
Exploratory Combinatorial Optimization with Reinforcement

Learning

AAAI 2020

Thomas D. Barrett, William R. Clements, Jakob N. Foerster, A. I. Lvovsky

https://arxiv.org/search/cs?searchtype=author&query=Barrett%2C+T+D
https://arxiv.org/search/cs?searchtype=author&query=Clements%2C+W+R
https://arxiv.org/search/cs?searchtype=author&query=Clements%2C+W+R
https://arxiv.org/search/cs?searchtype=author&query=Foerster%2C+J+N
https://arxiv.org/search/cs?searchtype=author&query=Foerster%2C+J+N
https://arxiv.org/search/cs?searchtype=author&query=Lvovsky%2C+A+I
https://arxiv.org/search/cs?searchtype=author&query=Lvovsky%2C+A+I

Is this problem easy or hard?

Is this problem easy or hard?

A: Easy. there is polynomial alg.

What about this problem?

We only changed MIN to MAX…

MAX

MAXMAX

What about this problem?

We only changed MIN to MAX…

A: Hard. (actually NP-Hard)

MAX

MAXMAX

Important problems are often hard

Can we still solve them?

Bonus:

MAX-CUT cannot even be approximated to a ratio better than 0.873 unless P=NP

Solving hard problems

One might try to…

Solving hard problems

One might try to…

● Focus on easy special cases

Solving hard problems

One might try to…

● Focus on easy special cases

● Approximations

Solving hard problems

One might try to…

● Focus on easy special cases

● Approximations

● Greedy local search

Greedy local search

● Take best local step

● Repeat until local optimum

Greedy local search

● Take best local step

● Repeat until local optimum

Greedy local search

● Take best local step

● Repeat until local optimum

Greedy local search

local optimum << global optimum

Greedy local search

local optimum << global optimum

● Best local step might be bad in long term!

Idea

Make greedy local search algorithms smarter

Idea

Make greedy local search algorithms smarter

● Steps are still local and greedy, but…

Idea

Make greedy local search algorithms smarter

● Steps are still local and greedy, but…

● With respect to (learned) long term value

Idea

Make greedy local search algorithms smarter

● Steps are still local and greedy, but…

● With respect to (learned) long term value

● This is what RL algorithms do!

Reinforcement Learning 101

● Q-function of policy 𝝅

Reinforcement Learning 101

● Q-function of policy 𝝅

● Optimal Q-function

Reinforcement Learning 101

● Q-function of policy 𝝅

● Optimal Q-function

● Deep Q-Learning

Reinforcement Learning 101

● Q-function of policy 𝝅

● Optimal Q-function

● Deep Q-Learning

“Bootstrapping”

“Off-policy”

Message Passing Neural Network

Message Passing Neural Network

Observation: More layers -> more propagation

RL for MAX-CUT

● What are the states?

RL for MAX-CUT

● What are the states?

● What are the actions?

RL for MAX-CUT

● What are the states?

● What are the actions?

● What are the immediate rewards?

RL for MAX-CUT

● What are the states?

● What are the actions?

● What are the immediate rewards?

Baseline: S2V-DQN

S2V-DQN - Training

For some number of episodes…

S2V-DQN - Training

For some number of episodes…

Draw some graph G from train set

Init: S <- empty, Q* = MPNN(S)

S2V-DQN - Training

For some number of episodes…

Draw some graph G from train set

Init: S <- empty, Q* = MPNN(S)

Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S

Q* = MPNN(S)

S2V-DQN - Training

For some number of episodes…

Draw some graph G from train set

Init: S <- empty, Q* = MPNN(S)

Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S

Q* = MPNN(S)

if iter % K update MPNN

S2V-DQN - Training

For some number of episodes…
Draw some graph G from train set
Init: S <- empty, Q* = MPNN(S)
Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S
Q* = MPNN(S)
if iter % K update MPNN

+ decaying epsilon greedy!

S2V-DQN - Testing on a new graph

Init: S <- empty, Q* = MPNN(S)

Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S

Q* = MPNN(S)

S2V-DQN - Testing on a new graph

Init: S <- empty, Q* = MPNN(S)

Repeat until Q*(v) < 0 for all v:

Add vertex with largest Q* to S

Q* = MPNN(S)

No exploration during testing!

