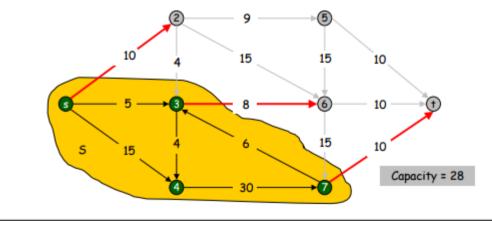

Exploratory Combinatorial Optimization with Reinforcement Learning

AAAI 2020

Thomas D. Barrett, William R. Clements, Jakob N. Foerster, A. I. Lvovsky

Is this problem easy or hard?

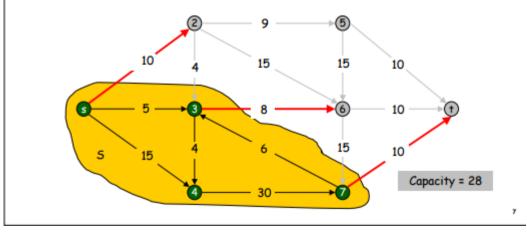
Is this problem easy or hard?


A: Easy. there is polynomial alg.

Minimum Cut Problem

A cut is a node partition (S, T) such that s is in S and t is in T. • capacity(S, T) = sum of weights of edges leaving S.

Min cut problem. Find an s-t cut of minimum capacity.


What about this problem?

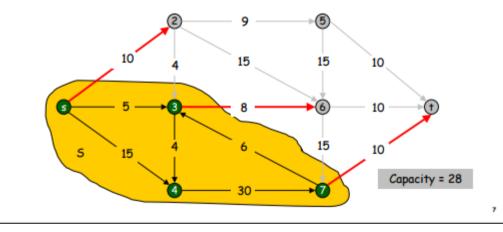
We only changed MIN to MAX...

A cut is a node partition (S, T) such that s is in S and t is in T. • capacity(S, T) = sum of weights of edges leaving S.

MAX cut problem. Find an s-t cut of MAX capacity.

What about this problem?

We only changed MIN to MAX...


A: Hard. (actually NP-Hard)

MAX Cut Problem

A cut is a node partition (S, T) such that s is in S and t is in T. • capacity(S, T) = sum of weights of edges leaving S.

MAX cut problem. Find an s-t cut of MAX capacity.

Important problems are often hard

Can we still solve them?

Bonus:

MAX-CUT cannot even be approximated to a ratio better than 0.873 unless P=NP

One might try to...

One might try to...

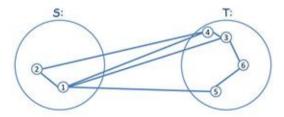
• Focus on easy special cases

One might try to...

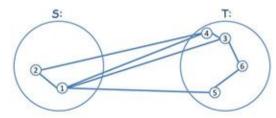
- Focus on easy special cases
- Approximations

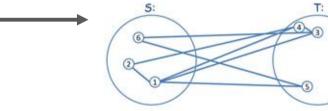
One might try to...

- Focus on easy special cases
- Approximations
- Greedy local search


- Take best local step
- Repeat until local optimum

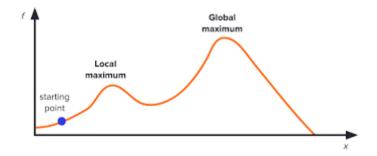
- Take best local step
- Repeat until local optimum


LocalSearch Example:



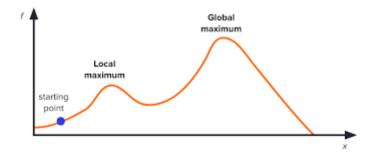
- Take best local step
- Repeat until local optimum

LocalSearch Example:



LocalSearch Example:

local optimum << global optimum

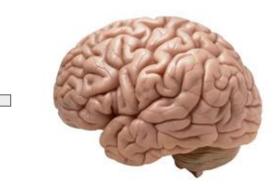


local optimum << global optimum

• Best local step might be bad in long term!

