Deep Equilibrium Models

 $\bullet \bullet \bullet$

authors: Shaojie Bai, J. Zico Kolter, Vladlen Koltun

presented by: Matthias Otth

Overview

- Reinterpret deep NN
- Same performance with less memory consumption

Classical deep feedforward NN

Weight-tied Network

Weight-tied, input-injected Network

Infinite depth network

• Almost any non-linear function:

$$z^{[i+1]} = f_{\theta}(z^{[i]}; x)$$

• Almost any non-linear function:

$$z^{[i+1]} = f_{\theta}(z^{[i]}; x)$$

• Assume equilibrium point exists:

$$\lim_{i \to \infty} z^{[i]} = z^* = f(z^*; x)$$

• Almost any non-linear function:

$$z^{[i+1]} = f_{\theta}(z^{[i]}; x)$$

• Assume equilibrium point exists:

$$\lim_{i \to \infty} z^{[i]} = z^* = f(z^*; x)$$

• Reformulate as root finding problem:

$$g_{\theta}(z^*;x) = f_{\theta}(z^*;x) - z^* = 0$$

• Almost any non-linear function:

$$z^{[i+1]} = f_{\theta}(z^{[i]}; x)$$

• Assume equilibrium point exists:

$$\lim_{i \to \infty} z^{[i]} = z^* = f(z^*; x)$$

• Reformulate as root finding problem:

$$g_{\theta}(z^*;x) = f_{\theta}(z^*;x) - z^* = 0$$

• Gives rise to a single (implicit) layer model

Implicit layer formulation

DEQ

- Equivalent to infinite-depth network!
- Different interpretation of deep networks
- We can backpropagate through equilibrium point: O(1) memory

Previous Work

Previous work: Implicit Layers

- Applied to small scales
- Very specific models and tasks

Previous work: Reversible Networks

- O(1) memory consumption
- Strong restriction in model architecture

Papers: Gomez et al. [2], MacKay et. al [3]

Step 1: High-level backpropagation

 \rightarrow

Step 2: Low-level backpropagation

Step 2: Low-level backpropagation

Step 2: Low-level backpropagation

 $\frac{\partial \mathcal{L}(y, y')}{\partial z_i} = \frac{\partial \mathcal{L}(y, y')}{\partial z'_1} \frac{\partial z'_1}{\partial z_i}$

→ Can calculate
$$\frac{\partial \mathcal{L}(y, y')}{\partial z_i}$$
 in O(*S*) memory

Summary:

- Cost: *O*(*S* + *m*)
- $L = S \times m$
- Can achieve $O(\sqrt{L})$ memory usage for 2x training time
- Can theoretically achieve O(log L) memory usage, if applied recursively

DEQ

- Equivalent to infinite-depth network!
- Different interpretation of deep networks
- We can backpropagate through equilibrium point: O(1) memory

Forward pass

Find fixpoint: $g_{\theta}(z^*; x) = f_{\theta}(z^*; x) - z^* = 0$

Forward pass

For example with Newton's method:

Animation: wikipedia.org [6]

Forward pass

Find fixpoint: $g_{\theta}(z^*; x) = f_{\theta}(z^*; x) - z^* = 0$

For example with Newton's method:

$$z^{[i+1]} = z^{[i]} - \alpha (J_{g_{\theta}}^{-1} \mid_{z^{[i]}}) g_{\theta}(z^{[i]}, x)$$
lack-box root-finding algorithm $z * = \text{RootFind}(a_{\theta}; x)$

Can use any black-box root-finding algorithm $z* = \operatorname{RootFind}(g_{\theta}; x)$

Backward pass: 1st Approach

Procedure:

- 1. Fix a RootFind algorithm (e.g. Newton's method)
- 2. Unroll the Newton iterations
- 3. Do backpropagation through all iterations

Backward pass: 1st Approach

Procedure:

- 1. Fix a RootFind algorithm (e.g. Newton's method)
- 2. Unroll the Newton iterations
- 3. Do backpropagation through all iterations

Problems:

- Need knowledge of RootFind algorithm (Not a blackbox)
- Need to store intermediate results (Not O(1))

Backward pass: 2nd Approach

Procedure:

- Find root: $z^* = \operatorname{RootFind}(g_\theta; x)$
- Calculate loss: $\mathcal{L}(z^*,y)$

• Theorem 1:
$$\frac{\partial \mathcal{L}}{\partial \theta} = -\frac{\partial \mathcal{L}}{\partial z^*} (J_{g_{\theta}}^{-1} \mid_{z^*}) \frac{\partial f_{\theta}(z^*; x)}{\partial \theta}$$

Backward pass: 2nd Approach

Procedure:

• Find root:
$$z^* = \operatorname{RootFind}(g_\theta; x)$$

• Calculate loss:
$$\mathcal{L}(z^*,y)$$

• Theorem 1:
$$\frac{\partial \mathcal{L}}{\partial \theta} = -\frac{\partial \mathcal{L}}{\partial z^*} (J_{g_{\theta}}^{-1} \mid_{z^*}) \frac{\partial f_{\theta}(z^*; x)}{\partial \theta}$$

Advantages

- Independent of RootFind!
- Single step to backpropagate through 'infinite depth' network.

