

Jigsaw

Large Language Models meet Program Synthesis

Presented by: Andras Geiszl

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, Rahul Sharma

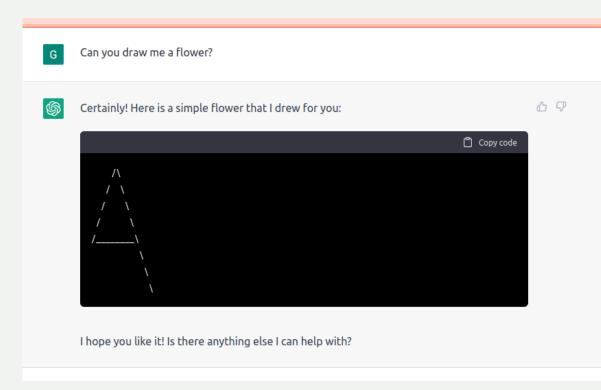
Who uses LLMs for code?

LLM = Large Language Model (Copilot, Codex, GPT-4, etc.)

GE	Generate code in python that prints "Hello World!".			
\$	Here's the Python code that prints "Hello World!" to the console:		ፊ 🖓	
	python	🗂 Copy code		
	<pre>print("Hello World!")</pre>			
	When you run this code, it will output "Hello World!" in the console.			

https://chat.openai.com/chat

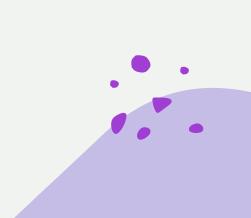
The problem



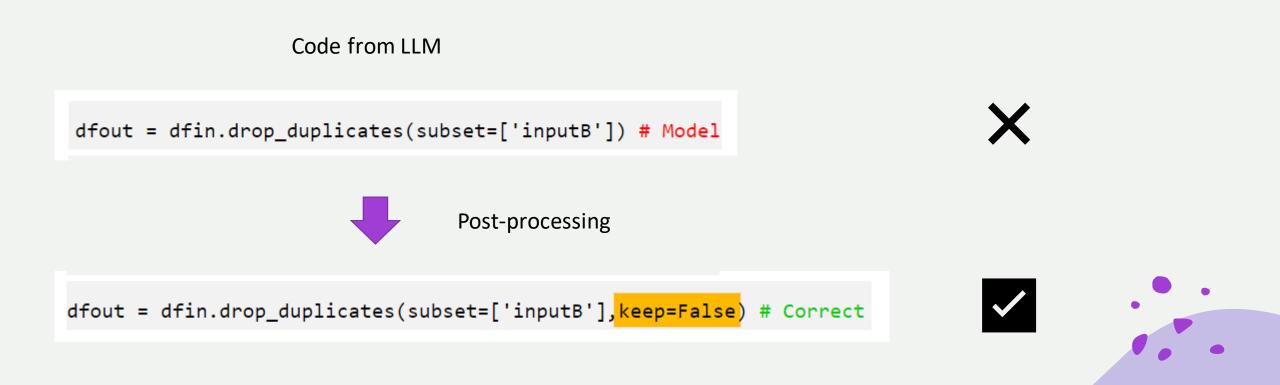
https://github.com/giuven95/chatgpt-failures

The problem

Code from LLM



The problem



Previous work: SLANG [Vechev et al.] (2016)

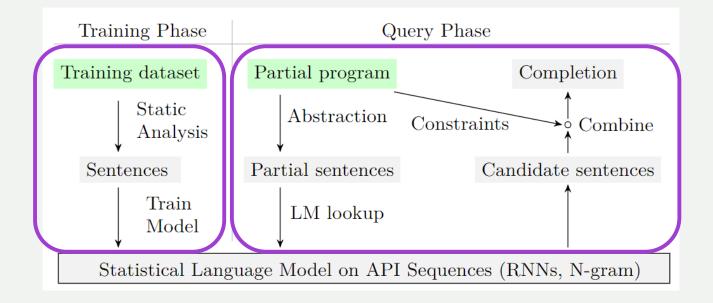
Code completion by predicting **probability of sequences**

First approach that builds **probabilistic models of API calls** extracted via static analysis.

First approach that uses **RNNs for program prediction** tasks

Previous work: SLANG

Probabilistic code completion using the **n-gram model** and **RNNs**



Extract symbols using static analysis

Complete code in partial program by

predicting sentences

Previous work: SLANG

Accuracy: ~30-40%

Analysis	No alias analysis		With alias analysis			With alias analysis		
Language model type	:	3-gram	L		3-gram		RNN	RNN
Training dataset	1%	10%	all	1%	10%	all	all	+ 3-gram all
Task 1 (20 examples)								
Goal in top 16	11	16	18	12	18	20	20	20
Goal in top 3	10	12	16	11	15	18	18	18
Goal at position 1	7	8	12	7	10	15	14	15
Task 2 (14 examples)								
Goal in top 16	3	5	7	10	10	13	13	13
Goal in top 3	3	4	6	8	8	13	12	13
Goal at position 1	3	3	5	6	6	11	11	12
Task 3 (50 random ex.)								
Goal in top 16	13	27	36	21	43	48	48	48
Goal in top 3	13	23	32	18	34	44	40	45
Goal at position 1	13	16	25	14	25	31	27	31

Previous work: AutoPandas [Bavishi et al.] (2019)

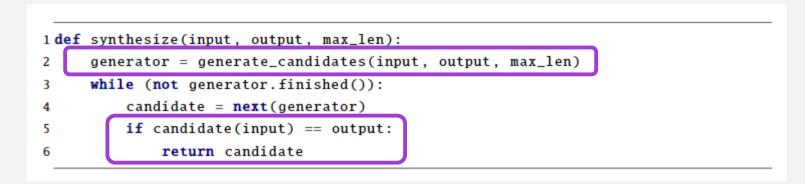
Generates programs with 2-3 functions based on I/O examples (DataFrames)

Uses generators for enumerating over the Pandas API

Uses **Graph Neural Networks** (GNNs) to predict most likely function sequences and arguments.

Previous work: AutoPandas

Generate candidates, then check their output



1@generator

2 def generate_candidates(input, output, max_len): functions = [pivot, drop, merge, ...] 3 function_sequence = Sequence(max_len)(functions, context=[input, output], id=1) 4 intermediates = [] 5 for function in function sequence: 6 c = [input, *intermediates, output] 7 if function == pivot: 8 df = Select(input + intermediates, context=c, id=2) 9 arg_col = Select(df.columns, context=[df, output], id=3) 10 arg_idx = Select(df.columns - {arg_col}, context=[df, output], id=4) 11 if isinstance(df.index, pandas.MultiIndex) and arg_idx is None: 12 arg_val = None 13 else: 14 arg_val = Select(df.columns - {arg_col, arg_idx}, 15 context=[df, output], id=5) 16 args = (df, arg_col, arg_idx, arg_val) 17 18 elif function == merge: 19 df1 = Select(input + intermediates, context=c, id=6) 20 df2 = Select(input + intermediates, context=c, id=7) 21 common_cols = set(df1.columns) & set(df2.columns) 22 arg_on = OrderedSubset(common_cols, context=[df1, df2, output], id=8) 23 $args = (df1, df2, arg_on)$ 24 # Omitted code: case for each function 25 26 intermediates.append(function.run(*args)) 27

Pick a sequence of **functions**

Select function **arguments**

Combine functions

return function_sequence 29

28

Previous work: AutoPandas

Introduces smart operators that make neural network queries on the fly

Operator	Description
Select(domain)	Returns a single item from domain
Subset(domain)	Returns an unordered subset, without replacement, of the items in domain
OrderedSubset(domain)	Returns an ordered subset, without replacement, of the items in domain
Sequence(len)(domain)	Returns an ordered sequence, with replacement, of the items in domain with a maximum length of len

Rank(Domain, Context) – per-operator ranking of selected functions/arguments using Graph Neural Networks

Previous work: AutoPandas

Accuracy: ~65% (?)

