
Jigsaw

Large Language Models meet Program Synthesis

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh 

Parthasarathy, Sriram Rajamani, Rahul Sharma

Presented by: Andras Geiszl



Who uses LLMs for code?

https://chat.openai.com/chat

LLM = Large Language Model (Copilot, Codex, GPT-4, etc.)



The problem

https://github.com/giuven95/chatgpt-failures

🌺



The problem

Input Output Code from LLM

✅



The problem

Code from LLM

Post-processing

❌

✅



Previous work: SLANG [Vechev et al.] (2016)

Code completion by predicting probability of sequences

[5]

First approach that uses RNNs for program prediction tasks

First approach that builds probabilistic models of API calls extracted via static 
analysis.



Previous work: SLANG

Probabilistic code completion using the n-gram model and RNNs

Extract symbols using static analysis

Complete code in partial program by 

predicting sentences



Previous work: SLANG

Accuracy: ~30-40%



Previous work: AutoPandas [Bavishi et al.] (2019)

Generates programs with 2-3 functions based on I/O examples (DataFrames)

[4]

Uses Graph Neural Networks (GNNs) to predict most likely function sequences 

and arguments.

Uses generators for enumerating over the Pandas API



Previous work: AutoPandas

Generate candidates, then check their output



Pick a sequence of functions

Select function arguments

Combine functions



Previous work: AutoPandas

Introduces smart operators that make neural network queries on the fly

Rank(Domain, Context) – per-operator ranking of selected functions/arguments using 

Graph Neural Networks



Previous work: AutoPandas

Accuracy: ~65% (?)

…



Large Language Models (LLMs)

12 billion parameters 7 billion to 65 billion parameters 175 billion parameters

[1] [2] [3]



Large Language Models (LLMs)

Take sequence of words as an input and predict the next word

Prompt the model with text

Model outputs text prediction



Jigsaw: Large Language Models meet Program 
Synthesis

Multimodal input: query + I/O examples

Runs code and checks if it passes



How does Jigsaw work?

1. Preprocessing 2. Code generation 3. Post-processing



How does Jigsaw work?

Treat language model as a black box

Get better performance by 
updating the model

Plug in any language model
Codex, GPT-3, etc.



Preprocessing

Process input to be fed into the LLM

Prime the model with examples

Prompt the model



Preprocessing

Compare contexts using tf-idf similarity or transformer similarity



Post-processing

Reference errors Argument errors Semantic errors

3 types of common errors



Reference errors

Model output uses incorrect variable names

Developer uses non-standard variable 
names

E.g., g1, g2 instead of df1, df2 for 
DataFrames

Model confuses variable names

E.g., df2.merge(df1) instead of df1.merge(df2)



Variable transformations

Try permutations and combinations of variable names

df1.merge(df1) ❌

df1.merge(df2) ✅

df2.merge(df1) ❌

df2.merge(df2) ❌



Argument errors

Model output uses incorrect arguments



Argument transformations

Systematically search through the arguments of an inferred argument space

1. Extract method names

natural language text input

arguments in the PTLM output

column names from the dataframe schema

variables in scope



Argument transformations

Systematically search through the arguments of an inferred argument space

2. Generate program line candidates using the same approach as AutoPandas

Modifications: Instead of using GNNs, extract method names from LLM output

Extend generators to consider complex data types (lists, dictionaries)

Extend set of APIs to those that return Pandas Series types



Semantic errors

Model output is slightly different from the correct solution



Model output is slightly different from the correct solution

Semantic errors

Same errors are repeatedly made

by LLM



Need to learn general representation, so that it can be repeated with different 

variables/constants (needs diverse code examples)

AST-to-AST transformations

1. Collect data from users correcting Jigsaw output

2. Cluster data points (code snippets) by similarity

3. Learn single AST-to-AST transformation for one cluster



Greedy, heuristic-based, online clustering

AST-to-AST transformations

1. For a new datapoint, decide if it’s in an existing cluster or to create new

2. If it’s in an existing cluster, try to relearn transformation to be more general

3. Perturb data points (change variable names) to prevent overfitting

Uses Prose framework to learn AST-to-AST transformations



Contributions: data sets

PandasEval1 PandasEval2

📝 68 Python Pandas tasks

💻 Single line of code, 2-3 functions

💡 Created by authors from StackOverflow

📃 Example:

For every row in df1, update ‘common’ column to 

True if value in column ‘A’ of df1 also lies in column 

‘B’ of df2

📝 21 Python Pandas tasks

💻 Single line of code, 2-3 functions

💡 Created by 25 users in 2 sessions (725 queries)

📃 Example:



Results

Accuracy: fraction of specifications for which a correct program was synthesized + manual 

inspection

Run every evaluation three times and report mean accuracy

Report best accuracy using temperatures {0, 0.2, 0.4, 0.6}



Results

Context matters!

