
Stefan Schmid @ T-Labs, 2011

Network Algorithms

Distributed Sorting

Sorting

Stefan Schmid @ T-Labs Berlin, 2013/4 2

Distributed Sorting

Graph with n nodes {v1,…,vn} and n values.

Goal: node vi should store i-th smallest value.

v2
v1

v3

v4 v5

6

3

2

11

7
v2

v1
v3

v4 v5

2

7

3

11

6

Simple solution?

Simple Solution

Stefan Schmid @ T-Labs Berlin, 2013/4

Simple Algo
Send to some node v, sorts it locally, redistributes!

v1

v3

v5

v4

6

3

2

11

7

8
v2

v1

v3

v5

v4

2

8

11

7

6

3

v2

v6 v6

Example on Star Graph:

3
O(1) time, O(n) messages  Problem?

Contention

Stefan Schmid @ T-Labs Berlin, 2013/4 4

Node Contention
Nodes can only send and receive O(1) messages containing

O(1) identifiers per node and round, independently

of node degree!

v1

v3

v5

v4

6

3

2

11

7

8

v1

v3

v5

v4

2

8

11

7

6

3

v2

v6 v6

Complexity to sort star graph?

Contention

Stefan Schmid @ T-Labs Berlin, 2013/4 5

Node Contention
Nodes can only send and receive O(1) messages containing

O(1) identifiers per node and round, independently

of node degree!

v1

v3

v5

v4

6

3

2

11

7

8

v1

v3

v5

v4

2

8

11

7

6

3

v2

v6 v6

Complexity to sort star graph? Ω(n) time! How to do it faster?

Array

Stefan Schmid @ T-Labs Berlin, 2013/4 6

18

How to sort in an array?

12 24 10 13 11 8 34 15

vn v1

Array

18

How to sort in an array?

12 24 10 13 11 8 34 15

1. Exchange values at node i and i+1, i odd

2. Exchange values at nodes i and i+1, i even

3. Loop until no exchanges needed anymore

Odd/Even Sort

18 12 24 10 13 11 8 34 15

18 12 24 10 13 11 8 34 15

Array

Why correct? Congestion okay?

Largest value will eventually arrive on right,

second largest value will….

Congestion also okay.

Better proof: 0-1 Sorting Lemma

Remember it?

Stefan Schmid @ T-Labs Berlin, 2013/4 8

0-1 Sorting Lemma

01-Sorting Lemma

If an oblivious comparison-exchange algorithm

sorts all inputs of 0s and 1s, then it sorts arbitrary inputs.

Oblivious = whether two elements are exchanged only depends on relative order,

nothing else.

Proof (1): Equivalent: “If ALG does not sort some, then does not sort some 01 either!”

Stefan Schmid @ T-Labs Berlin, 2013/4 9

 A B not(B) not(A)

 not(A) or B not(not(B)) or not(A)

0-1 Sorting Lemma

01-Sorting Lemma

If an oblivious comparison-exchange algorithm

sorts all inputs of 0s and 1s, then it sorts arbitrary inputs.

Oblivious = whether two elements are exchanged only depends on relative order,

nothing else.

Proof (2):

Stefan Schmid @ T-Labs Berlin, 2013/4 10

- Assume: x1,…,xn not sorted correctly by ALG.

- After wrong sorting, find smallest value k at some node vk

 such that k > xk. (Smallest value at a wrong node.)
- Define a binary input: x*i=0 if xi ≤ xk, x*i=1 else.

- When oblivious ALG exchanges

 - <0,0> or <1,1>: does not matter
 - Exchange x*i = 0, x*j =1 implies that xi ≤ xk < xj (ALG oblivious)

 - So x and x* are sorted the same way!

0-1 Sorting Lemma

01-Sorting Lemma

If an oblivious comparison-exchange algorithm

sorts all inputs of 0s and 1s, then it sorts arbitrary inputs.

Oblivious = whether two elements are exchanged only depends on relative order,

nothing else.

Proof (2): - Assume: x1,…,xn not sorted correctly by ALG.