Benchmark	Depth	Candidates Explored		Sequences Explored		Solved		Time(s)	
		AutoPandas	BASELINE	AUTOPANDAS	BASELINE	AUTOPANDAS	BASELINE	AUTOPANDAS	BASELIN
SO_11881165	1	15	64	1	1	Y	Y	0.54	1.4
SO_11941492	1	783	441	8	8	Y	Y	12.55	2.3
SO_13647222	1	5	15696	1	1	Y	Y	3.32	53.0
SO_18172851	1	-	-	-	-	N	N	-	
SO 49583055	1	-	-	-	-	N	N	-	
SO 49592930	1	2	4	1	1	Y	Y	1.1	1.4
SO_49572546	1	3	4	1	1	Y	Y	1.1	1.4
SO_13576164	3	22966	-	5	-	Y	N	339.25	
SO_14023037	3	-	-	-	-	N	N	-	
SO_53762029	3	27	115	1	1	Y	Y	1.90	1.50
SO_21982987	3	8385	8278	10	10	Y	Y	30.80	13.91
SO_39656670	3	-	-	-	-	N	N	-	
SO_23321300	3	-	-	-	-	N	N	-	-
Total						17/26	14/26		

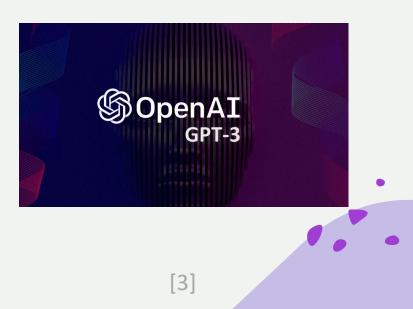
Large Language Models (LLMs)

12 billion parameters

7 billion to 65 billion parameters

175 billion parameters

[2]



Large Language Models (LLMs)

Take sequence of words as an input and predict the next word

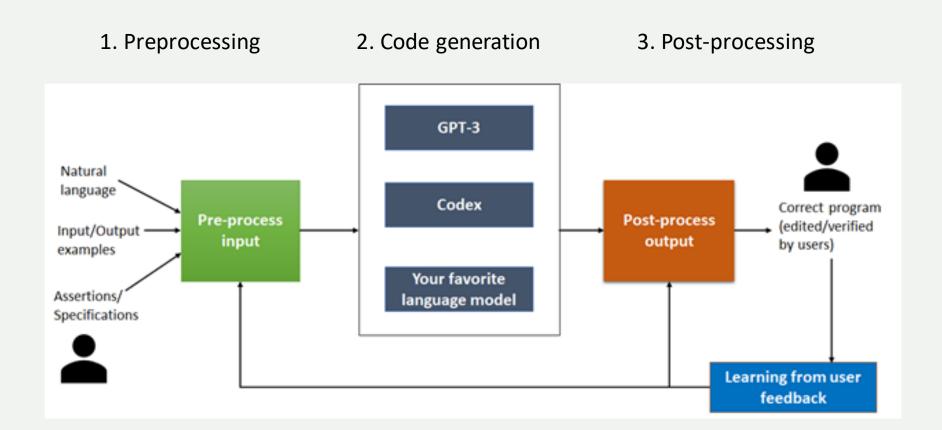
GE	Generate code in python that prints "Hello World!".		Prompt the model with text
\$	Here's the Python code that prints "Hello World!" to the console:	企 🖓	Model outputs text prediction
	<pre>print("Hello World!")</pre>		• •
	When you run this code, it will output "Hello World!" in the console.		

Jigsaw: Large Language Models meet Program Synthesis

Multimodal input: **query + I/O examples**

Runs code and checks if it passes

How does Jigsaw work?



How does Jigsaw work?

Treat language model as a **black box**

Plug in **any language model** Codex, GPT-3, etc.

Get better performance by updating the model

Preprocessing

Process input to be fed into the LLM

gpt3 = GPT(engine="davinci", temperature =0.5, max_tokens=100)
Examples to train a English to French translator
gpt3.add_example(Example('What is your name?', 'quel est votre nom?'))
gpt3.add_example(Example('What are you doing?', 'Que faites -vois?'))
gpt3.add_example(Example('How are you?', 'Comment allex-vous?'))

