DiGress: Discrete Denoising Diffusion for Graph Generation

C. Vignac, I. Krawczuk, A. Siraudin et Al.

Presentation by Lucas Morin

DiGress: Discrete Denoising Diffusion for Graph Generation

Graph structure

Social Network: Can we predict how information spread?

Knowledge Graph: Can we extract knowledge from a set of documents?

DiGress: Discrete Denoising Diffusion for Graph Generation

Graph Generation: Scene Graph Generation

fence

Images

Generated Scene Graphs

Graph Generation: Semantic Role Labelling

Graph Generation: De Novo Molecular Generation

Molecular Properties

Aspirin properties

Molecular Weight:

Polar Surface Area:

Hydrogen Bond Donor:

Lipophilicity:

Novel molecules

 NH_2

DiGress: Discrete **Denoising Diffusion** for Graph Generation

Diffusion Probabilistic Models

Image Generation: Generate new and diverse images similar to the training images.

Noise

Forward diffusion noisy image

Generated image

Markov Chain Model

Forward Process (Noise)

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \mu_t, \sigma_t^2)$$

Backward Process (Learned Model)

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$
(approximation of $q(x_{t-1}|x_t)$)

Forward Process

Bring the mean of each new Gaussian closer to 0. This scaling keeps pixels values in bound. Corrupt the image by shifting pixels values.

 $\lim_{T \to \infty} q(x_T | x_0) = \mathcal{N}(0, I)$

Independent of the input image

Backward Learned Process

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Guided Gaussian Diffusion Models

 $p_{\theta}(x_{t-1}|x_t)$

How to train the denoising model?

 \Rightarrow

Sampling at arbitrary step in closed form

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

$$egin{aligned} q(x_t|x_0) &= \mathcal{N}(x_t; \sqrt{ar{lpha_t}} x_0, (1-ar{lpha_t})I) \ lpha_t &= (1-eta_t) \quad ar{lpha_t} = \prod_{t=1}^t lpha_t = \prod_{t=1}^t (1-eta_t) \ \end{aligned}$$
 Parallel training

Reference: Improved Denoising Diffusion Probabilistic Models

Objective function

$$L_t^{ ext{simple}} = \ \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, oldsymbol{\epsilon}_t} \Big[\|oldsymbol{\epsilon}_t - oldsymbol{\epsilon}_ heta (\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} oldsymbol{\epsilon}_t, t) \|^2 \Big]$$

MSE between the true and the predicted Gaussian noise.

Key advantages

The model is not trained of trajectories, which reduce one source of noise in the training process. The training is performed in parallel.

Inference

Training

Diffusion Models

Conditions for efficient training

Property 1Property 2Property 3 $q(x_t|x_0)$ should have a
closed-form formula $q(x_{t-1}|x_t, x_0)$ should
be tractable $\lim_{T \to \infty} q(x_T|x_0)$ should
not depend on x_0

=> Gaussian Noise (95% of the articles) or Discrete Diffusion

Diffusion Models Summary

Advantages

- Competitive generative models against VAE, GAN and Flow-based models:
 - High sample generation quality.
 - Diverse sample generation.
- Its iterative nature is that we perform **supervised training at each timestep**.

Drawbacks

- Low sampling rate.

(T = 1000 time steps for the first article. More recent works achieve T = 4 time steps.)

Diffusion Probabilistic Models: Examples

Image generation

Text conditioning: "A diffusion probabilistic model"

Human Motion

Human Motion Diffusion Model

GLIDE (DALL-E 2)

Diffusion Probabilistic Models: Examples

3D Point Cloud Generation and Completion

Novel View Synthesis

Diffusion Probabilistic Models: Examples

Motif-scaffolding problem

Graph Generation

DiGress: **Discrete** Denoising Diffusion for Graph Generation

Why do we need Discrete Diffusion for Graph Generation?

Gaussian noise model **destroys sparsity** as well as graph theoretic notions such as **connectivity** or **cycle counts**.

Discrete Diffusion Models: continuous to discrete state-space

Example of States and Transition Probabilities for an atom

Discrete Diffusion Models

Markov Chain Model over a discrete state-space

Forward Process (Noise) $q(z^t|z^{t-1}) = z^{t-1}Q^t$ Transform

nsition matrices
$$(Q^1,...,Q^T)$$

Backward Process (Learned Model)