- After wrong sorting, find smallest value k at some node vk

 such that k > xk. (Smallest value at a wrong node.)
- Define a binary input: x*i=0 if xi ≤ xk, x*i=1 else.

- When oblivious ALG exchanges

 - <0,0> or <1,1>: does not matter
 - Exchange x*i = 0, x*j =1 implies that xi ≤ xk < xj (ALG oblivious)

 - So x and x* are sorted the same way!

Runtime also the same.

0-1 Sorting Lemma

Array Sort

Odd/Even Sort sort is correct. Runtime: n steps.

Proof: Can focus on 01-inputs only!

Stefan Schmid @ T-Labs Berlin, 2013/4 12

- Let j1 be the index of the node with the rightmost “1”.

- Either j1 index will grow in odd or even step for first time.

- And from then on always, until vn reached.

- Also index of k-th most “1” is increasing in each step: by induction.

Mesh

Stefan Schmid @ T-Labs Berlin, 2013/4 13

18

How to sort in a mesh (aka grid)?

11

53

3

12

8

27

31

24

34

19

6

10

15

1

21

13

45

2

16

Mesh

Stefan Schmid @ T-Labs Berlin, 2013/4 14

18

How to sort in a mesh (aka grid)?

11

53

3

12

8

27

31

24

34

19

6

10

15

1

21

13

45

2

16

smallest

largest

Shearsort

Stefan Schmid @ T-Labs Berlin, 2013/4 15

Shearsort
For mxm grid with n nodes, assume m even

In phases (of m rounds each), Odd/Even-Sort on columns or rows

Repeat:

 In odd phase: sort rows, in even phase: sort column,

 as follows:

 - Odd rows: sort s.t. small values move left

 - Even rows: sort s.t. small values move right

 - Sort column: sort s.t. small values move up

Until done

Phase 1

small
small
small
small

Phase 2

small

1. Row sort

 0

 0

 0

0

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 1

 0

1

 0

smallest

largest

1. Row sort: nothing to do!

 0

 0

 0

0

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 1

 0

1

 0

smallest

largest

2. Column sort

1. Row sort: nothing to do!

 0

 0

 0

0

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 1

 0

1

 0

smallest

largest

 0

 0

 0

0

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 0

 0

1

 1

2. Column sort

3. Row sort

1. Row sort: nothing to do!

 0

 0

 0

0

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 1

 0

1

 0

smallest

largest

 0

 0

 0

1

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 0

 0

1

 0

 0

 0

 0

0

 0

0

 0

 0

 0

 0

 0

0

 0

 0

 0

 0

 0

 0

1

 1

2. Column sort

3. Row sort

Shearsort

Shearsort
For mxm grid with n nodes, assume m even

In phases (of m rounds each), Odd/Even-Sort on columns or rows

Repeat:

 In odd phase: sort rows, in even phase: sort column,

 as follows:

 - Odd rows: sort s.t. small values move left

 - Even rows: sort s.t. small values move right

 - Sort column: sort s.t. small values move up

Until done

Phase 1

small
small
small
small

Phase 2

small

Runtime?

Analysis

Shearsort
Sorts in time √n(log n+1).

Proof: Can focus on 01-inputs only!

Stefan Schmid @ T-Labs Berlin, 2013/4 21

- Idea: After a row and a column phase, half of previously unsorted rows

 will be sorted. So log n many phases until all are sorted, and one row/column
 takes time √n.

- Clean row/column: only “0” or only “1”; otherwise dirty

- At any stage, rows fall in three regions: north = clean-0, south = clean-1, middle dirty

- Initially maybe all dirty! And Shearsort does not touch clean rows.

- Consider two consecutive dirty rows,

 so they look as follows:

- Pair can be in three states: (A) more 0 than 1, (B) more 1 than 0, (C) same

- If (A) or (B), column sorting will give us at least one clean row, (C) gives two

- Clean row will move up or down (column sorter), and left with half the dirty rows!

- Last single row will be sorted in end.

0

1

dirty

0000…..1111111
11111…..000000

Comments

Stefan Schmid @ T-Labs Berlin, 2013/4 22

- O(m) algorithms exist, which is optimal on grid

- Anyhow √n is nice, faster than classic sorting!

- But Heapsort & Co. have O(n log n),

 so maybe we can achieve even

 O(log n) in n-node parallel network?

Sorting Networks

Stefan Schmid @ T-Labs Berlin, 2013/4 23

Comparator

x

Comparator Network

y
x’
y’

x’=min(x,y), y’=max(x,y)

in
p
u
t
w

ir
e
s

o
u
tp

u
t

w
ir

e
s

n input values

sorted at output

Width
Number of wires in network.

Sorting Networks

Stefan Schmid @ T-Labs Berlin, 2013/4 24

Comparator

x

Comparator Network

y
x’
y’

x’=min(x,y), y’=max(x,y)

in
p
u
t
w

ir
e
s

o
u
tp

u
t

w
ir

e
s

n input values

sorted at output

Width
Number of wires in network.

Idea how to build sorting network from comparator?

Idea how to build sorting network from comparator?

26 Stefan Schmid @ T-Labs Berlin, 2013/4

Idea 2:

Idea 1: Odd/Even Sort

Idea how to build sorting network from comparator?

4

2

7

1

3

0

9

8

0

2

4

1

3

7

8

9

27 Stefan Schmid @ T-Labs Berlin, 2013/4

2

4

7

1

3

0

9

8

2

4

7

1

3

0

9

8

2

4

1

7

3

0

9

8

2

4

1

3

0

7

9

8

2

4

1

3

7

0

9

8

2

4

1

3

0

7

9

8

2

4

1

3

0

7

8

9

2

4

1

3

0

7

8

9

2

4

1

3

0

7

8

9

2

4

1

0

3

7

8

9

Hmm… 

2

4

0

1

3

7

8

9

2

0

4

1

3

7

8

9

Definitions

28

Sorting network is oblivious, so 01-Lemma applies

Depth
depth(input wire) = 0

depth(comparator) = max of its input wires + 1

depth(output wire) = depth of comparator

depth(comparison network) = max depth (of wires)

comparator

comparator

In
p
u

t

O
u

tp
u

t
Depths?

Definitions

29

Sorting network is oblivious, so 01-Lemma applies

Depth
depth(input wire) = 0

depth(comparator) = max of its input wires + 1

depth(output wire) = depth of comparator

depth(comparison network) = max depth (of wires)

comparator

comparator

In
p
u

t

O
u

tp
u

t wire depth 1

depth 1

depth 3

depth 3

wire depth 3

Definitions

30

Sorting network is oblivious, so 01-Lemma applies

Depth
depth(input wire) = 0

depth(comparator) = max of its input wires + 1

depth(output wire) = depth of comparator

depth(comparison network) = max depth (of wires)

comparator

comparator

In
p
u

t

O
u

tp
u

t wire depth 1

depth 1

depth 3

wire depth 3

w
id

th
 w

(o
r

n
)

Definitions

Stefan Schmid @ T-Labs Berlin, 2013/4 31

Bitonic Sequence
Sequence of numbers which first monotonically increase,

then monotonically decrease; or vice versa.

Bitonic sequence?

Binary bitonic sequences?

<1,4,6,8,3,2>, <5,3,2,1,4,8>,<9,6,2,3,5,4>,<7,4,2,5,9,8>

0i1j0k or 1i0j1k

Half Cleaner

Stefan Schmid @ T-Labs Berlin, 2013/4 32

Sorting network is oblivious, so 01-Lemma applies

 Half Cleaner (HC)

Comparison network of depth 1, where wire i is

compared with wire i+n/2 (for i=1,…,n/2).

What does it do?

Example

Stefan Schmid @ T-Labs Berlin, 2013/4 33

0

0

1

1

1

1

1

0

0

1

1

0

0

0

0

0

1

1

1

1

1

1

0

0

Example

Stefan Schmid @ T-Labs Berlin, 2013/4 34

0

0

1

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

Example

Stefan Schmid @ T-Labs Berlin, 2013/4 35

0

0

1

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

1

0

0

1

1

1

1

Analysis

Bitonic Sorter (BS)
Given a bitonic sequence, a Half Cleaner cleans the upper

or lower half of the n wires. The other half is bitonic.

