind algorithm (e.g. Newton’s method)
2. Unroll the Newton iterations
3. Do backpropagation through all iterations

Problems:

● Need knowledge of RootFind algorithm (Not a blackbox)
● Need to store intermediate results (Not O(1))

Backward pass: 2nd Approach
Procedure:

● Find root:

● Calculate loss:

● Theorem 1:

Backward pass: 2nd Approach
Procedure:

● Find root:

● Calculate loss:

● Theorem 1:

Advantages

● Independent of RootFind!
● Single step to backpropagate through ‘infinite depth’ network.

Broyden’s Method
Problem: Calculating Jacobian Inverse is expensive

Solution: Use quasi-Newton methods.

DEQ

Guarantees:

● O(1) memory consumption for backpropagation

Memory consumption independent of depth

Guarantees:

Idea: Stack multiple DEQs together, to get more representational power.

Sufficiency of a Single DEQ “Layer”

Guarantees:

Idea: Stack multiple DEQs together, to get more representational power.

Theorem: A single DEQ “layer” is enough.

Sufficiency of a Single DEQ “Layer”

Guarantees:

Proof sketch:

● Stack the two layers
● Use output of first layer as input to

second layer

Sufficiency of a Single DEQ “Layer”

Guarantees:

Proof sketch:

● Stack the two layers
● Use output of first layer as input to

second layer

Sufficiency of a Single DEQ “Layer”

Guarantees:

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep
weight tied, input-injected network with linear increase in width.

Universality of Weight-tied, Input-injected Networks

Guarantees:

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep
weight tied, input-injected network with linear increase in width.

Setting:
We have:

Universality of Weight-tied, Input-injected Networks

Guarantees:

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep
weight tied, input-injected network with linear increase in width.

Setting:
We have:

We want:

Universality of Weight-tied, Input-injected Networks

Guarantees:

Proof:
We have:

We want:

This is not done in practice!

Universality of Weight-tied, Input-injected Networks

Evaluation

Universal Transformer

Dehghani et al. [9]

TrellisNet: Atomic Level

Image: Bai et al. [10]

TrellisNet

Image: Bai et al. [10]

Results: Penn Treebank

Bai et al. [1]

Results: WikiText-103

Bai et al. [1]

Results: WikiText-103

Bai et al. [1]

Results: WikiText-103

Bai et al. [1]

Results: WikiText-103

Bai et al. [1]

Results: Broyden’s Method

Bai et al. [1]

Results: Runtime

Bai et al. [1]

DEQs Today

Paper: Bai et al. [7]

● Close to state of the art
● Very versatile (segmentation and classification)

DEQs Today

Paper: Wang et al. [8]

Conclusion
● Constant memory consumption
● New perspective on deep feed-forward NNs
● Slower to train
● Convergence to fix-point not guaranteed
● Theoretically equivalent to general network with linear width increase
● Every layer must have the same structure
● More restrictive than gradient checkpointing

Sources
[1]: Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Deep Equilibrium Models
[2]: http://implicit-layers-tutorial.org/deep_equilibrium_models/
[3]: Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations.
[4]: Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B. Grosse. Reversible recurrent neural networks.
[5]: Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory
cost.
[6]: https://en.wikipedia.org/wiki/Newton%27s_method
[7]: Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Multiscale Deep Equilibrium Models
[8]: Wang, Haixin, Jianlong Chang, Xiao Luo, Jinan Sun, Zhouchen Lin and Qi Tian. LION: Implicit Vision
Prompt Tuning.
[9]: Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. Universal Transformers.
[10]: Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Trellis Networks For Sequence Modeling

Results: Fixpoint

