Network Algorithms

Vertex Coloring

Graph Coloring

Nodes should color themselves such
that no adjacent nodes have same
color — but minimize # colors!

Stefan Schmid @ T-Labs Berlin, 2013/4

How to color? Chromatic number?

O
Q\© N

Tree! Two colors enough...

Stefan Schmid @ T-Labs Berlin, 2013/4 3

And now?

Three colors enough...

Stefan Schmid @ T-Labs Berlin, 2013/4 4

Graph Coloring

Why color a network?

Stefan Schmid @ T-Labs Berlin, 2013/4

Graph Coloring

Medium access: reuse frequencies In
wireless networks at certain spatial distance
such that there is ,no" interference.

Break symmetries: more generally...

Note: gives independent sets... How?

Stefan Schmid @ T-Labs Berlin, 2013/4

Science: ,Human coloring”!

Human interaction as local
algorithm?
How good are ,we"?

I REPORTS

An Experimental Study of the Coloring
Problem on Human Subject Networks

Michael Kearns,* Siddharth Suri, Nick Montfert

Theoretical work suggests that structural properties of naturally occurring networks are important
in shaping behavior and dynamics. However, the relationships between structure and behavior
are difficult to establish through empirical studies, because the networks in such studies are
typically fixed. We studied networks of human subjects attempting to solve the graph or network
coloring problem, which models settings in which it is desirable to distinguish one's behavior
from that of one's network neighbors. Networks generated by preferential attachment made solving
the coloring problem more difficult than did networks based on cyclical structures, and “small
worlds” networks were easier still. We also showed that providing more information can have
opposite effects on performance, depending on network structure,

naturally oceurring networks are influential

in shaping individual and collective behavior
and dynamics. Examples include the popular
notion that “hubs™ or “connectors™ are inordi-
nately impaortant in the routing of information in
social and organizational networks (/, 2). A
long history of research has established the
frequent empirical appearance of certain struc-
tural properties in networks from many do-
mains, including sociology ({, 3-3), biology
(6, 7), and technology (§). These properties
include small diameter (the “six degrees of
separation” phenomenon), local clustering of
connectivity (), and heavy-tailed distributions
of connectivity (/(7). Theoretical models have
sought to explain how some of these may in-
teract with network dynamics ({7).

The relationships between structure and be-
havior are difficult to establish in empirical field
studies of existing networks. In such studies,
the network structure is fixed and given, thus
preventing the investigation of aliematives. A
different approach is to conduct controlled lab-
oratory studies in which network structure is
deliberately varied.

‘We have been parforming human subject ex-
periments in distributed problem-solving from
local information on a variety of simple and
complex networks. Subjects each simultaneous-
ly control a single vertex in a network of 38
vertices and attempt to solve the challenging
graph coloring problem (12) on the network. In
this problem, the collective goal is for every
plaver to select a color for their vertex that

It is often thought that structural properties of

The graph coloring problem is a natural
abstraction of many human and organizational
problems in which it is desirable or necessary to
distinguish one’s behavior from that of neighbor-
ing parties. As a specific scenario, consider the
problem faced by faculty members scheduling
departmental events—recurring classes, one-time
seminars, exams, and so on—in a limited number
of available rooms. We can view the events to be
scheduled as the vertices in a network, with an edge
connecting any pair of events that temporally
overlap, even partially. Clearly, two such events
miust be assigned o different rooms or “colors,”
thus yielding a natral graph coloring problem.
Furthermare, even when there is a centralized first-
come, fistserve sign-up sheet for rooms, this
mechanism is simply the starting point for the
negotiation of a solution, and the problem is still
solved in a largely distributed fashion by the
participants: Faculty members routinely query the
current holder of 2 room whether they might be
able to switch to a different room, whether their
event will really require their entire time slot, and
the like. Other coloring-like problems arise ina

variety of social activities (such as selecting a cell
phone ringtone that differs from those of family
members, friends, and colleagues): technological
coordination [selecting a channel unused by near-
Ty parties in a wireless communication netwaork
{13, 14)]; and individual differentiation within an
organization (developing an expertise not du-
plicated by others nearby). Graph coloring also
generalizes many traditional problems in logistics
and operations ressarch (/2).

The coloring problem was chosen for both its
simplicity of description and its contrast to other
distributed network optimization problems. Un-
like the well-studied studied navigation or
shortest-paths problem, optimal coloring is noto-
riously intractable from the viewpoint of even
centralized computation (72, /5). In fact, even
weak approximations (in which many more
colors than the chromatic number are permitted)
are known to be equally difficult (74, 17).

We report here on the findings from two
extensive experimental sessions held in January
2006 with 55 University of Pennsylvania undar-
graduate students (/&) Subjects were given a
series of coloring experiments in which the
network had one of six topologies, each chosen
according o recently proposed models of net-
work formation (Fig. | and Table 1). Three of
these six begin with 2 simple cycle and then
add a wvarying number of randomly chosen
chords while preserving a chromatic number of
two. These “small worlds™ networks (¥, 79) are
intended to model the mixture of local connec-
tivity (as induced by geography) with long-
distance connectivity (as induced by travel or
chance meetings) often found in social and
other networks, The fourth cycle-based network
adopted a more engineered or hierarchical
structure, with two distinguished individuals
having inordinately high connectivity. The fifth
and sixth networks were generated according
o the well-studied preferential attachment

Downloaded from www.sciencemag.org on January 18, 2007

Also good to know...

4-Color Theorem
Can color each map using 4 colors only:
no two adjacent countries have same color.

Also good to know...

4-Color Theorem

Can color each map using 4 colors only:
no two adjacent countries have same color.

First conjecture 1852, first proof with 5 colors 1890.
First computer proof 1976 (Appel+Haken), since then
{ simpler proofs, but still some doubts...

Simple Coloring Algorithm? (Not distributed!)

Greedy Sequential

while (uncolored vertices v left):
color v with minimal color that does not

conflict with neighbors

Analysis?
rounds/steps?
colors?

Stefan Schmid @ T-Labs Berlin, 2013/4

10

Simple Coloring Algorithm? (Not distributed!)

Greedy Sequential

while (uncolored vertices v left):
color v with minimal color that does not

conflict with neighbors

steps
At most n steps: walk through all nodes...

colors

A+1, where A is max degree.
Because: there is always a color free in {1, ..., A+1}

Note: many graphs can be colored with less colors!
Examples?

Stefan Schmid @ T-Labs Berlin, 2013/4 11

How to do it in a distributed manner?

Stefan Schmid @ T-Labs Berlin, 2013/4 12

Now distributed!

. ID=4 <
First Free
ID=2
Assume initial coloring (e.g., unique ID=color)
1. Each node uses smallest available color D=1
in neighborhood b=
Assume: two neighbors never choose color at the same time... \
Reduce

Initial coloring = IDs

Each node v:

1. v sends ID to neighbors (idea: sort neighbors!)

2. while (v has uncolored neighbor with higher ID)
1. v sends ,undecided” to neighbors

3. v chooses free color using First Free

4. v sends decision to neighbors

_ | Analysis? Not parallel!
Stefan Schmid @ T-Labs Berlin, 2013/4

Let us focus on trees now....
Chromatic number?
Algo?

Q/

Yo

Stefan Schmid @ T-Labs Berlin, 2013/4 14

Slow Tree

1. