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Graph structure

Knowledge Graph:
Can we extract knowledge from a
set of documents?

Social Network:
Can we predict how information spread?
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Graph Generation: Scene Graph Generation

Generated Scene Graphs
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Reference: Scene Graph Generation by Iterative Message Passing




Graph Generation: Semantic Role Labelling

Text
Lansky left Australiato study the piano atthe Royal College of Music

U

Semantic Graph

Purpose

Source

I 1(Departing ! Education I
Lansky| left |Australiato| study [the piano at the Royal College of Music
| | | i |

Subject
Institution
Student

Reference: http.//sanjaymeena.io/tech/semantic_role_labeling/




Graph Generation: De Novo Molecular Generation

Molecular Properties

Aspirin properties

: O O
Molecular Weight: MW= 180 A
Lipophilicity: LogP =1.30 \\)I\N C%
Hydrogen Bond Donor: HBD =1 :> H
Hydrogen Bond Acceptor: HBA =3 F

Polar Surface Area: TPSA = 63.6
0 NZ NH;

s

Reference: Molecular generative model based on conditional variational autoencoder for de novo molecular design

Novel molecules
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Diffusion Probabilistic Models

Image Generation: Generate new and diverse images similar to the training images.

Forward diffusion
noisy image Generated image

Reference: https://keras.io/examples/generative/ddim/



Gaussian Diffusion Models

Markov Chain Model

peXt1|Xt
@H —-@ — 82 H

Xt‘xt 1

p(zr) = N(l‘T,OaI)

Forward Process (Noise)

Q($t|33t—1) = N(xt; i, Uf)

Backward Process (Learned Model)

Po(xi—1|2t) = N (@115 po (24, t), Lo (24, 1))
(approximation of g(z;_1|x¢))

Reference: Denoising Diffusion Probabilistic Models
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Xt|Xt 1)

Pe Xi— 1\Xz
Gaussian Diffusion Models @.

Forward Process

Isotropic Gaussian  Mean Variance

f t
q(zi|i_1) = N(ze;]v/1 — Balee—1 .I) B, is the diffusion rate

/ \ B1s., Br €[0,1]

Bring the mean of each new Gaussian closer to O. Corrupt the image by shifting
This scaling keeps pixels values in bound. pixels values.

N-

:/lim q(xr|z0) = N(0,1) Independent of the input image
—00

Reference: Denoising Diffusion Probabilistic Models 11



Gaussian Diffusion Models

Backward Learned Process

Do (l‘t—1|$t) —

Po(X¢—1]x¢t)
@H —® @H H

Xt|xt 1

N (zi—1; po(xs,t), Lo (s, 1))

p()(fﬂt—1|$t)

Denoising Model

Time step embedding

Reference: Improved Denoising Diffusion Probabilistic Models
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Po(Xe—1]x1)
Guided Gaussian Diffusion Models @_> H@ @_) _>

. (Xt|xt 1

Po(wt—1|$t)

Denoising Model

Time step embedding

Text, Images, Semantic Map...

Reference: High-Resolution Image Synthesis with Latent Diffusion Models
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Po(Xe—1]x1)
Gaussian Diffusion Models @_> H@ @_) _>

Xt|xt 1

How to train the denoising model?

Noisy image Noise Original Image

Denoising Model

Sampling at arbitrary step in closed form
d(wilzi) = NeoVT= B, ) = 2@dwo) =Nles Voo, (1 =a,)])
o= (1— ) t—Hat H(l—ﬂt)
t=1

t=1
Parallel training 14

Reference: Improved Denoising Diffusion Probabilistic Models



Gaussian Diffusion Models

1

Sample random step
from random trajectory

Sample image Sample noise

Sample time step between 1 and T

Generate random step from
random trajectory

Reference: Improved Denoising Diffusion Probabilistic Models
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Make a forward pass of the
model to eastimate noise

Generated Parametrised
noisy image model

Estimated noise in
the noisy image

3

Take a gradient descent step
to update model parameters

Estimated True
noise noise

Update model parameters
taking gradient descent step
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Gaussian Diffusion Models

Objective function

L™ = Eooi e |l — €o(v/@xo + V1= aver, )]

MSE between the true and the predicted Gaussian noise.

Key advantages

The model is not trained of trajectories, which reduce one source of noise in the training process.
The training is performed in parallel.

Inference Training

Reference: Improved Denoising Diffusion Probabilistic Models
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po(Xe—1(%¢)
Diffusion Models @_> H@ o @_) _>.