● S2V-DQN >>> greedy local searches!

● S2V-DQN >>> greedy local searches!

● Not only for MAX-CUT!

But S2V-DQN is still limited:

● Does not explore during testing!

● Cannot revert decisions!

Proposed method: ECO-DQN

Quote from paper: “...instead of learning to construct a single good

solution, learn to explore for improving solutions”

ECO-DQN Improvement #1: Flipping actions

method S2V-DQN ECO-DQN

action S’ = S + v S’ = S + v or
S’ = S - v

initialization S <- empty S <- random

testing Deterministic, greedy w.r.t Q* Tries 50 inits, picks best cut!

ECO-DQN Improvement #1: Flipping actions

● However, flipping actions do not automatically improve!

method S2V-DQN ECO-DQN

action S’ = S + v S’ = S + v or
S’ = S - v

initialization S <- empty S <- random

testing Deterministic, greedy w.r.t Q* Tries 50 inits, picks best cut!

ECO-DQN Improvement #2: Explorative rewards

S2V-DQN rewards:

ECO-DQN Improvement #2: Explorative rewards

S2V-DQN rewards:

● Late iterations: almost always negative! Less exploration.

ECO-DQN Improvement #2: Explorative rewards

S2V-DQN rewards:

● Late iterations: almost always negative! Less exploration.

ECO-DQN rewards:

● No punishment for reducing cut value -> more exploration!

ECO-DQN Improvement #2: Explorative rewards

S2V-DQN rewards:

● Late iterations: almost always negative! Less exploration.

ECO-DQN rewards:

● No punishment for reducing cut value -> more exploration!

● Add 1/|V| to unseen local OPTs (small intrinsic reward)

ECO-DQN Improvement #3: Rich observations

S2V-DQN state: binary encoding of set S

● Input to MPNN is not rich, not contextual

ECO-DQN Improvement #3: Rich observations

S2V-DQN state: binary encoding of set S

● Input to MPNN is not rich, not contextual

ECO-DQN states:

● Context from

episode!

ECO-DQN - Experiments

Terminology:

ECO-DQN - Experiments

Terminology:

● MaxCutApprox (MCA) - greedy local search, no RL

ECO-DQN - Experiments

Terminology:

● MaxCutApprox (MCA) - greedy local search, no RL

● “Reversible” agent - can flip vertices (ECO-DQN, MCA-rev)

ECO-DQN - Experiments

Terminology:

● MaxCutApprox (MCA) - greedy local search, no RL

● “Reversible” agent - can flip vertices (ECO-DQN, MCA-rev)

● “Irreversible” agent - only adds vertices (S2V-DQN, MCA-irrev)

ECO-DQN - Experiments

Terminology:

● MaxCutApprox (MCA) - greedy local search, no RL

● “Reversible” agent - can flip vertices (ECO-DQN, MCA-rev)

● “Irreversible” agent - only adds vertices (S2V-DQN, MCA-irrev)

● ER - Erdos-Renyi. BA - Barabasi-Albert. (families of graphs)

ECO-DQN - Experiments

ECO-DQN - Experiments

ECO-DQN - Experiments

● ECO-DQN dominates on larger test graphs. (Figures a,b)

ECO-DQN - Experiments

● generalizes to unseen graph types. (Figure c)

ECO-DQN - Experiments

● Random initializations help a lot! (small horizontal bars)

ECO-DQN - Experiments

ECO-DQN - Experiments

● Without rich observations or flipping actions, ECO-DQN < S2V-DQN!

ECO-DQN - Experiments

● Without rich observations or flipping actions, ECO-DQN < S2V-DQN!

● Intrinsic rewards speed up convergence

ECO-DQN - Experiments

ECO-DQN - Experiments

● Explorative! Takes “bad” actions

Outlook

Not the first CO+RL combination, but great improvements!

Outlook

Not the first CO+RL combination, but great improvements!

+ Novelty in “learning to explore”

+ Great ablations!

Outlook

Not the first CO+RL combination, but great improvements!

+ Novelty in “learning to explore”

+ Great ablations!

- Compare DQN with DDQN? Actor-Critic methods?

- Only MAX-CUT