Idea

Make greedy local search algorithms smarter



Idea

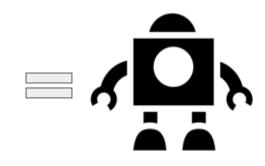
Make greedy local search algorithms smarter

• Steps are still local and greedy, but...

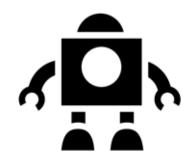
ldea

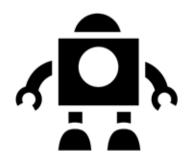
Make greedy local search algorithms smarter

- Steps are still local and greedy, but...
- With respect to (learned) long term value


Idea

Make greedy local search algorithms smarter


- Steps are still local and greedy, but...
- With respect to (learned) long term value
- This is what RL algorithms do!



• Q-function of policy π $q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \mathbb{E}_{a' \sim \pi(x')} [q^{\pi}(x',a')]$

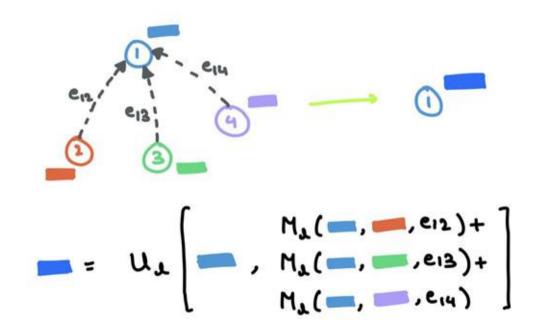
- Q-function of policy π $q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \mathbb{E}_{a' \sim \pi(x')} [q^{\pi}(x',a')]$
- Optimal Q-function $q^*(x,a) = \max_{\pi} q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \left[\max_{a' \in A} q^*(x',a') \right]$

• Q-function of policy π $q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \mathbb{E}_{a' \sim \pi(x')} [q^{\pi}(x',a')]$

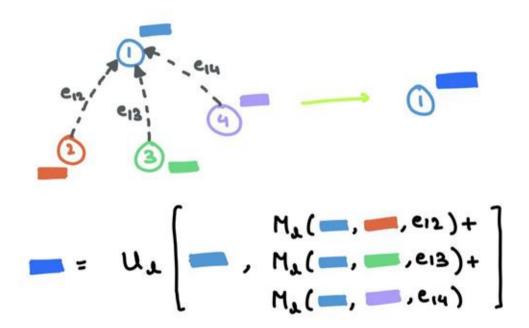
• Optimal Q-function
$$q^*(x,a) = \max_{\pi} q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \left[\max_{a' \in A} q^*(x',a') \right]$$

• Deep Q-Learning $\ell_{\text{DQN}}(\theta; D) \doteq \frac{1}{2} \sum_{(x,a,r,x') \in D} \left(r + \gamma \max_{a' \in A} Q^*(x', a'; \theta^{\text{old}}) - Q^*(x, a; \theta) \right)^2$.

Q-function of policy π $q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \mathbb{E}_{a' \sim \pi(x')} [q^{\pi}(x',a')]$

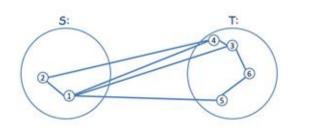

• Optimal Q-function
$$q^*(x,a) = \max_{\pi} q^{\pi}(x,a) = r(x,a) + \gamma \mathbb{E}_{x'|x,a} \left[\max_{a' \in A} q^*(x',a') \right]$$