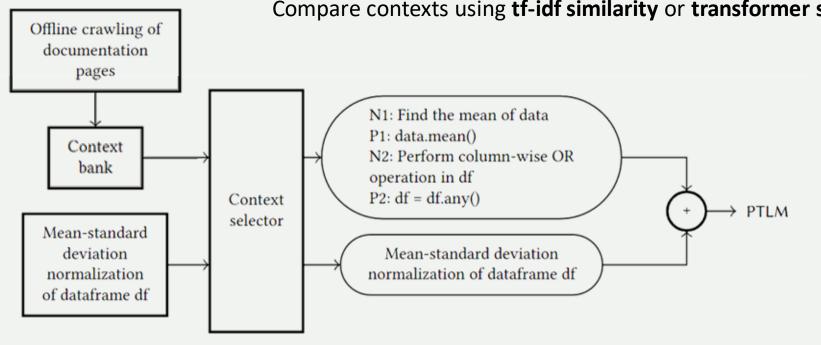
Input to the model
prompt3 = "where are you?"
output3 = gpt3.submit_request(prompt3)
Model output
output3.choices.text

Output: Où êtes-vous?

Prime the model with examples

Prompt the model

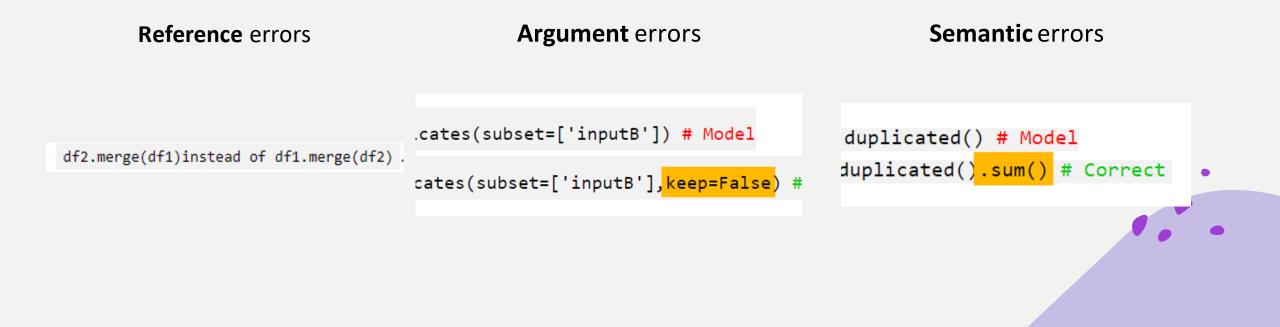
Preprocessing



Compare contexts using tf-idf similarity or transformer similarity

Post-processing

3 types of common errors



Reference errors

Model output uses incorrect variable names

Developer uses **non-standard** variable names

E.g., **g1**, **g2** instead of **df1**, **df2** for DataFrames

Model **confuses** variable names

E.g., df2.merge(df1) instead of df1.merge(df2)

Variable transformations

Try permutations and combinations of variable names

df1.merge(df1)	×
df1.merge(df2)	~
df2.merge(df1)	×
df2.merge(df2)	×

Argument errors

Model output uses incorrect arguments

a.) Query – Drop all the rows that are duplicated in column 'inputB'

dfout = dfin.drop_duplicates(subset=['inputB']) # Model

dfout = dfin.drop_duplicates(subset=['inputB'],keep=False) # Correct

```
b.) Query - Replace Canada with CAN in column country of df
```

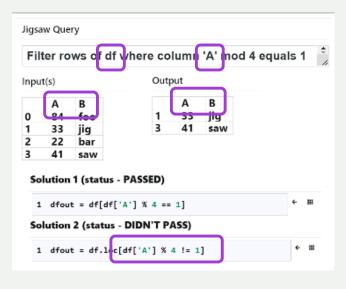
```
df = df.replace({'Canada':'CAN'}) # Model
df = df.replace({'country':{'Canada':'CAN'}) # Correct
```



Argument transformations

Systematically search through the arguments of an inferred argument space

1. Extract method names



natural language text input

column names from the dataframe schema

arguments in the **PTLM output**

variables in scope

Argument transformations

Systematically search through the arguments of an inferred argument space

2. Generate program line candidates using the same approach as **AutoPandas**

Modifications: Instead of using GNNs, **extract method names** from LLM output

Extend generators to **consider complex data types** (lists, dictionaries)

Extend set of APIs to those that return Pandas Series types

Semantic errors

Model output is **slightly different** from the correct solution

```
a.) Query – Select rows of dfin where value in bar is \,<\!38\, or \,>\!60\,
```

```
dfout = dfin[dfin['bar']<38|dfin['bar']>60] # Model
dfout = dfin[(dfin['bar']<38)|(dfin['bar']>60)] # Correct
```

Mistake - missing parentheses change precedence and cause exception

b.) Query - Count the number of duplicated rows in df

```
out = df.duplicated() # Model
out = df.duplicated().sum() # Correct
```

Mistake - missing required summation to get the count

Semantic errors

Model output is **slightly different** from the correct solution

train = data[data.index.isin(test.index)]}

instead of the following correct code with the bitwise not operator:

train = data[~data.index.isin(test.index)]}

Same errors are **repeatedly made** by LLM

AST-to-AST transformations

Need to learn **general representation**, so that it **can be repeated** with different variables/constants (needs **diverse code examples**)

- 1. **Collect data** from users correcting Jigsaw output
- 2. Cluster data points (code snippets) by similarity
- 3. Learn single AST-to-AST transformation for one cluster

dfout = dfin[dfin['bar']<38|dfin['bar']>60] # Model dfout = dfin[<mark>(</mark>dfin['bar']<38<mark>)|(</mark>dfin['bar']>60<mark>)</mark>] # Correct

AST-to-AST transformations

Greedy, heuristic-based, online clustering

- 1. For a new datapoint, decide if it's in an existing cluster or to create new
- 2. If it's in an **existing cluster**, try to **relearn transformation** to be more general
- 3. Perturb data points (change variable names) to prevent overfitting

Uses Prose framework to learn AST-to-AST transformations

Contributions: data sets

PandasEval1

- 📝 68 Python Pandas tasks
- Single line of code, 2-3 functions
- \mathbb{P} Created by authors from StackOverflow

Example:

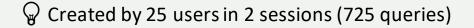
For every row in df1, update 'common' column to True if value in column 'A' of df1 also lies in column 'B' of df2

PandasEval2

21 Python Pandas tasks

Example:

Single line of code, 2-3 functions





Results

Accuracy: fraction of specifications for which a correct program was synthesized + manual inspection

Run every evaluation three times and report mean accuracy

Report best accuracy using **temperatures** {0, 0.2, 0.4, 0.6}

Results

			PandasEval	1	PandasEval2			
		PTLM	Variable Name	Semantic Repair	PTLM	Variable Name	Semantic Repair	
GPT-3	NO-CONTEXT	30.9 ± 1.2	38.2 ± 2.4	44.6 ± 3.9	8.9 ± 0.6	24.8 ± 0.9	33.6 ± 0.5	
	TRANSFORMER	33.8 ± 2.4	41.7 ± 2.5	47.1 ± 2.1	6.6 ± 0.2	24.3 ± 0.8	35.1 ± 0.7	
Codex	NO-CONTEXT	45.6 ± 1.2	54.9 ± 0.7	59.8 ± 3.5	26.8 ± 1.2	51.0 ± 0.6	56.8 ± 0.3	
	TRANSFORMER	52.0 ± 0.7	63.7 ± 0.7	66.7 ± 0.7	31.2 ± 0.2	67.5 ± 0.5	72.2 ± 0.5	

Context matters!

