
Stefan Schmid @ T-Labs, 2011

Network Algorithms

Vertex Coloring

Graph Coloring

Stefan Schmid @ T-Labs Berlin, 2013/4 2

How to color? Chromatic number?

Tree! Two colors enough...

3 Stefan Schmid @ T-Labs Berlin, 2013/4

And now?

Three colors enough...

4 Stefan Schmid @ T-Labs Berlin, 2013/4

Graph Coloring

Why color a network?

5 Stefan Schmid @ T-Labs Berlin, 2013/4

Graph Coloring

Medium access: reuse frequencies in

wireless networks at certain spatial distance

such that there is „no“ interference.

Break symmetries: more generally...

Note: gives independent sets... How?

6 Stefan Schmid @ T-Labs Berlin, 2013/4

Science: „Human coloring“!

Human interaction as local

algorithm?

How good are „we“?

7

Also good to know...

8

4-Color Theorem

Can color each map using 4 colors only:

no two adjacent countries have same color.

Also good to know...

9

4-Color Theorem

Can color each map using 4 colors only:

no two adjacent countries have same color.

First conjecture 1852, first proof with 5 colors 1890.

First computer proof 1976 (Appel+Haken), since then

simpler proofs, but still some doubts...

Simple Coloring Algorithm? (Not distributed!)

Greedy Sequential

while (uncolored vertices v left):

 color v with minimal color that does not

 conflict with neighbors

Analysis?

rounds/steps?

colors?

10 Stefan Schmid @ T-Labs Berlin, 2013/4

Simple Coloring Algorithm? (Not distributed!)

Greedy Sequential

while (uncolored vertices v left):

 color v with minimal color that does not

 conflict with neighbors

steps

At most n steps: walk through all nodes...

colors

+1, where  is max degree.

Because: there is always a color free in {1, ..., +1}

Note: many graphs can be colored with less colors!

Examples?

11 Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Now distributed!

How to do it in a distributed manner?

12 Stefan Schmid @ T-Labs Berlin, 2013/4

Now distributed!

First Free

Assume initial coloring (e.g., unique ID=color)

1. Each node uses smallest available color

 in neighborhood

Assume: two neighbors never choose color at the same time...

Reduce
Initial coloring = IDs

Each node v:

1. v sends ID to neighbors (idea: sort neighbors!)

2. while (v has uncolored neighbor with higher ID)

1. v sends „undecided“ to neighbors

3. v chooses free color using First Free

4. v sends decision to neighbors

1

4

1

2

4

ID=1

ID=2

ID=3

ID=4

Analysis? Not parallel!
Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Now distributed!

Let us focus on trees now....

Chromatic number?

Algo?

14 Stefan Schmid @ T-Labs Berlin, 2013/4

Stefan Schmid @ T-Labs, 2011

Slow Tree

Slow Tree
1. Color root 0, send to kids

Each node v does the following:

• Receive message x from parent

• Choose color y=1-x

• Send y to kids

15 Stefan Schmid @ T-Labs Berlin, 2013/4

Slow Tree

Two colors suffice: root sends binary message down...

16 Stefan Schmid @ T-Labs Berlin, 2013/4

Slow Tree

Two colors suffice: root sends binary message down...

17 Stefan Schmid @ T-Labs Berlin, 2013/4

Slow Tree

Two colors suffice: root sends binary message down...

18 Stefan Schmid @ T-Labs Berlin, 2013/4

Slow Tree

Two colors suffice: root sends binary message down...

Time complexity?

Message complexity?

Local computations?

Synchronous or

asynchronous?

19 Stefan Schmid @ T-Labs Berlin, 2013/4

Slow Tree

Two colors suffice: root sends binary message down...

Time complexity? depth · n

Message complexity? n-1

Local computations? laughable...

Synchronous or asynchronous? both!

20 Stefan Schmid @ T-Labs Berlin, 2013/4

Discussion

Time complexity? depth · n

Message complexity? n-1

Local computations? laughable...

Synchronous or asynchronous? both!

Can we do better?

21 Stefan Schmid @ T-Labs Berlin, 2013/4

Local Vertex Coloring for Tree?

Can we do faster than diameter of tree?!

Yes! With constant number of colors in

 log*(n) time

One of the fastest non-constant time algos that exist! (... besides

inverse Ackermann function or so)

(log = divide by two, loglog = ?, log* = ?)

log* (# atoms in universe) ¼ 5

Why is this good? If something happens (dynamic network),

back to good state in a sec!

There is a lower bound of log-star too, so that‘s optimal!

22 Stefan Schmid @ T-Labs Berlin, 2013/4

How does it work?

0010110000

1010010000

0110010000

Initially: each node has unique log(n)-bit ID = legal coloring

(interpret ID as color => n colors)

...

...

Idea:

 root should have label 0 (fixed)

 in each step: send ID to cv to all children;

 receive cp from parent and interpret as little-endian bit string: cp=c(k)...c(0)

 let i be smallest index where cv and cp differ

 set new cv = i (as bit string) || cv(i)

 until cv 2 {0,1,2,...,5} (at most 6 colors)

...

23 Stefan Schmid @ T-Labs Berlin, 2013/4

6-Colors

6-Colors

Assume legal initial coloring

Root sets itself color 0

Each other node v does (in parallel):

1. Send cv to kids
2. Repeat (until cw 2 {0,...,5} for all w):

1. Receive cp from parent

2. Interpret cv/cp as little-endian bitstrings c(k)...c(1)c(0)

3. Let i be smallest index where cv and cp differ

4. New label is: i||cv(i)

5. Send cv to kids

24 Stefan Schmid @ T-Labs Berlin, 2013/4

How does it work?

0010110000

1010010000

0110010000

Initially: each node has unique log(n)-bit ID = legal coloring

(interpret ID as color => n colors)

...

...

Idea:

 root should have label 0 (fixed)

 in each step: send ID to cv to all children;

 receive cp from parent and interpret as little-endian bit string: cp=c(k)...c(0)

 let i be smallest index where cv and cp differ

 set new cv = i (as bit string) || cv(i)

 until cv 2 {0,1,2,...,5} (at most 6 colors)

Round 1

...

25 Stefan Schmid @ T-Labs Berlin, 2013/4

How does it work?

0010110000

1010010000

0110010000

Initially: each node has unique log(n)-bit ID = legal coloring

(interpret ID as color => n colors)

...

...

Idea:

 root should have label 0 (fixed)

 in each step: send ID to cv to all children;

 receive cp from parent and interpret as little-endian bit string: cp=c(k)...c(0)

 let i be smallest index where cv and cp differ

 set new cv = i (as bit string) || cv(i)

 until cv 2 {0,1,2,...,5} (at most 6 colors)

Round 1
1010010000
0010110000

01010

Differ at position 5 = (0101)2

0110010000
1010010000

10001

Differ at position 8 = (1000)2

...

26 Stefan Schmid @ T-Labs Berlin, 2013/4

How does it work?

10010

01010

10001

Initially: each node has unique log(n)-bit ID = legal coloring

(interpret ID as color => n colors)

...

...

Idea:

 root should have label 0 (fixed)

 in each step: send ID to cv to all children;

 receive cp from parent and interpret as little-endian bit string: cp=c(k)...c(0)

 let i be smallest index where cv and cp differ

 set new cv = i (as bit string) || cv(i)

 until cv 2 {0,1,2,...,5} (at most 6 colors)

Round 2

...

27 Stefan Schmid @ T-Labs Berlin, 2013/4

How does it work?

10010

01010

10001

Initially: each node has unique log(n)-bit ID = legal coloring

(interpret ID as color => n colors)

Idea:

 root should have label 0 (fixed)

 in each step: send ID to cv to all children;

 receive cp from parent and interpret as little-endian bit string: cp=c(k)...c(0)

 let i be smallest index where cv and cp differ

 set new cv = i (as bit string) || cv(i)

 until cv 2 {0,1,2,...,5} (at most 6 colors)

Round 2
01010
10010

111

Differ at position 3 = (11)2

...

10010

01010

10001

...

...

...

28 Stefan Schmid @ T-Labs Berlin, 2013/4

How does it work?