Pre- and post-processing improves accuracy significantly

Processing time is bottlenecked by the LLM inference (~7 out of 10 seconds)



Learning from user feedback

Users submit correct code in cases where Jigsaw is incorrect

Context bank: { (query 1, code example 1), (query 2, example 2), (query 3, example 3)… }

User submission: (query, code example)

Jigsaw output: Jigsaw(query, context bank)

1. Is Jigsaw output correct or close to the submitted code (edit distance)?

2. Is it not too similar to another example in the bank (tf-idf distance)?

3. If both are true, then add sample to the context bank

1. Update context bank



Learning from user feedback

Users submit correct code in cases where Jigsaw is incorrect

1. Find all incorrect code generated by Jigsaw with small edit distance

2. Add them to the clustering

3. Learn incorrect to submitted AST-to-AST transformations

Context bank: { (query 1, code example 1), (query 2, example 2), (query 3, example 3)… }

User submission: (query, code example)

Jigsaw output: Jigsaw(query, context bank)

2. Update transformations



User feedback experiments

Perform evaluation on the PandasEval2 dataset separated to PandasEval2_S1 and 

PandasEval2_S2

Two experiments: use feedback for first part (PandasEval2_S1) to

update context bank (CS1 -> CS2; 243 seeded + 128 new)

learn AST-to-AST transformations (TS1 -> TS2)



User feedback experiments

Perform evaluation on the PandasEval2 dataset separated to PandasEval2_S1 and 

PandasEval2_S2

User feedback improves accuracy

Users were able to solve more (82%) tasks in the second experiment than in the first one
(71%)



Comparison to AutoPandas

Uses only I/O examples, while Jigsaw also uses natural language input



Comparison to AutoPandas

Does not support Series operations, column assignments, dictionary and list generators

PandasEval1: 7/68 solvable

PandasEval2: 20/21 solvable

Jigsaw outperforms AutoPandas on these

LLM is worse, but Jigsaw is better!

AutoPandas had 3-minute 
timeout



Ablation study

Evaluate effect of number of contexts and the context selector

Context selector: TFIDF and TRANSFORMER

Not sensitive to context selector



Ablation study

Evaluate effect of number of contexts and the context selector

No significant difference between 4 and 8 prompts

Both are better than 1 prompt (and much better than 
no context)



Beyond pandas

Evaluate performance on TensorFlow tasks

Reuse variable transformations and manually evaluate semantic repair



Evaluation and future work

• Datasets are small and might not be representative of all Pandas programs

• Experiments had only 25 participants

• Pre- and post-processing drastically improves quality of generated code

• In practice, code should have high performance, be secure, respect licensing

• Specifications can be weak or ambiguous, could be improved with pre-, postconditions, 

invariants, bounds, etc.



Why not use GPT to correct itself?

https://twitter.com/bio_bootloader/status/1636880208304431104





Why not use GPT to correct itself?

• No guarantees on GPT finding the problem

• No guarantees on time to fix

• Solution is much simpler

• Might work very well for easy fixes

• Gets better as LLM model gets better



Summary

• Generating correct code is hard

• Even if using LLMs, significant amount of classical post processing is required

• In the future, ideally model generating the code should fix itself



Question time!

https://chat.openai.com/chat



References

1. https://codeandhack.com/openai-codex-can-now-write-code-from-natural-language/

2. https://next14.com/en/nextnews-7-march-a-new-language-model-for-meta-bing-ai-on-

windows-and-the-first-tokenized-real-estate-sales/

3. https://www.analyticsinsight.net/new-version-of-gpt-3-a-game-changing-language-model-

by-open-ai/

4. Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.AutoPandas: 

neural-backed generators for program synthesis.Proc. ACM Program.Lang.3, OOPSLA 

(2019), 168:1–168:27.



References

5. Vechev, Martin, and Eran Yahav. "Programming with “big code”." Foundations and Trends® 

in Programming Languages 3.4 (2016): 231-284.