 $\phi_{\theta}(z_{t-1}|z_t)$

Discrete Diffusion Models

Conditions for efficient training

Property 1

 $q(z^t|x)$ should have a closed-form formula

$$q(z^{t-1}|z^t,x)$$
 should be tractable

Property 2

Property 3 $\lim_{T\to\infty}q(z^T|x) \text{ should not}$ depend on x

$$q(z^t|x) = x\bar{Q}^t$$

$$\bar{Q}^t = Q^1...Q^t$$

$$q(z^{t-1}|z^t, x) \propto z^t(Q^t)' \odot x\bar{Q}^{t-1}$$

$$Q^{t} = \alpha^{t} I + (1 - \alpha^{t}) \mathbf{1}_{d} \mathbf{1}_{d}^{\prime} / d$$

$$\begin{pmatrix} 0.7 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.1 \\ 0.1 & 0.1 & 0.7 \end{pmatrix}$$

$$\lim_{T \to \infty} x \bar{Q}^T = 1_d / d$$

DiGress: Discrete Denoising Diffusion for Graph Generation

Key contributions

- First Discrete Diffusion model for Graph Generation.
 > Demonstrates that Discrete Diffusion is superior than Gaussian Noise from Graph Generation.
- **2.** High rate generation, realistic generation, high diversity and novelty on molecular and non-molecular graph generation datasets.
- **3.** First one-shot model that can be trained on really large training sets. (MOSES and GuacaMol)

DiGress: Training method

Graph Generation: sequence of node and edge classification tasks

DiGress: Denoising Model

DiGress: Structural features

Graph theoretic:

Cycles and spectral features (Cycle count, number of connected components, estimation of the biggest connected component)

Domain specific: Molecular features (Valency of each atom, current Molecular Weight)

DiGress: Choice of the Noise Model

Uniform transitions

Preservation of marginal distribution of node and edge types

DiGress: Abstract Graphs

Model	Deg↓	Clus↓	Orb↓	V.U.N. ↑			
Stochastic block model							
GraphRNN	6.9	1.7	3.1	5 %			
GRAN	14.1	1.7	2.1	25%			
GG-GAN	4.4	2.1	2.3	25%			
SPECTRE	1.9	1.6	1.6	53%			
ConGress	34.1	3.1	4.5	0%			
DiGress	1.6	1.5	1.7	$\mathbf{74\%}$			
Planar graphs							
GraphRNN	24.5	9.0	2508	0%			
GRAN	3.5	1.4	1.8	0%			
SPECTRE	2.5	2.5	2.4	25%			
ConGress	23.8	8.8	2590	0%			
DiGress	1.4	1.2	1.7	75%			

DiGress: Qm9

Method	NLL	Valid	Unique	Training time (h)
Dataset	—	99.3	100	—
Set2GraphVAE	_	59.9	93.8	-
SPECTRE	—	87.3	35.7	—
GraphNVP	_	83.1	99.2	-
GDSS	-	95.7	98.5	_
ConGress (ours)	_	$98.9 {\pm}.1$	$96.8 \pm .2$	7.2
DiGress (ours)	$69.6{\scriptstyle \pm 1.5}$	$\textbf{99.0}{\scriptstyle \pm.1}$	$96.2 \pm .1$	1.0

Model	Valid↑	Unique↑	Atom stable↑	Mol stable↑
Dataset	97.8	100	98.5	87.0
ConGress	86.7 ± 1.8	98.4 ± 0.1	$97.2 {\pm} 0.2$	$69.5{\pm}1.6$
DiGress (uniform)	89.8 ± 1.2	$97.8 {\pm} 0.2$	97.3 ± 0.1	70.5 ± 2.1
DiGress (marginal)	92.3 ± 2.5	$97.9{\pm}0.2$	97.3 ± 0.8	66.8 ± 11.8
DiGress (marg. + features)	95.4 ± 1.1	97.6 ± 0.4	98.1 ± 0.3	79.8 ± 5.6

Diffusion Results: MOSES (1.9M molecules)

Model	Class	Val ↑	Unique↑	Novel↑	Filters↑	FCD↓	SNN ↑	Scaf↑
VAE	SMILES	97.7	99.8	69.5	99.7	0.57	0.58	5.9
JT-VAE	Fragment	100	100	99.9	97.8	1.00	0.53	10
GraphINVENT	Autoreg.	96.4	99.8	1 <u>—</u> 2	95.0	1.22	0.54	12.7
ConGress (ours)	One-shot	83.4	99.9	96.4	94.8	1.48	0.50	16.4
DiGress (ours)	One-shot	85.7	100	95.0	97.1	1.19	0.52	14.8

DiGress: Conditional Generation

Train a regressor which predicts a graph-level property of interest from a noisy Graph

 \boldsymbol{q} Conditional noising process

 \dot{q} Unconditional noising process

$$\dot{q}(G^{t-1}|G^t, y) \propto q(G^{t-1}|G^t)\dot{q}(y|G^{t-1})$$

Push the generation towards a graph that have the graph-level property of interest

Target	μ	HOMO	μ & HOMO
Uncondit.	$1.71 {\pm}.04$	$0.93 {\pm .01}$	$1.34 \pm .01$
Guidance	$0.81 \pm .04$	$0.56 \pm .01$	$0.87 {\pm}.03$

DiGress: Conclusion

Key contributions

- **1.** First Discrete Diffusion model for Graph Generation.
- **2.** High rate generation, realistic generation, high diversity and novelty on molecular and non-molecular graph generation datasets.
- **3.** First one-shot model that can be trained on really large training sets. (MOSES and GuacaMol)

Limitations

- **1.** Evaluation setup.
- **2.** Poor results on conditional generation.