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Who uses LLMs for code?

LLM = Large Language Model (Copilot, Codex, GPT-4, etc.)
Generate code in python that prints “Hello World!".

Here's the Python code that prints "Hello World!" to the console:

python [ Copycode

print(

When you run this code, it will output "Hello World!™ in the console.




The problem

E Can you draw me a flower?

Certainly! Here is a simple flower that | drew for you:

| hope you like it! Is there anything else | can help with?

) Copy code



The problem

Input

Name: India
Name: USA
UK

1
2

»

Output

_country | val.

India
USA
UK

1
2
3

Code from LLM

df['c'] = df['c'].str.replace( 'Name:

]
2



The problem

Code from LLM

dfout = dfin.drop_duplicates(subset=["inputB']) # Model

‘ Post-processing

dfout = dfin.drop_duplicates(subset=["'inputB'],keep=False) # Correct



Previous work: SLANG [Vechev et al.] (2016)

Code completion by predicting probability of sequences

First approach that builds probabilistic models of API calls extracted via static
analysis.

First approach that uses RNNs for program prediction tasks



Previous work: SLANG

Probabilistic code completion using the n-gram model and RNNs
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Previous work: SLANG

Accuracy: ~30-40%

Analysis No alias analysis  With alias analysis With alias analysis
Language model type 3-gram 3-gram RINN RNN
=+ J-gram
Training dataset 1% 10% all 1% 10% all all all
Task 1 (20 examples)
Goal in top 16 11 16 18 12 18 20 20 20
Goal in top 3 10 12 16 11 15 18 18 18
Goal at position 1 7 8 12 T 10 15 14 15
Task 2 (14 examples)
Goal in top 16 3 5 T 10 10 13 13 13
Goal in top 3 3 4 6 8 8 13 12 13
Goal at position 1 3 3 5 6 i 11 11 12
Task 3 (50 random ex.)
Goal in top 16 13 27 36 21 43 48 48 48
Goal in top 3 13 23 32 18 J4 44 40 A5,

Goal at position 1 13 16 25 14 25 3l 27 31




Previous work: AutoPandas [Bavishi et al.] (2019)

Generates programs with 2-3 functions based on 1/O examples (DataFrames)

Uses generators for enumerating over the Pandas API

Uses Graph Neural Networks (GNNs) to predict most likely function sequences

and arguments.



Previous work: AutoPandas

Generate candidates, then check their output

1def synthesize (input, output kK max_len):
2 generator = generate_candidates({(input,

output,

max_len)

3 while (not generator.finished()):
4 candidate = next{generator)

5 if candidate{input) == output:
6 return candidate




1 @generator

2 def generate_candidates(input, output, max_len):
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functions = [pivet, drop, merge, ...]

function_sequence = Sequence(max_len){functions, context=[input, output]., id=1)

intermediates = []

for

¢ = [input, *intermediates, output]
if function == pivot:

df = Select(input + intermediates, context=c, id=2)
Select(df.columns, context=[df, output], id=3)
Select(df.columns — {arg_col}, context=[df, output],

arg_col

arg_idx

if isinstance(df.index, pandas.MultiIndex) and arg_idx is None:
arg_val = Hone
else:
arg_val = Select(df.columns — {arg_col, arg_idx},
context=[df, output], id=5)

args = (df, arg_col, arg_idx, arg_wval)

elif function == merge:
df1
df2
common_cols = set(dfl.columns) & set(dfZ.columns)

Select (input + intermediates, context=c, 1d=6)

Select(input + intermediates, context=c, 1d=7)

arg_on = OrderedSubset(common_cols, context=[df1, df2, output],
args = (df1, df2z, arg_on)

# Omitted code: case for each function

id=4)

id=8)

intermediates.append(function.run(+argsl)

return function_sequence

Pick a sequence of functions

Select function arguments

Combine functions



Previous work: AutoPandas

Introduces smart operators that make neural network queries on the fly

Operator Description
Select(domain) Returns a single item from domain
Subset(domain) Returns an unordered subset, without replacement, of the items in domain

OrderedSubset(domain) Returns an ordered subset, without replacement, of the items in domain
Sequence(len)(domain) Returns an ordered sequence, with replacement, of the items in domain
with a maximum length of len

Rank(Domain, Context) — per-operator ranking of selected functions/arguments using

Graph Neural Networks



Previous work:

Accuracy: ~65% (?)