Proof: Without loss of generality, assume input is 0i1j0k

Stefan Schmid @ T-Labs Berlin, 2013/4 36

- If midpoint of bitonic sequence is

 in 0s, half is 0s only => will stay so

- If midpoint is in 1s, bitonic sorter

 is like Shearsort with two adjacent

 rows! See proof there.

0

0

1

1

1

1

1

0

0

0

1

0

1

1

1

1

b
it
o
n
ic

c
le

a
n

small

Proof by Case Distinction

Stefan Schmid @ T-Labs Berlin, 2013/4 37

MIN MAX

Bitonic Sequence Sorter

Stefan Schmid @ T-Labs Berlin, 2013/4 38

Bitonic Sequence Sorter (BSS)

BSS(n)

HC(n)

BSS(n/2)

BSS(n/2)

…

…

…

BSS(n) consists of a n-port Half Sorter and 2 BSS(n/2).

BSS(1) is empty.

Recursively defined, so depth? Logarithmic!

…

Example: BSS(8)?

Stefan Schmid @ T-Labs Berlin, 2013/4 39

BSS(8)

HC(8)

BSS(4)

BSS(4)

…

…

…

…

Recursion 1:

Draw BSS(8)!

Example: BSS(8)?

BSS(8)

HC(8)

HC(4)

HC(4)

…

…

…

…

Recursion 2: BSS(2)

BSS(2)

BSS(2)

BSS(2)

Sequence of Half-Cleaners!

What does it do??

BSS(8)

HC(8)

HC(4)

HC(4)

…

…

…

…

BSS(2)

BSS(2)

BSS(2)

BSS(2)

0

0

1

1

1

1

0

0

What does it do??

BSS(8)

HC(8)

HC(4)

HC(4)

…

…

…

…

BSS(2)

BSS(2)

BSS(2)

BSS(2)

0

0

1

1

1

1

1

0

0

0

1

0

1

1

1

1

0

0

1

0

1

1

1

1

0

0

0

1

1

1

1

1

S
o

rt
e

d
!

B
it

o
n

ic
!

Why does it work?

Bitonic Sequence Sorter

Stefan Schmid @ T-Labs Berlin, 2013/4 43

BSS(n)

BSS(n) sorts bitonic sequence in time log(n).

Proof: Follows directly from BSS(n) algorithm and property that size of bitonic

half is divided in two in each step.

But we want to sort arbitrary sequences, not only bitonic ones! How?

Need Merging Networks (MN)!

Merger

Stefan Schmid @ T-Labs Berlin, 2013/4 44

Merger M(n)

Depth-1 network where wire i is compared to n-i+1.

Merger

Stefan Schmid @ T-Labs Berlin, 2013/4 45

Merger M(n)

Depth-1 network where wire i is compared to n-i+1.

What does it do?!

Merger

Stefan Schmid @ T-Labs Berlin, 2013/4 46

0

0

1

1

0

1

1

1

1

1

1

1

0

1

1

1

Merger

Stefan Schmid @ T-Labs Berlin, 2013/4 47

0

0

1

1

0

1

1

1

0

0

1

0

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

Merger

Stefan Schmid @ T-Labs Berlin, 2013/4 48

0

0

1

1

0

1

1

1

0

0

1

0

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

c
le

a
n

b

it
o

n
ic

c
le

a
n

b

it
o

n
ic

Merger

Stefan Schmid @ T-Labs Berlin, 2013/4 49

Merger
If two sorted sub-sequences are input to Merger,

then output two sub-sequences: one clean, other bitonic.

Proof: Merger for sorted parts is like Half-Cleaner for bitonic:

After the merger step, either the upper or lower half is clean, the other bitonic.

Or vice versa  s
o

rt
e
d

s

o
rt

e
d

c
le

a
n

b

it
o

n
ic

Perfect Output for HC

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1 c
le

a
n

b

it
o

n
ic

s
o

rt
e
d

s
o

rt
e
d

Merger:

0

1

1

1

1

1

0

0

0

1

0

0

1

1

1

1

b
it

o
n

ic

c
le

a
n

b

it
o

n
ic

 Half Cleaner:

Perfect Output for HC

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1 c
le

a
n

b

it
o

n
ic

s
o

rt
e
d

s
o

rt
e
d

Merger:

0

1

1

1

1

1

0

0

0

1

0

0

1

1

1

1

b
it

o
n

ic

c
le

a
n

b

it
o

n
ic

 Half Cleaner:

legal input for

HC!

legal input for

HC!

Merging Network

Stefan Schmid @ T-Labs Berlin, 2013/4 52

Merging Network MN(n)

MN(n)

M(n)

BSS(n/2)

BSS(n/2)

…

…

…

…

Merge then half-clean it!

Merger M(n) followed by two BSS(n/2).

What is depth?

Merging Network

Stefan Schmid @ T-Labs Berlin, 2013/4 53

Merging Network MN(n)

MN(n)

M(n)

BSS(n/2)

BSS(n/2)

…

…

…

…

Merge then half-clean it!

Merger M(n) followed by two BSS(n/2).

What is depth?

depth 1

recursive so

log n

How does MN(8) look like?

Stefan Schmid @ T-Labs Berlin, 2013/4 54

How does MN(8) look like?

Stefan Schmid @ T-Labs Berlin, 2013/4 55

4

7

8

9

1

2

5

6

What does MN(8) do?

Stefan Schmid @ T-Labs Berlin, 2013/4 56

4

7

8

9

1

2

5

6

What does MN(8) do?

Stefan Schmid @ T-Labs Berlin, 2013/4 57

4

7

8

9

1

2

5

6

If both halfs of input sequences sorted, sorted in end!

1

2

4

5

6

7

8

9

Merging Network

Stefan Schmid @ T-Labs Berlin, 2013/4 58

Merging Network (MN)
Merges two sorted input sequences of length n/2 into

one sorted sequence of length n.

Proof: After the merger step, either the upper or lower half is clean,

the other bitonic. BSS sequence sorters take care of complete sorting.

So how to sort n values? Can merge two halves: do it recursively!

Batcher’s

Stefan Schmid @ T-Labs Berlin, 2013/4 59

Batcher’s Network (BN)

BN(n)

MN(n)

BN(n/2)

BN(n/2)

…

…

…

…

Like Merge-Sort: Sort larger and larger subsequences!

Example: BN(4)?

Sorting time / depth?

Batcher’s

Stefan Schmid @ T-Labs Berlin, 2013/4 60

BN(n)

MN(n)

MN(n/2)

MN(n/2)

…

…

…

…

sorted

eighths

MN(n/4)

MN(n/4)

MN(n/4)

MN(n/4)

…

…

sorted

halfs

sorted

quarters

Batcher’s

Stefan Schmid @ T-Labs Berlin, 2013/4 61

BN(n)

MN(n)

MN(n/2)

MN(n/2)

…

…

…

…

MN(n/4)

MN(n/4)

MN(n/4)

MN(n/4)

…

…

log n log n log n

Example

62

Batcher Network BN(4), i.e. w=4:

MN(4) 2xBN(2)
M(4)

2xBSS(2)

Example

63

Batcher Network BN(4), i.e. w=4:

MN(4) 2xBN(2)
M(4)

2xBSS(2)

7

3

6
1

Example

64

Batcher Network BN(4), i.e. w=4:

MN(4) 2xBN(2)
M(4)

2xBSS(2)

7

3

6
1

3

7

1
6

3

6

1

7

1

3

6
7

larger subsequences sorted…

Batcher’s

Stefan Schmid @ T-Labs Berlin, 2013/4 65

Batcher’s Sort
Batcher’s network sorts in O(log2 n) time.

Proof:

Correctness: It’s like merge sort! At recursive stage k (for k=1,…, log n), we merge

2k sorted sequences into 2k-1 sorted sequences.

Depth: Merging network has log n depth, and we have log n many.

Can we do better? Yes, but not in this lecture…

Remark:

- O(log2 n) also possible in hypercubic networks / butterflies

End of Lecture

Stefan Schmid @ T-Labs Berlin, 2013/4 66

