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Is this problem easy or hard?



Is this problem easy or hard?

A: Easy. there is polynomial alg.
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We only changed MIN to MAX…
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What about this problem?

We only changed MIN to MAX…

A: Hard. (actually NP-Hard)

MAX

MAXMAX



Important problems are often hard

Can we still solve them?

Bonus: 

MAX-CUT cannot even be approximated to a ratio better than 0.873 unless P=NP
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One might try to…

● Focus on easy special cases

● Approximations

● Greedy local search
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Greedy local search

local optimum << global optimum

● Best local step might be bad in long term!
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Idea

Make greedy local search algorithms smarter

● Steps are still local and greedy, but…

● With respect to (learned) long term value

● This is what RL algorithms do!
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Reinforcement Learning 101

● Q-function of policy 𝝅

● Optimal Q-function

● Deep Q-Learning

“Bootstrapping”

“Off-policy” 



Message Passing Neural Network



Message Passing Neural Network

Observation: More layers -> more propagation
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RL for MAX-CUT

● What are the states?

● What are the actions?

● What are the immediate rewards?



Baseline: S2V-DQN
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S2V-DQN - Training

For some number of episodes…
Draw some graph G from train set
Init: S <- empty, Q* = MPNN(S)
Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S
Q* = MPNN(S)
if iter % K update MPNN

+ decaying epsilon greedy!
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S2V-DQN - Testing on a new graph

Init: S <- empty, Q* = MPNN(S)

Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S

Q* = MPNN(S)

No exploration during testing!



● S2V-DQN >>> greedy local searches!



● S2V-DQN >>> greedy local searches!

● Not only for MAX-CUT!



But S2V-DQN is still limited:

● Does not explore during testing!

● Cannot revert decisions!



Proposed method: ECO-DQN

Quote from paper: “...instead of learning to construct a single good 

solution, learn to explore for improving solutions”



ECO-DQN Improvement #1: Flipping actions

method S2V-DQN ECO-DQN

action S’ = S + v S’ = S + v  or
S’ = S - v

initialization S <- empty S <- random

testing Deterministic, greedy w.r.t Q* Tries 50 inits, picks best cut!



ECO-DQN Improvement #1: Flipping actions

● However, flipping actions do not automatically improve!

method S2V-DQN ECO-DQN

action S’ = S + v S’ = S + v  or
S’ = S - v

initialization S <- empty S <- random

testing Deterministic, greedy w.r.t Q* Tries 50 inits, picks best cut!
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ECO-DQN Improvement #2: Explorative rewards

S2V-DQN rewards: 

● Late iterations: almost always negative! Less exploration.

ECO-DQN rewards: 

● No punishment for reducing cut value -> more exploration!

● Add 1/|V| to unseen local OPTs (small intrinsic reward)
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S2V-DQN state: binary encoding of set S

● Input to MPNN is not rich, not contextual



ECO-DQN Improvement #3: Rich observations

S2V-DQN state: binary encoding of set S

● Input to MPNN is not rich, not contextual

ECO-DQN states: 

● Context from

episode!
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ECO-DQN - Experiments

Terminology:

● MaxCutApprox (MCA) - greedy local search, no RL

● “Reversible” agent - can flip vertices (ECO-DQN, MCA-rev)

● “Irreversible” agent - only adds vertices (S2V-DQN, MCA-irrev)

● ER - Erdos-Renyi. BA - Barabasi-Albert. (families of graphs)
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ECO-DQN - Experiments

● ECO-DQN dominates on larger test graphs. (Figures a,b)



ECO-DQN - Experiments

● generalizes to unseen graph types. (Figure c)



ECO-DQN - Experiments

● Random initializations help a lot! (small horizontal bars)
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ECO-DQN - Experiments

● Without rich observations or flipping actions, ECO-DQN < S2V-DQN!

● Intrinsic rewards speed up convergence



ECO-DQN - Experiments



ECO-DQN - Experiments

● Explorative! Takes “bad” actions
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Outlook

Not the first CO+RL combination, but great improvements!

+ Novelty in “learning to explore”

+ Great ablations!

- Compare DQN with DDQN? Actor-Critic methods?

- Only MAX-CUT