Broyden's Method

Problem: Calculating Jacobian Inverse is expensive

Solution: Use quasi-Newton methods.

$$\frac{J_{g_{\theta}}^{-1}|_{\mathbf{z}_{1:T}^{[i+1]}}}{\Delta \mathbf{z}_{1:T}^{[i+1]}} \approx B_{g_{\theta}}^{[i+1]} = B_{g_{\theta}}^{[i]} + \frac{\Delta \mathbf{z}^{[i+1]} - B_{g_{\theta}}^{[i]} \Delta g_{\theta}^{[i+1]}}{\Delta \mathbf{z}^{[i+1]} B_{g_{\theta}}^{[i]} \Delta g_{\theta}^{[i+1]}} \Delta \mathbf{z}^{[i+1]} B_{g_{\theta}}^{[i]}$$

Memory consumption independent of depth

• O(1) memory consumption for backpropagation

Idea: Stack multiple DEQs together, to get more representational power.

Idea: Stack multiple DEQs together, to get more representational power.

Theorem: A single DEQ "layer" is enough.

Proof sketch:

- Stack the two layers
- Use output of first layer as input to second layer

Proof sketch:

- Stack the two layers
- Use output of first layer as input to second layer

Universality of Weight-tied, Input-injected Networks

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep weight tied, input-injected network with linear increase in width.

Universality of Weight-tied, Input-injected Networks

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep weight tied, input-injected network with linear increase in width.

Setting:

We have: $\mathbf{z}^{[i+1]} = \sigma^{[i]}(W^{[i]}\mathbf{z}^{[i]} + \mathbf{b}^{[i]}), \quad i = 0, \dots, L-1, \quad \mathbf{z}^{[0]} = \mathbf{x}$

Universality of Weight-tied, Input-injected Networks

Theorem: Any traditional L-layer deep network can be represented by an L-layer deep weight tied, input-injected network with linear increase in width.

Setting:

We have: $\mathbf{z}^{[i+1]} = \sigma^{[i]}(W^{[i]}\mathbf{z}^{[i]} + \mathbf{b}^{[i]}), \quad i = 0, \dots, L-1, \quad \mathbf{z}^{[0]} = \mathbf{x}$

We want: $\tilde{\mathbf{z}}^{[i+1]} = \sigma(W_z \tilde{\mathbf{z}}^{[i]} + W_x \mathbf{x} + \tilde{\mathbf{b}}), \quad i = 0, \dots, L-1.$

Universality of Weight-tied, Input-injected Networks

Proof:

We have:
$$\mathbf{z}^{[i+1]} = \sigma^{[i]}(W^{[i]}\mathbf{z}^{[i]} + \mathbf{b}^{[i]}), \quad i = 0, \dots, L-1, \quad \mathbf{z}^{[0]} = \mathbf{x}$$

We want: $\tilde{\mathbf{z}}^{[i+1]} = \sigma(W_z \tilde{\mathbf{z}}^{[i]} + W_x \mathbf{x} + \tilde{\mathbf{b}}), \quad i = 0, \dots, L-1.$

$$W_{z} = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 \\ W^{[1]} & 0 & \dots & 0 & 0 \\ 0 & W^{[2]} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & W^{[L-1]} & 0 \end{bmatrix}, W_{x} = \begin{bmatrix} W^{[0]} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \tilde{\mathbf{b}} = \begin{bmatrix} \mathbf{b}^{[0]} \\ \mathbf{b}^{[1]} \\ \vdots \\ \mathbf{b}^{[L-1]} \end{bmatrix}, \quad \sigma = \begin{bmatrix} \sigma^{[0]} \\ \sigma^{[1]} \\ \vdots \\ \sigma^{[L-1]} \end{bmatrix}$$

This is not done in practice!

Evaluation

Universal Transformer

Dehghani et al. [9]

TrellisNet: Atomic Level

Image: Bai et al. [10]

TrellisNet

Image: Bai et al. [10]

Results: Penn Treebank

Word-level Language Modeling w/ Penn Treebank (PTB)					
Model	# Params	Non-embedding model size	Test perplexity	Memory [†]	
Variational LSTM [22]	66M	12	73.4	1	
NAS Cell [55]	54M	-	62.4	-	
NAS (w/ black-box hyperparameter tuner) [32]	24M	20M	59.7	-	
AWD-LSTM [34]	24M	20M	58.8	-	
DARTS architecture search (second order) [29]	23M	20M	55.7	-	
60-layer TrellisNet (w/ auxiliary loss, w/o MoS) [8]	24M	20M	57.0	8.5GB	
DEQ-TrellisNet (ours)	24M	20M	57.1	1.2GB	