AutoPandas

Benchmark Depth Candidates Fxplored Sequences Explored Solved Time(s)
AvroPANDAS BASELINE AUTOPANDAS BASELINE AUTOPANDAS BASELINE AUTOPANDAS BASELINE
S0 11881165 1 1 | 1 1 Y Y 0.54 1.46
S0 11941492 1 783 441 # i Y Y 1255 238
S0 13647222 1 1560 1 1 Y Y 3.32 5307
S0 18172851 1 - - - - M M - -
S0 49583055 1 - - - N M -
S0 49592030 1 2 4 1 Y Y 1.1 A
S0 49573544 1 3 4 1 1 Y b 1.1 1.44
S0 13576164 3 22066 - 5 - Y M 33025 -
S0 14023037 3 - - - - M M - -
S0 53763029 3 27 115 1 1 Y b 1.90 1.50
S0 21982087 3 385 B278 10 10 Y b 3080 13.91
S0 30656670 3 - - - - N N - -
S0 23321300 3 - - - - M | - -
Total 17726 14,26




Large Language Models (LLMs)

12 billion parameters 7 billion to 65 billion parameters 175 billion parameters

=

OpenAl Codex




Large Language Models (LLMs)

Take sequence of words as an input and predict the next word

|é‘§| Generate code in python that prints "Hello World!".

Prompt the model with text

@ Here's the Python code that prints “"Hello World!" to the console:

Model outputs text prediction

python [l Copy code

When you run this code, it will output "Hello Warld!" in the console. ' P P




Jigsaw: Large Language Models meet Program
Synthesis

Jigsaw Query

Filter rows of df where column "A" mod 4 equals 1

Multimodal input: query + 1/O examples

Input(s) Cutput

A B A B
0 84 foo 1 33 jig
1 33 3 41  saw
2 22  bar
3 41  saw

Solution 1 (status - PASSED)
boros s arlela R e == Runs code and checks if it passes ®
°

Solution 2 (status - DIDN'T PASS)

1 dfout = df.lec[df['2"'] % 4 I= 1] -




How does Jigsaw work?

1. Preprocessing

Natural
language

InputfOutput ——
examples

Assertions/
Specifications

2. Code generation

GPT-3

Codex

Your favorite
language model

3. Post-processing

Post-process

output

Correct program
(editedverified
by users)

Learning from user
feedback



How does Jigsaw work?

Treat language model as a black box

Y

Plug in any language model Get better performance by
Codex, GPT-3, etc. updating the model




Preprocessing

Process input to be fed into the LLM

gpt3 = GPT(engine="davinci", temperature =0.5, max_tokens=100)

# Examples to train a English to French translator
gpt3.add_example(Example("What is your name?’, 'quel est votre nom?’))
gpt3.add_example(Example('What are you doing?', 'Que faites —vois?"'))
gpt3.add_example(Example('How are you?', 'Comment allex—vous?'))

Prime the model with examples

# Input to the model

prompt3 = "where are you?" Prompt the model

output3 = gpt3.submit_request(prompt3)

# Model output ®
®

output3. choices . text

Output: Ou étes-vous?



Preprocessing

Offline crawling of
documentation
pages

Compare contexts using tf-idf similarity or transformer similarity

.

Context

e

bank

Mean-standard
deviation
normalization
of datatrame df

Context

selector

N1: Find the mean of data

P1: data.mean()

N2: Perform column-wise OR
operation in df

P2: df = {,HI,EU'I}'“
PTLM

Mean-standard deviation
normalization of dataframe df




Post-processing

3 types of common errors

Reference errors Argument errors Semanticerrors
.cates(subset=["inputB']) # Model duplicated() # Model
df2.merge(dfl)instead of dfl.merge(df2) . Aubli ted() (} & Copi N
cates(subset=['inputB'], keep=False) # uplicatedl msElign 7 torrect e
v’

" (]



Reference errors

Model output uses incorrect variable names

4

Developer uses non-standard variable
names

E.g., g1, g2 instead of dfl, df2 for
DataFrames

)

Model confuses variable names

E.g., df2.merge(dfl) instead of dfl.merge(df2)



Variable transformations

Try permutations and combinations of variable names

dfl.merge(dfl) X
dfl.merge(df2)
df2.merge(dfl) X
df2.merge(df2) X



Argument errors

Model output uses incorrect arguments

a.) Query — Drop all the rows that are duplicated in column  “inputB?

dfout = dfin.drop_duplicates(subset=["inputB']) # Model

dfout = dfin.drop_duplicates(subset=["'inputB'],keep=False) # Correct

b.) Query — Replace Canada with ¢an in column country of df

df = df.replace({'Canada’: 'CAN'}) # Model
df = df.replace({ country’':{ 'Canada’: '"CAN'}) # Correct



Argument transformations

Systematically search through the arguments of an inferred argument space

1. Extract method names

Jigsaw Query

Filter rows

Input{s)

Output

A

[+ %

B

A B

1 2T

i3
22
41

[T S ]

iig
bar
saw

3 41  saw

Solution 1 (status - PASSED)

1 dfout = df[df['8'] % & == 1] O

Solution 2 (status - DIDN'T PASS)