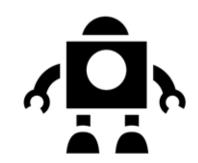
 $\ell_{\text{DQN}}(\boldsymbol{\theta}; \mathcal{D}) \doteq \frac{1}{2} \sum_{(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{r}, \boldsymbol{x}') \in \mathcal{D}} \left(r + \gamma \max_{\boldsymbol{a}' \in \mathcal{A}} Q^*(\boldsymbol{x}', \boldsymbol{a}'; \boldsymbol{\theta}^{\text{old}}) - Q^*(\boldsymbol{x}, \boldsymbol{a}; \boldsymbol{\theta}) \right)^2.$ Deep Q-Learning

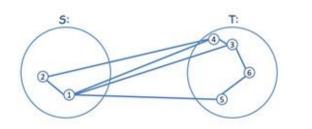

"Bootstrapping"

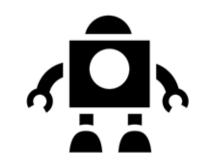
"Off-policy"

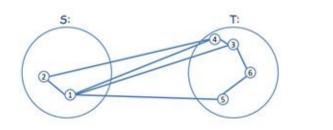
Message Passing Neural Network



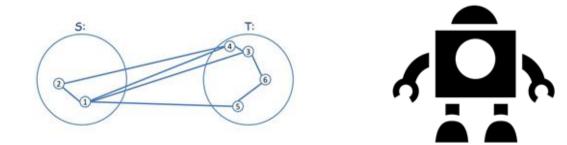

Message Passing Neural Network

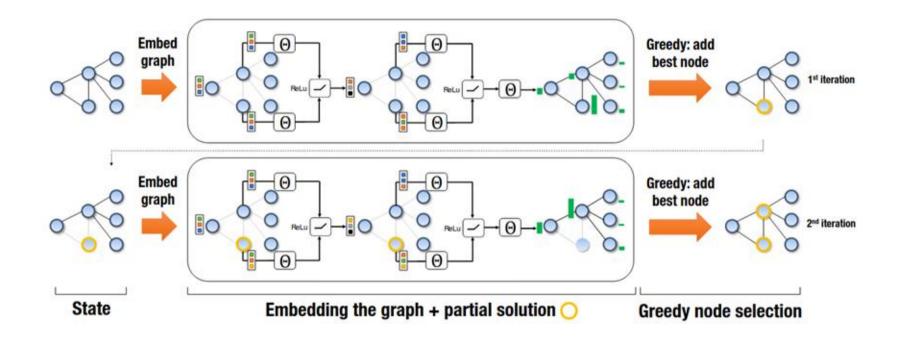

Observation: More layers -> more propagation

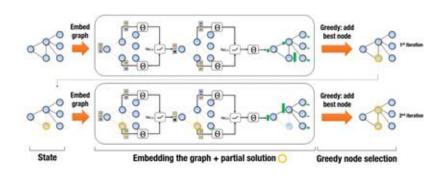

• What are the states?

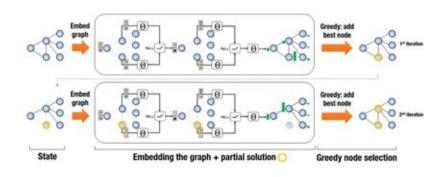


- What are the states?
- What are the actions?

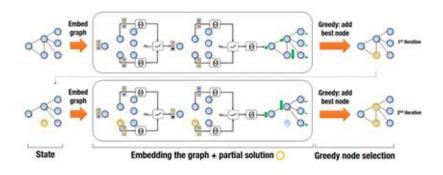



- What are the states?
- What are the actions?
- What are the immediate rewards?


- What are the states?
- What are the actions?
- What are the immediate rewards? $r(S,v)=c(h(S^{\prime}),G)-c(h(S),G)$


Baseline: S2V-DQN

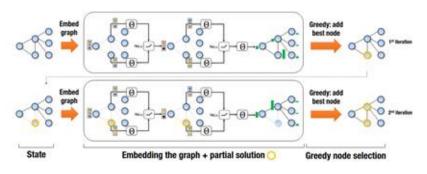
For some number of episodes...