Word-level Language Modeling w/ WikiText-103 (WT103)				
Model	# Params	Non-Embedding Model Size	Test perplexity	Memory [†]
Generic TCN [7]	150M	34M	45.2	-
Gated Linear ConvNet [17]	230M	2	37.2	-
AWD-QRNN [33]	159M	51M	33.0	7.1GB
Relational Memory Core [40]	195M	60M	31.6	-
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.)	110M	72M	23.6	9.0GB
DEQ-Transformer (medium, adaptive embed., ours)	110M	70M	23.2	3.7GB
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB

Word-level Language Modeling w/ WikiText-103 (WT103)				
Model	# Params	Non-Embedding Model Size	Test perplexity	Memory [†]
Generic TCN [7]	150M	34M	45.2	-
Gated Linear ConvNet [17]	230M	-	37.2	-
AWD-QRNN [33]	159M	51M	33.0	7.1GB
Relational Memory Core [40]	195M	60M	31.6	-
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.)	110M	72M	23.6	9.0GB
DEQ-Transformer (medium, adaptive embed., ours)	110M	70M	23.2	3.7GB
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB

Word-level Language Modeling w/ WikiText-103 (WT103)				
Model	# Params	Non-Embedding Model Size	Test perplexity	Memory [†]
Generic TCN [7]	150M	34M	45.2	-
Gated Linear ConvNet [17]	230M	2	37.2	-
AWD-QRNN [33]	159M	51M	33.0	7.1GB
Relational Memory Core [40]	195M	60M	31.6	-
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.)	110M	72M	23.6	9.0GB
DEQ-Transformer (medium, adaptive embed., ours)	110M	70M	23.2	3.7GB
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB

Bai et al. [1]

Word-level Language Modeling w/ WikiText-103 (WT103)				
Model	# Params	Non-Embedding Model Size	Test perplexity	Memory [†]
Generic TCN [7]	150M	34M	45.2	-
Gated Linear ConvNet [17]	230M	2	37.2	-
AWD-QRNN [33]	159M	51M	33.0	7.1GB
Relational Memory Core [40]	195M	60M	31.6	-
Transformer-XL (X-large, adaptive embed., on TPU) [16]	257M	224M	18.7	12.0GB
70-layer TrellisNet (+ auxiliary loss, etc.) [8]	180M	45M	29.2	24.7GB
70-layer TrellisNet with gradient checkpointing	180M	45M	29.2	5.2GB
DEQ-TrellisNet (ours)	180M	45M	29.0	3.3GB
Transformer-XL (medium, 16 layers)	165M	44M	24.3	8.5GB
DEQ-Transformer (medium, ours).	172M	43M	24.2	2.7GB
Transformer-XL (medium, 18 layers, adaptive embed.)	110M	72M	23.6	9.0GB
DEQ-Transformer (medium, adaptive embed., ours)	110M	70M	23.2	3.7GB
Transformer-XL (small, 4 layers)	139M	4.9M	35.8	4.8GB
Transformer-XL (small, weight-tied 16 layers)	138M	4.5M	34.9	6.8GB
DEQ-Transformer (small, ours).	138M	4.5M	32.4	1.1GB

Results: Broyden's Method

Bai et al. [1]

Results: Runtime

DEQ / 18-layer Transformer		DEQ / 70-layer TrellisNet		
Training	Inference	Training	Inference	
2.82×	1.76×	2.40×	1.64×	

DEQs Today

- Close to state of the art
- Very versatile (segmentation and classification)

DEQs Today

LION: Implicit Vision Prompt Tuning

Haixin Wang¹ Jianlong Chang² Xiao Luo¹ Jinan Sun¹ Zhouchen Lin¹ Qi Tian^{2*} ¹Peking University, Beijing, China ²Huawei Cloud & AI, Beijing, China wang.hx@stu.pku.edu.cn, {xiaoluo, sjn, zlin}@pku.edu.cn, {jianlong.chang, tian.qi1}@huawei.com

Paper: Wang et al. [8]

Conclusion

- Constant memory consumption
- New perspective on deep feed-forward NNs
- Slower to train
- Convergence to fix-point not guaranteed
- Theoretically equivalent to general network with linear width increase
- Every layer must have the same structure
- More restrictive than gradient checkpointing

Sources

[1]: Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Deep Equilibrium Models

[2]: http://implicit-layers-tutorial.org/deep_equilibrium_models/

[3]: Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network: Backpropagation without storing activations.

[4]: Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B. Grosse. Reversible recurrent neural networks.

[5]: Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.

[6]: https://en.wikipedia.org/wiki/Newton%27s_method

[7]: Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Multiscale Deep Equilibrium Models

[8]: Wang, Haixin, Jianlong Chang, Xiao Luo, Jinan Sun, Zhouchen Lin and Qi Tian. LION: Implicit Vision Prompt Tuning.

[9]: Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. Universal Transformers.[10]: Shaojie Bai, J. Zico Kolter, Vladlen Koltun. Trellis Networks For Sequence Modeling

Results: Fixpoint