1 dfout = df.1fe[df[‘a'] % 4 1= 1] € |

f df where columud4equa|51 5

natural language text input
column names from the dataframe schema
arguments in the PTLM output

variables in scope



Argument transformations

Systematically search through the arguments of an inferred argument space
2. Generate program line candidates using the same approach as AutoPandas

Modifications: Instead of using GNNs, extract method names from LLM output

Extend generators to consider complex data types (lists, dictionaries)

Extend set of APIs to those that return Pandas Series types



Semantic errors

Model output is slightly different from the correct solution

a.) Query - Select rows of dfin where value in baris <38 or >&e

dfout = dfin[dfin['bar']<38|dfin['bar']>60] # Model
dfout = dfin[(dfin['bar']<3&)|(dfin['bar']>6€)] # Correct

Mistake — missing parentheses change precedence and cause exception

b.) Query — Count the number of duplicated rows in df

out = df.duplicated() # Model

out = df.duplicated().sum() # Correct

Mistake — missing required summation to get the count



Semantic errors

Model output is slightly different from the correct solution

[Lrain = dataldata.index.isin(test.index)]1} ] Same errors are repeatedly made
: : : _ , T by LLM
instead of the {ollowing correct code with the bitwise not operator:
[lrain = dal_dL--dlaLa_inde:r.__isi--{LesL_indEx]J} ‘1
®
®
| 4



AST-to-AST transformations

Need to learn general representation, so that it can be repeated with different
variables/constants (needs diverse code examples)

1. Collect data from users correcting Jigsaw output
2. Cluster data points (code snippets) by similarity

3. Learnsingle AST-to-AST transformation for one cluster

dfout = dfin[dfin['bar']<38|dfin['bar']>608] # Model
dfout = dfin[(dfin['bar']<3&)|(dfin['bar']>6€)] # Correct



AST-to-AST transformations

Greedy, heuristic-based, online clustering
1. For a new datapoint, decide if it’s in an existing cluster or to create new

2. Ifit’s in an existing cluster, try to relearn transformation to be more general

3. Perturb data points (change variable names) to prevent overfitting

Uses Prose framework to learn AST-to-AST transformations



Contributions: data sets

PandasEvall

% 68 Python Pandas tasks
Single line of code, 2-3 functions

@ Created by authors from StackOverflow

Example:

For every row in dfl, update ‘common’ column to
True if value in column ‘A’ of df1 also lies in column

‘B’ of df2

PandasEval2

& 21 Python Pandas tasks

Single line of code, 2-3 functions

@ Created by 25 usersin 2 sessions (725 queries)

Example:

country | city IATA
USA | LA France
France Paris Paris
UK | LON DU
France LYS London

I

‘ DEL

IN

country

city | IATA

UsA
FR
Uk
FR

IN

LA | France
PAR | Paris
LON | DU
tvs | London
DEL |IN




Results

Accuracy: fraction of specifications for which a correct program was synthesized + manual
inspection

Run every evaluation three times and report mean accuracy

Report best accuracy using temperatures {0, 0.2, 0.4, 0.6}



Results

PandasEvalil

PandasEval2

PTLM Variable Name Semantic Repair | PTLM Variable Name Semantic Repair
GPT-3 NO-CONTEXT 309+£1.2 382x24 446+ 3.9 8.9+ 0.6 248+09 33.6 £ 0.5
TRANSFORMER 338+24 41.7+25 47.1x 2.1 6.6 0.2 243+ 038 35.1+£0.7
Cod NO-CONTEXT 456+ 1.2 549x0.7 59.8 £ 3.5 268x1.2 51.0x0.6 56.8 0.3
2% TRANSFORMER 520 +0.7 63.7+0.7 66.7 + 0.7 312402 67.5+0.5 72.2+0.5

Context matters!

Pre- and post-processing improves accuracy significantly

Processing time is bottlenecked by the LLM inference (~7 out of 10 seconds)



Learning from user feedback

Users submit correct code in cases where Jigsaw is incorrect

Context bank: { (query 1, code example 1), (query 2, example 2), (query 3, example 3)... }
User submission: (query, code example)

Jigsaw output: Jigsaw(query, context bank)

1. Update context bank

1. Is Jigsaw output correct or close to the submitted code (edit distance)?
2. lIs it not too similar to another example in the bank (tf-idf distance)?