111

001

Initially: each node has unique log(n)-bit ID = legal coloring

(interpret ID as color => n colors)

Idea:

 root should have label 0 (fixed)

 in each step: send ID to cv to all children;

 receive cp from parent and interpret as little-endian bit string: cp=c(k)...c(0)

 let i be smallest index where cv and cp differ

 set new cv = i (as bit string) || cv(i)

 until cv 2 {0,1,2,...,5} (at most 6 colors)

Round 3,

etc.

...

...

...

29 Stefan Schmid @ T-Labs Berlin, 2013/4

Why does it work?

Why is this log* time?!

Idea: In each round, the size of the ID (and hence the number of colors) is reduced by a log factor:

To index the bit where two labels of size n bits differ, log(n) bits are needed!

Plus the one bit that is appended...

Why is this a valid vertex coloring?!

Idea: During the entire execution, adjacent nodes always have different colors (invariant!) because:

IDs always differ as new label is index of difference to parent plus own bit there (if parent would differ

at same location as grand parent, at least the last bit would be different).

Why cw 2 {0,...,5}?! Why not more or less?

Idea: {0,1,2,3} does not work, as two bits are required to address index where they differ, plus

adding the „difference-bit“ gives more than two bits...

Idea: {0,1,2,...,7} works, as 7=(111)2 can be described with 3 bits, and to address index (0,1,2)

requires two bits, plus one „difference-bit“ gives three again.

Moreover: colors 110 (for color „6“) and 111 (for color „7“) are not needed, as we can do another

round! (IDs of three bits can only differ at positions 00 (for „0“), 01 (for „1“), 10 (for „2“)

30 Stefan Schmid @ T-Labs Berlin, 2013/4

Everything super?

When can I terminate?

Not a local algorithm like this! Node cannot know when *all* other nodes have colors in that range!

Kid should not stop before parent stops! Solution: wait until parent is finished?

Six colors is good: but we know that tree can be colored with two only!

How can we improve coloring quickly?

No way, this takes linear time in tree depth!

Ideas?

If nodes know n, they can stop after the (deterministic) execution time...

Other ideas? Maybe an exercise...

31 Stefan Schmid @ T-Labs Berlin, 2013/4

Shift Down

Shift Down

Each node v concurrently does:

 recolor v with color of parent

Property?
Preserves coloring legality!

Siblings become monochromatic!

(Make siblings „independent“.) Stefan Schmid @ T-Labs Berlin, 2013/4

6-to-3

6-to-3

Each other node v does (in parallel):

1. Run „6-Colors“ for log*(n) rounds

2. For x=5,4,3:

1. Perform Shift Down
2. If (cv=x) choose new color cv 2 {0,1,2} according

 „first free“ principle

Why still log*?

Rest is fast....

Why {3,4,5} recoloring not in same step?

Make sure coloring remains legal....

Cancel remaining colors one at a time

(nodes of same color independent, but not others:

parent may also be in {3,4,5})!

Why does it work?

One of the three colors must be free!

 (Need only two colors in tree, and due

to shift down, one color is occupied by

parent, one by children!)

We only recolor nodes simultaneously

which are not adjacent.

And afterwards no higher color is left...

33 Stefan Schmid @ T-Labs Berlin, 2013/4

Example: Shift Down + Drop Color 4

4
shift

down

3 2

4 1

1

first free

for 4

4 4

3 3

1

0 3

3 3

Siblings no longer have

same color => must do

shift down again first!

34 Stefan Schmid @ T-Labs Berlin, 2013/4

Example: 6-to-3

4

3 5

2
1 2

4

5
2

2

4 4

5
5 3

2

3
3

2

4 4

0
0 3

2

3
3

shift

down

new color for

5: first free

1

2 2

4
4 4

3

4
4

shift

down

35 Stefan Schmid @ T-Labs Berlin, 2013/4

Careful: cannot

recolor 4 at

same time!

Discussion

Can we reduce to 2 colors?

Not without increasing runtime significantly!

(Linear time, more than exponentially worse!)

Other topologies?

Yes, similar ideas to O()-color general graphs

with constant degree  in log* time!

How?

Lower bounds?

Yes. 

In particular, runtime of our algorithm is asymptotically optimal.

36 Stefan Schmid @ T-Labs Berlin, 2013/4

End of lecture

Literature for further reading:

- Peleg‘s book:

37