For some number of episodes... Draw some graph G from train set Init: S <- empty, Q* = MPNN(S)

For some number of episodes...

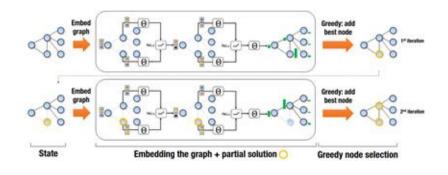
Draw some graph G from train set Init: S <- empty, Q* = MPNN(S) Repeat until Q*(v) < 0 for all v: Add vertex with largest Q* to S Q* = MPNN(S)


For some number of episodes...

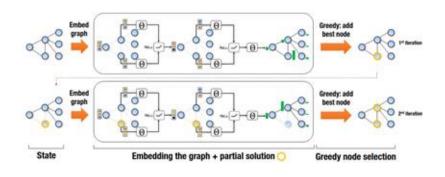
Draw some graph G from train set Init: S <- empty, $Q^* = MPNN(S)$ Repeat until $Q^*(v) < 0$ for all v:

Add vertex with largest Q* to S

 $Q^* = MPNN(S)$

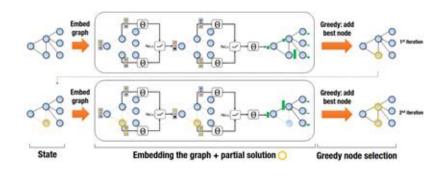

if iter % K update MPNN

For some number of episodes...


Draw some graph G from train set Init: S <- empty, Q* = MPNN(S) Repeat until Q*(v) < 0 for all v: Add vertex with largest Q* to S Q* = MPNN(S) if iter % K update MPNN

+ decaying epsilon greedy!

S2V-DQN - Testing on a new graph


Init: S <- empty, Q* = MPNN(S) Repeat until Q*(v) < 0 for all v: Add vertex with largest Q* to S Q* = MPNN(S)

S2V-DQN - Testing on a new graph

Init: S <- empty, Q* = MPNN(S) Repeat until Q*(v) < 0 for all v: Add vertex with largest Q* to S Q* = MPNN(S)

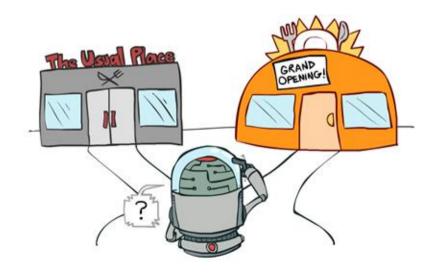
No exploration during testing!

• S2V-DQN >>> greedy local searches!

Instance	OPT	S2V-DQN	MaxcutApprox	SDP
G54100	110	108	80	54
G54200	112	108	90	58
G54300	106	104	86	60
G54400	114	108	96	56
G54500	112	112	94	56
G54600	110	110	88	66
G54700	112	108	88	60
G54800	108	108	76	54
G54900	110	108	88	68
G5410000	112	108	80	54
Approx. ratio	1	1.02	1.28	1.90

- S2V-DQN >>> greedy local searches!
- Not only for MAX-CUT!

Table 3: Realistic data experiments, results summary. Values are average approximation ratios.


Problem	Dataset	S2V-DQN	Best Competitor	2 nd Best Competitor
MVC	MemeTracker	1.0021	1.2220 (MVCApprox-Greedy)	1.4080 (MVCApprox)
MAXCUT	Physics	1.0223	1.2825 (MaxcutApprox)	1.8996 (SDP)
TSP	TSPLIB	1.0475	1.0800 (Farthest)	1.0947 (2-opt)

But S2V-DQN is still limited:

- Does not explore during testing!
- Cannot revert decisions!

Proposed method: ECO-DQN

Quote from paper: "... instead of learning to construct a single good solution, learn to explore for improving solutions"

ECO-DQN Improvement #1: Flipping actions

method	S2V-DQN	ECO-DQN
action	S' = S + v	S' = S + v or S' = S - v
initialization	S <- empty	S <- random
testing	Deterministic, greedy w.r.t Q*	Tries 50 inits, picks best cut!

ECO-DQN Improvement #1: Flipping actions

method	S2V-DQN	ECO-DQN
action	S' = S + v	S' = S + v or S' = S - v
initialization	S <- empty	S <- random
testing	Deterministic, greedy w.r.t Q*	Tries 50 inits, picks best cut!

• However, flipping actions do not automatically improve!

ECO-DQN Improvement #2: Explorative rewards S2V-DQN rewards: r(S, v) = c(h(S'), G) - c(h(S), G)

ECO-DQN Improvement #2: Explorative rewards S2V-DQN rewards: r(S,v) = c(h(S'),G) - c(h(S),G)

• Late iterations: almost always negative! Less exploration.

ECO-DQN Improvement #2: Explorative rewards S2V-DQN rewards: r(S,v) = c(h(S'),G) - c(h(S),G)

• Late iterations: almost always negative! Less exploration.

ECO-DQN rewards: $\mathcal{R}(s_t) = \max(C(s_t) - C(s^*), 0)/|V|$

• No punishment for reducing cut value -> more exploration!

ECO-DQN Improvement #2: Explorative rewards S2V-DQN rewards: r(S,v) = c(h(S'),G) - c(h(S),G)

• Late iterations: almost always negative! Less exploration.

ECO-DQN rewards: $\mathcal{R}(s_t) = \max(C(s_t) - C(s^*), 0)/|V|$

- No punishment for reducing cut value -> more exploration!
- Add 1/|V| to **unseen** local OPTs (small intrinsic reward)

ECO-DQN Improvement #3: Rich observations

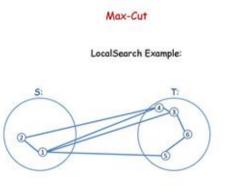
S2V-DQN state: binary encoding of set S

• Input to MPNN is not rich, not contextual

ECO-DQN Improvement #3: Rich observations

S2V-DQN state: binary encoding of set S

• Input to MPNN is not rich, not contextual

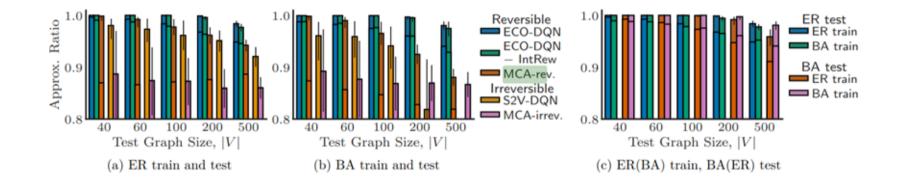

ECO-DQN states:

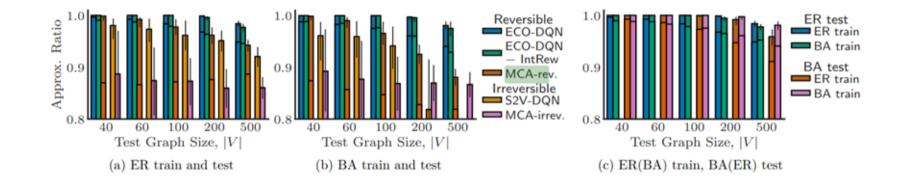
• Context from episode!

۱.	Vertex state, i.e. if v is currently in the solution set, S.
2.	Immediate cut change if vertex state is changed.
3.	Steps since the vertex state was last changed.
I .	Difference of current cut-value from the best observed.
i.	Distance of current solution set from the best observed.
5 .	Number of available actions that immediately increase the cut-value.
1.	Steps remaining in the episode.