3. If both are true, then add sample to the context bank



Learning from user feedback

Users submit correct code in cases where Jigsaw is incorrect

Context bank: { (query 1, code example 1), (query 2, example 2), (query 3, example 3)... }
User submission: (query, code example)

Jigsaw output: Jigsaw(query, context bank)

2. Update transformations

1. Find all incorrect code generated by Jigsaw with small edit distance
2. Add them to the clustering

3. Learnincorrect to submitted AST-to-AST transformations



User feedback experiments

Perform evaluation on the PandasEval2 dataset separated to PandasEval2_S1 and
PandasEval2_S2

Two experiments: use feedback for first part (PandasEval2_S1) to
update context bank (CS1 -> CS2; 243 seeded + 128 new)
learn AST-to-AST transformations (TS1 -> TS2)



User feedback experiments

Perform evaluation on the PandasEval2 dataset separated to PandasEval2_S1 and
PandasEval2_S2

PandasEval2 S1 | PandasEval2 §2

CS1-TS1 CS1-TS1 CS2-TS2
GPT-3 459+ 0.4 351408 67.2+0.3
Codex 75.1 +0.5 69.0+0.7 84.4+0.8

User feedback improves accuracy

Users were able to solve more (82%) tasks in the second experiment than in the firstone
(71%)



Comparison to AutoPandas

Uses only I/O examples, while Jigsaw also uses natural language input

Jigsaw Query

Filter rows of df where column 'A' mod 4 equals 1

el

Input(s) Output

A B JL B
S 1 33 jig
1 33 jig 3 41 saw
2 22  bar
il ——y



Comparison to AutoPandas

Does not support Series operations, column assignments, dictionary and list generators

PandasEvall: 7/68 solvable Jigsaw outperforms AutoPandas on these

PandasEval2: 20/21 solvable

, ) . '
AutoPandas [9] PTLM Jigsaw LLM is worse, but Jigsaw is better!

Subset of Jigsaw datasets 16/27 20/27  23/27
AutoPandas dataset 17/26 15/26  19/26

AutoPandas had 3-minute
timeout




Ablation study

Evaluate effect of number of contexts and the context selector

Context selector: TFIDF and TRANSFORMER

Context PandasEvall PandasEval2

GPT-3 TFIDF 465+ 4.8 32.4+0.5
TRANSFORMER 47.1 + 2.1 35.1 £ 0.7

Cod TFIDF 69.1+ 2.4 70.1 £ 0.1
29X TRANSFORMER 66.7 + 0.7 72.2+05

Not sensitive to context selector



Ablation study

Evaluate effect of number of contexts and the context selector

# Prompts PandasEvall PandasEval2

1 475+ 1.8 349+ 0.9

GPT-3 4 47.1 £ 2.1 35.1 0.7
8 48.0 £ 2.5 329+ 0.6

1 62.3 £0.7 71.8 £ 0.5

Codex 4 66.7 £0.7 72.2x 0.5
8 66.2 £ 1.2 724+ 09

No significant difference between 4 and 8 prompts

Both are better than 1 prompt (and much better than
no context)



Beyond pandas

Evaluate performance on TensorFlow tasks

Reuse variable transformations and manually evaluate semantic repair

PTLM  Variable Name Semantic Repair

8/25 15/25 19/25




Evaluation and future work

* Pre-and post-processing drasticallyimproves quality of generated code

* In practice, code should have high performance, be secure, respect licensing

* Specifications can be weak or ambiguous, could be improved with pre-, postconditions,
invariants, bounds, etc.



Why not use GPT to correct itself?

"s BioBootloader &

Today | used GPT-4 to make "Wolverine" - it gives your python scripts
regenerative healing abilities!

Run your scripts with it and when they crash, GPT-4 edits them and
explains what went wrong. Even if you have many bugs it'll repeatedly
rerun until everything is fixed




wolverine.py buggy script.py

Qutput: Traceback (most recent call last):
File "/Users/bio_bootloader/code/gpt-projects/buggy_script.py", line 32, in <modu
le>
fire.Fire(calculate)
File "/Users/bio_bootloader/code/gpt-projects/venv/lib/python3.10/site-packages/f
ire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/Users/bio_bootloader/code/gpt—-projects/venv/lib/python3,10/site-packages/f
ire/core.py", line 475, in _Fire

PAPReRE X N e s

hanges apBTied. Rerunni

Qutput: File "/Users/bio_bootloader/code/gpt-projects/buggy_script.py", line 31
return result

AAAAAAANNANNANA

SyntaxError: 'return' outside function

Changes:
@@ -28,7 +28,7 @@ else:
print("Invalid operation")

if __name__ == "__main__

Qutput: 17
return a * b
@@ -25,7 +26,7 @@ else:
print("Invalid operation")




Why not use GPT to correct itself?

* No guarantees on GPT finding the problem

 No guarantees on time to fix

e Solution is much simpler
* Might work very well for easy fixes

* Gets better as LLM model gets better



Summary

* Generating correct code is hard

 Evenif using LLMs, significant amount of classical post processing is required

* In the future, ideally model generating the code should fix itself



Question time!

Ask me a question about the paper "Jigsaw: Large Language Models meet Program
Synthesis”

Sure! What is the main contribution of the paper “Jigsaw: Large Language Models meet

Program Synthesis” and how does it differ from previous work in program synthesis?
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