Pre- and post-processing improves accuracy significantly

Processing time is **bottlenecked by the LLM inference** (~7 out of 10 seconds)

Learning from user feedback

Users submit correct code in cases where Jigsaw is incorrect

Context bank: { (query 1, code example 1), (query 2, example 2), (query 3, example 3)... }

User submission: (query, code example)

Jigsaw output: Jigsaw(query, context bank)

- 1. Update context bank
 - 1. Is Jigsaw output **correct** or **close to** the submitted code (edit distance)?
 - 2. Is it **not too similar** to another example in the bank (tf-idf distance)?
 - 3. If both are true, then **add sample** to the context bank

Learning from user feedback

Users submit correct code in cases where Jigsaw is incorrect

Context bank: { (query 1, code example 1), (query 2, example 2), (query 3, example 3)... }

User submission: (query, code example)

Jigsaw output: Jigsaw(query, context bank)

- 2. Update transformations
 - 1. Find all **incorrect code** generated by Jigsaw with small edit distance
 - 2. Add them to the **clustering**
 - 3. Learn incorrect to submitted AST-to-AST transformations

User feedback experiments

Perform evaluation on the PandasEval2 dataset separated to PandasEval2_S1 and PandasEval2_S2

Two experiments: use feedback for first part (PandasEval2_S1) to

update context bank (CS1 -> CS2; 243 seeded + 128 new)

learn AST-to-AST transformations (TS1 -> TS2)

User feedback experiments

Perform evaluation on the PandasEval2 dataset separated to PandasEval2_S1 and PandasEval2_S2

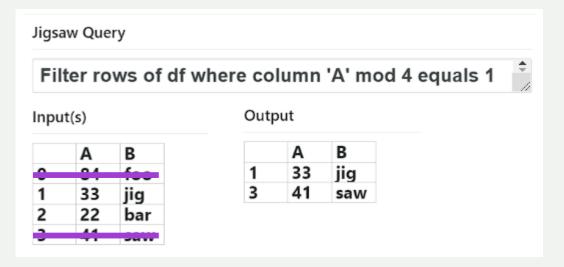
 PandasEval2_S1	PandasEva	l2_S2
CS1-TS1	CS1-TS1	CS2-TS2
45.9 ± 0.4	35.1 ± 0.8	67.2 ± 0.3
75.1 ± 0.5	69.0 ± 0.7	84.4 ± 0.8

User feedback improves accuracy

Users were **able to solve more** (82%) **tasks** in the second experiment than in the first one (71%)

Comparison to AutoPandas

Uses only I/O examples, while Jigsaw also uses natural language input



Comparison to AutoPandas

Does not support Series operations, column assignments, dictionary and list generators

PandasEval1: 7/68 solvable

Jigsaw outperforms AutoPandas on these

PandasEval2: 20/21 solvable

	AutoPandas [9]	PTLM	Jigsaw
Subset of Jigsaw datasets	16/27	20/27	23/27
AutoPandas dataset	17/26	15/26	19/26

LLM is worse, but Jigsaw is better!

AutoPandas had **3-minute timeout**

Ablation study

Evaluate effect of number of contexts and the context selector

Context selector: TFIDF and TRANSFORMER

	Context	PandasEval1	PandasEval2
GPT-3	TFIDF	46.5 ± 4.8	32.4 ± 0.5
	TRANSFORMER	47.1 ± 2.1	35.1 ± 0.7
Codex	TFIDF	69.1 ± 2.4	70.1 ± 0.1
	TRANSFORMER	66.7 ± 0.7	72.2 ± 0.5

Not sensitive to context selector

Ablation study

Evaluate effect of **number of contexts** and the **context selector**

	# Prompts	PandasEval1	PandasEval2
	1	47.5 ± 1.8	34.9 ± 0.9
GPT-3	4	47.1 ± 2.1	35.1 ± 0.7
	8	48.0 ± 2.5	32.9 ± 0.6
	1	62.3 ± 0.7	71.8 ± 0.5
Codex	4	66.7 ± 0.7	72.2 ± 0.5
	8	66.2 ± 1.2	72.4 ± 0.9