Terminology:

• MaxCutApprox (MCA) - greedy local search, no RL


- MaxCutApprox (MCA) greedy local search, no RL
- "Reversible" agent can flip vertices (ECO-DQN, MCA-rev)


- MaxCutApprox (MCA) greedy local search, no RL
- "Reversible" agent can flip vertices (ECO-DQN, MCA-rev)
- "Irreversible" agent only adds vertices (S2V-DQN, MCA-irrev)

- MaxCutApprox (MCA) greedy local search, no RL
- "Reversible" agent can flip vertices (ECO-DQN, MCA-rev)
- "Irreversible" agent only adds vertices (S2V-DQN, MCA-irrev)
- ER Erdos-Renyi. BA Barabasi-Albert. (families of graphs)

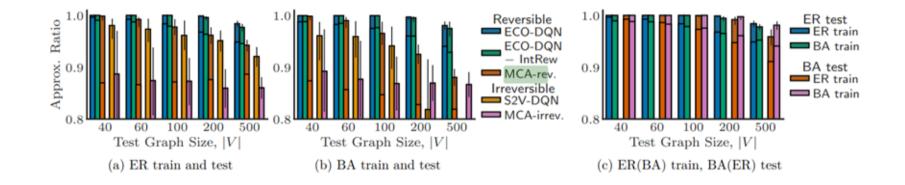
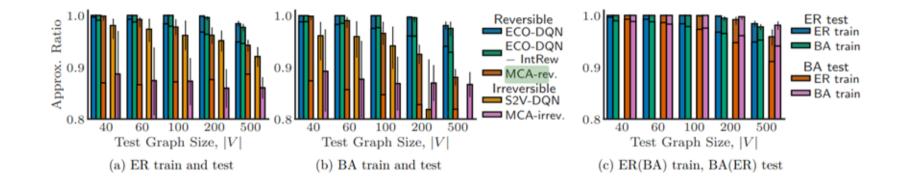
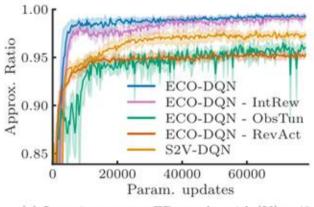

$Test \rightarrow Train \downarrow$	V =20	V = 40	V = 60	V = 100	V =200	V = 500	V =20	V =40	V = 60	V = 100	V = 200	V = 500
			ER g	raphs		2			BA g	raphs	·	2000 - 100 -
V = 20	$0.99^{+0.01}_{-0.01}$	$1.00^{+0.00}_{-0.00}$	$1.00^{+0.00}_{-0.00}$	$1.00\substack{+0.00\\-0.00}$	$0.98\substack{+0.01\\-0.01}$	$0.95\substack{+0.01\\-0.01}$	$1.00^{+0.00}_{-0.00}$	$1.00^{+0.00}_{-0.00}$	$1.00^{+0.00}_{-0.00}$	$1.00^{+0.00}_{-0.00}$	$0.99^{+0.01}_{-0.01}$	$0.98^{+0.01}_{-0.01}$
V = 40		$1.00\substack{+0.00\\-0.00}$	$1.00^{+0.00}_{-0.00}$	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$0.98^{+0.01}_{-0.01}$	_	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$1.00^{+0.00}_{-0.00}$	$0.98\substack{+0.01\\-0.01}$
V = 60			$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$0.99\substack{+0.01\\-0.01}$			$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$0.99\substack{+0.01\\-0.01}$
V = 100		-	-	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$		-		$1.00\substack{+0.00\\-0.00}$	$1.00\substack{+0.00\\-0.00}$	$0.98\substack{+0.01\\-0.01}$
V = 200	_	_	-	_	$1.00^{+0.00}_{-0.00}$	$1.00\substack{+0.00\\-0.00}$	_	-	-	_	$0.99\substack{+0.01\\-0.01}$	$0.98\substack{+0.01\\-0.01}$

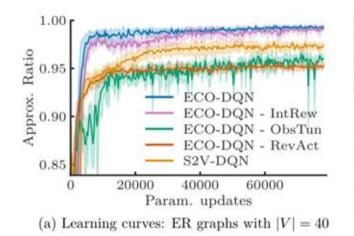
Table 2: Generalisation performance of ECO-DQN, using 50 randomly initialised episodes per graph.