Denoising Model

Conditions for efficient training

Property 1 Property 2 Property 3
q(¢|xo) should have a q(x¢—1|2t, 20) should lim g(xr|zo) should
closed-form formula be tractable T =00

not depend on X

=> Gaussian Noise (95% of the articles) or Discrete Diffusion

Reference: DiGress: Discrete Denoising diffusion for graph generation 17



Diffusion Models Summary

Advantages
- Competitive generative models against VAE, GAN and Flow-based models:
- High sample generation quality.
- Diverse sample generation.
- Itsiterative nature is that we perform supervised training at each timestep.

Drawbacks
- Low sampling rate.
(T =1000 time steps for the first article. More recent works achieve T = 4 time steps.)

Reference: Denoising Diffusion Probabilistic Models
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Diffusion Probabilistic Models: Examples

Image generation

Text conditioning: “A diffusion probabilistic model”

GLIDE (DALL-E 2)

Human Motion

Human Motion Diffusion Model
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Diffusion Probabilistic Models: Examples

3D Point Cloud Generation and Completion Novel View Synthesis

Shape Generation
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20
Reference: 3D Shape Generation and Completion through Point-Voxel Diffusion, Novel View Synthesis with Diffusion Models



Diffusion Probabilistic Models: Examples

Motif-scaffolding problem Graph Generation

21

Reference: Diffusion probabilistic modeling of protein backbones in 3D for the motif-scaffolding problem
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Why do we need Discrete Diffusion for Graph Generation?

Molecular Graphs
OH

o, @\ ~OH
HN-

Planar Graphs

Gaussian noise model destroys sparsity as well as graph theoretic notions such as connectivity or cycle counts.

Reference: DiGress: Discrete Denoising diffusion for graph generation 23



Discrete Diffusion Models: continuous to discrete state-space

Example of States and Transition Probabilities for an atom
0.7
0.1 f) 0.7
:@ - ()
N-z O%
0.2 0.2

O

0.7

Reference: DiGress: Discrete Denoising diffusion for graph generation
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Discrete Diffusion Models

Markov Chain Model over a discrete state-space

Po(zt-1]2t)

@HH@%@

e

Forward Process (Noise)

g(2z"Y) = 2@ Transition matrices (Q', ...

Backward Process (Learned Model)

Po(2t-12t)

Reference: DiGress: Discrete Denoising diffusion for graph generation

Q")
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Discrete Diffusion Models

Conditions for efficient training

Property 1

Property 2 Property 3
- T
q(#'|x) should have a q(2'*|2", z) should be tractable Jm q(z" |x) should not
closed-form formula depend on z
. ~ Q' =o'l +(1—-a")141,/d
1) = 20 (et ) o (@) ©2 Q!
Qt — leQt 0.7 0.1 0.1
0.1 0.7 0.1
0.1 0.1 0.7

lim zQ" = 14/d

T—o0

Reference: DiGress: Discrete Denoising diffusion for graph generation 26



DiGress: Discrete Denoising Diffusion for Graph Generation

Key contributions

1. First Discrete Diffusion model for Graph Generation.
=> Demonstrates that Discrete Diffusion is superior than Gaussian Noise from Graph Generation.

2. High rate generation, realistic generation, high diversity and novelty on molecular and non-molecular
graph generation datasets.

3. First one-shot model that can be trained on really large training sets. (MOSES and GuacaMol)
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Reference: DiGress: Discrete Denoising diffusion for graph generation



DiGress: Training method

Graph Generation: sequence of node and edge classification tasks

T Gt _t t—l G

of/. Oo—d.o QION OI

>

$o(G")

Cross-entropy

A B C

Reference: DiGress: Discrete Denoising diffusion for graph generation
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DiGress: Denoising Model

E/ X/ y/
.X E T A T
t 1 ] [
Node/Edge-wise ) ) 0
i T | [ ]
T T T FlattTan T FIattTen T T
Graph Transformer 4 K L pva || pna | Lin |
Layer A T 4 T
X : Nodes features .. > o X E U
E: Edges features Tt
. r h_| Vv |f r Graph Transformer | Softmax | | Lin
y: Graph-level features Layer 3 1 PN A(x) = (mean, min, maz, std)(X)
T T Ty X FiLM(A,B)=A+ A® (BW;) + BW,
Node/Edge-wise E T
MLP
Outer product
T T + scaling
XE t t
T T X TMheads
X X
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Reference: DiGress: Discrete Denoising diffusion for graph generation