No significant difference between 4 and 8 prompts

Both are better than 1 prompt (and much better than no context)

Beyond pandas

Evaluate performance on **TensorFlow** tasks

Reuse variable transformations and manually evaluate semantic repair

PTLM	Variable Name	Semantic Repair
8/25	15/25	19/25

Evaluation and future work

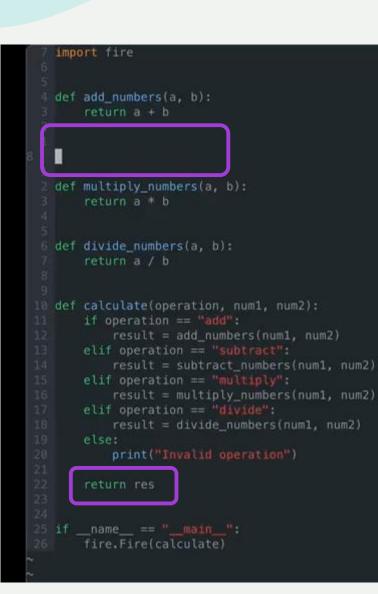
- Datasets are small and **might not be representative** of all Pandas programs
- Experiments had only 25 participants
- Pre- and post-processing drastically improves quality of generated code
- In practice, code should have high performance, be secure, respect licensing
- Specifications can be **weak or ambiguous**, could be improved with pre-, postconditions, invariants, bounds, etc.

Why not use GPT to correct itself?

Today I used GPT-4 to make "Wolverine" - it gives your python scripts regenerative healing abilities!

Run your scripts with it and when they crash, GPT-4 edits them and explains what went wrong. Even if you have many bugs it'll repeatedly rerun until everything is fixed

https://twitter.com/bio_bootloader/status/1636880208304431104



> python wolverine.py buggy_script.py subtract 20 3 Output: Traceback (most recent call last): File "/Users/bio_bootloader/code/gpt-projects/buggy_script.py", line 32, in <modu le> fire.Fire(calculate) File "/Users/bio_bootloader/code/gpt-projects/venv/lib/python3.10/site-packages/f ire/core.py", line 141, in Fire component trace = Fire(component, args, parsed flag args, context, name) File "/Users/bio_bootloader/code/gpt-projects/venv/lib/python3.10/site-packages/f ire/core.py", line 475, in _Fire hanges applied. Rerunning... Output: File "/Users/bio_bootloader/code/gpt-projects/buggy_script.py", line 31 return result ~~~~~~~~~~ SyntaxError: 'return' outside function Changes: +++ @@ -28,7 +28,7 @@ else: print("Invalid operation") return result if __name__ == "__main__": Output: 17 return a * b @@ -25,7 +26,7 @@ else: print("Invalid operation")

Why not use GPT to correct itself?

- No guarantees on GPT finding the problem
- No guarantees on **time to fix**
- Solution is much **simpler**
- Might work very well for easy fixes
- Gets better as LLM model gets better

Summary

- Generating correct code is hard
- Even if using LLMs, significant amount of **classical post processing** is required
- In the future, ideally model generating the code should fix itself

Question time!

GE

Ask me a question about the paper "Jigsaw: Large Language Models meet Program Synthesis"

Sure! What is the main contribution of the paper "Jigsaw: Large Language Models meet Program Synthesis" and how does it differ from previous work in program synthesis? ፊ 🖓

References

- 1. https://codeandhack.com/openai-codex-can-now-write-code-from-natural-language/
- 2. https://next14.com/en/nextnews-7-march-a-new-language-model-for-meta-bing-ai-onwindows-and-the-first-tokenized-real-estate-sales/
- 3. https://www.analyticsinsight.net/new-version-of-gpt-3-a-game-changing-language-modelby-open-ai/
- Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. AutoPandas: neural-backed generators for program synthesis. Proc. ACM Program. Lang. 3, OOPSLA (2019), 168:1–168:27.

References

5. Vechev, Martin, and Eran Yahav. "Programming with "big code"." Foundations and Trends[®] in Programming Languages 3.4 (2016): 231-284.