• ECO-DQN dominates on larger test graphs. (Figures a,b)

generalizes to unseen graph types. (Figure c)

Random initializations help a lot! (small horizontal bars)

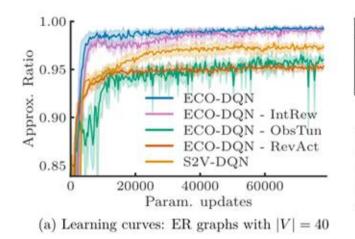

(a)	Learning curves	: ER g	graphs	with	V	= 40
-----	-----------------	--------	--------	------	---	------

Agent	V =20	V = 40	V = 60	V = 100	V = 200
ECO-DQN	$0.97\substack{+0.03\\-0.03}$	$1.00\substack{+0.00\\-0.00}$	$0.99^{+0.01}_{-0.01}$	$0.99\substack{+0.01\\-0.01}$	$0.98^{+0.01}_{-0.01}$
S2V-DQN	$0.97\substack{+0.03\\-0.03}$	$0.98^{+0.01}_{-0.02}$	$0.98^{+0.01}_{-0.02}$	$0.92\substack{+0.02\\-0.02}$	$0.95\substack{+0.02\\-0.02}$
MCA-irrev		$0.89\substack{+0.04\\-0.05}$	$0.87\substack{+0.05\\-0.05}$	$0.87\substack{+0.03\\-0.04}$	$0.86\substack{+0.03\\-0.03}$

(b) Single episode performance: ER graphs

Agent	V =20	V = 40	V = 60	V = 100	V = 200
ECO-DQN	$0.99\substack{+0.01\\-0.01}$	$0.99\substack{+0.01\\-0.01}$	$0.98\substack{+0.00\\-0.02}$	$0.97\substack{+0.02\\-0.03}$	$0.93\substack{+0.02\\-0.03}$
S2V-DQN	$0.97\substack{+0.01\\-0.03}$	$0.96\substack{+0.03\\-0.04}$	$0.94\substack{+0.02\\-0.04}$	$0.95\substack{+0.02\\-0.03}$	$0.94\substack{+0.02\\-0.02}$
MCA-irrev	$0.92\substack{+0.05\\-0.08}$	$0.89\substack{+0.05\\-0.06}$	$0.88\substack{+0.04\\-0.05}$	$0.87\substack{+0.03\\-0.04}$	$0.87\substack{+0.03\\-0.03}$

(c) Single episode performance: BA graphs


Agent	V =20	V = 40	V = 60	V = 100	V =200
ECO-DQN	$0.97\substack{+0.03\\-0.03}$	$1.00^{+0.00}_{-0.00}$	$0.99^{+0.01}_{-0.01}$	$0.99^{+0.01}_{-0.01}$	$0.98^{+0.01}_{-0.01}$
S2V-DQN	$0.97\substack{+0.03\\-0.03}$	$0.98^{+0.01}_{-0.02}$	$0.98^{+0.01}_{-0.02}$	$0.92^{+0.02}_{-0.02}$	$0.95\substack{+0.02\\-0.02}$
MCA-irrev	$0.89^{+0.06}_{-0.11}$	$0.89^{+0.04}_{-0.05}$	$0.87\substack{+0.05\\-0.05}$	$0.87\substack{+0.03\\-0.04}$	$0.86\substack{+0.03\\-0.03}$