DiGress: Structural features

X E
)
Node/Edge-wise
MLP
- Graph theoretic:
Graph Transtormer Cycles and spectral features
o (Cycle count, number of connected components, estimation of
" ; T g A the biggest connected component)
Graph Transformer|
Layer
Pttty Domain specific:
ade S0y e Molecular features
Y (Valency of each atom, current Molecular Weight)
SR

Structural +
Spectral features

t 1
X E

Reference: DiGress: Discrete Denoising diffusion for graph generation



DiGress: Choice of the Noise Model

Uniform transitions

Preservation of marginal distribution of node and edge types

HH H 0, H H
—— N
CH, ) / —H H/ \/(H;\ NH, 7N /\
0 Hi
v \\H/E"L./'H —> % CH, N\ —r = — )
CH, oH H
NH, CH, H
t="T 3T/ 4 t=0

Reference: DiGress: Discrete Denoising diffusion for graph generation
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DiGress: Abstract Graphs

Model Deg| Clus| Orbl V.UN.?T
Stochastic block model

GraphRNN 6.9 1.7 3.1 5%
GRAN 14.1 1.7 2.1 25%
GG-GAN 4.4 2.1 2.3 25%
SPECTRE 1.9 1.6 1.6 53%
ConGress 34.1 3.1 4.5 0%
DiGress 1.6 1.5 1.7 74%
Planar graphs

GraphRNN 24.5 9.0 2508 0%
GRAN 3.5 1.4 1.8 0%
SPECTRE 2.5 2.5 2.4 25%
ConGress 23.8 8.8 2590 0%
DiGress 1.4 1.2 1.7 75%

Reference: DiGress: Discrete Denoising diffusion for graph generation



DiGress: Qm9

OH
——0 HO-
-
\( N,
N== Az
Method NLL  Valid Unique  Training time (h) . \ #
Dataset - 99.3 100 - &
Set2GraphVAE - 59.9 93.8 -
SPECTRE - 87.3 35.7 -
GraphNVP - 83.1 99.2 -
GDSS - 95.7 98.5 -
ConGress (ours) - 98.9+.1 96.8+.2 .2
DiGress (ours) 69.6+1.5 99.0+.1 96.2+.1 1.0
Model Valid? Uniquet Atom stablet Mol stablet
Dataset 97.8 100 98.5 87.0
ConGress 86.7+1.8  98.4+0.1 97.2+0.2 69.5+1.6
DiGress (uniform) 89.8+1.2 97.840.2 97.34+0.1 70.542.1
DiGress (marginal) 92.3+2.5 97.9+0.2 97.3+0.8 66.8+11.8
DiGress (marg. + features) 95.4+1.1 97.6+0.4 98.1+0.3 79.8+5.6

Reference: DiGress: Discrete Denoising diffusion for graph generation



Diffusion Results:MOSES (1.9M molecules)

OO O ww@ /wm

Q“q piatvl
AR

Model Class
VAE SMILES
JT-VAE Fragment

GraphINVENT Autoreg.
ConGress (ours)  One-shot
DiGress (ours) One-shot

Val 1

Qb

100
96.4
83.4
85.7

Uniquet

99.8
100
99.8
99.9
100

Novelt
69.5
99.9

96.4
95.0

Filters FCDJ] SNNft

997 0.57 0.58
97.8 1.00 0.53
95.0 1.22 0.54
94.8 1.48 0.50
97.1 1.19 0.52

Scaf?t

0
10
12,7
16.4
14.8

Reference: DiGress: Discrete Denoising diffusion for graph generation
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DiGress: Conditional Generation

Train a regressor which predicts a graph-level property of interest from a noisy Graph

q Conditional noising process
§(GHG" y) o (GG (y| G

¢ Unconditional noising process

Push the generation towards a graph that
have the graph-level property of interest

Target - HOMO p & HOMO
Uncondit. 1.71+.04 0.93+.01 1.34+.01
Guidance 0.81+.04 0.56+.01 0.87+.03
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Reference: DiGress: Discrete Denoising diffusion for graph generation



DiGress: Conclusion

Key contributions
1. First Discrete Diffusion model for Graph Generation.

2. High rate generation, realistic generation, high diversity and novelty on molecular and non-molecular
graph generation datasets.

3. First one-shot model that can be trained on really large training sets. (MOSES and GuacaMol)

Limitations
1. Evaluation setup.

2. Poor results on conditional generation.
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