(b) Single episode performance: ER graphs

Agent	V =20	V = 40	V = 60	V = 100	V =200
ECO-DQN	$0.99^{+0.01}_{-0.01}$	$0.99\substack{+0.01\\-0.01}$	$0.98\substack{+0.00\\-0.02}$	$0.97\substack{+0.02\\-0.03}$	$0.93\substack{+0.02\\-0.03}$
S2V-DQN	$0.97\substack{+0.01\\-0.03}$	$0.96\substack{+0.03\\-0.04}$	$0.94\substack{+0.02\\-0.04}$	$0.95\substack{+0.02\\-0.03}$	$0.94\substack{+0.02\\-0.02}$
MCA-irrev	$0.92\substack{+0.05\\-0.08}$	$0.89\substack{+0.05\\-0.06}$	$0.88\substack{+0.04\\-0.05}$	$0.87\substack{+0.03\\-0.04}$	$0.87\substack{+0.03\\-0.03}$

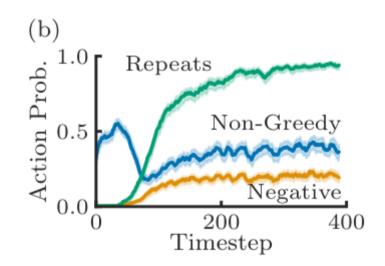
(c) Single episode performance: BA graphs

Without rich observations or flipping actions, ECO-DQN < S2V-DQN!

Agent	V =20	V = 40	V = 60	V = 100	V =200
ECO-DQN	$0.97\substack{+0.03\\-0.03}$	$1.00^{+0.00}_{-0.00}$	$0.99^{+0.01}_{-0.01}$	$0.99\substack{+0.01\\-0.01}$	$0.98\substack{+0.01\\-0.01}$
S2V-DQN	$0.97\substack{+0.03\\-0.03}$	$0.98^{+0.01}_{-0.02}$	$0.98^{+0.01}_{-0.02}$	$0.92^{+0.02}_{-0.02}$	$0.95\substack{+0.02\\-0.02}$
MCA-irrev		$0.89^{+0.04}_{-0.05}$	$0.87^{+0.05}_{-0.05}$	$0.87\substack{+0.03\\-0.04}$	$0.86\substack{+0.03\\-0.03}$

(b) Single episode performance: ER graphs

Agent	V =20	V = 40	V = 60	V = 100	V =200
ECO-DQN	$0.99^{+0.01}_{-0.01}$	$0.99\substack{+0.01\\-0.01}$	$0.98\substack{+0.00\\-0.02}$	$0.97\substack{+0.02\\-0.03}$	$0.93\substack{+0.02\\-0.03}$
S2V-DQN	$0.97\substack{+0.01\\-0.03}$	$0.96\substack{+0.03\\-0.04}$	$0.94\substack{+0.02\\-0.04}$	$0.95\substack{+0.02\\-0.03}$	$0.94\substack{+0.02\\-0.02}$
MCA-irrev	$0.92\substack{+0.05\\-0.08}$	$0.89\substack{+0.05\\-0.06}$	$0.88\substack{+0.04\\-0.05}$	$0.87\substack{+0.03\\-0.04}$	$0.87\substack{+0.03\\-0.03}$


(c) Single episode performance: BA graphs

- Without rich observations or flipping actions, ECO-DQN < S2V-DQN!
- Intrinsic rewards speed up convergence

Dataset	ECO-DQN	S2V-DQN	MCA-(rev, irrev)
Physics	1.000	0.928	0.879, 0.855
G1-10	0.996	0.950	0.947, 0.913
G22-32	0.971	0.919	0.883, 0.893

Table 1: Average performance on known benchmarks.

• Explorative! Takes "bad" actions

Outlook

Not the first CO+RL combination, but great improvements!

Outlook

Not the first CO+RL combination, but great improvements!

- + Novelty in "learning to explore"
- + Great ablations!

Outlook

Not the first CO+RL combination, but great improvements!

- + Novelty in "learning to explore"
- + Great ablations!
- Compare DQN with DDQN? Actor-Critic methods?
- Only MAX-CUT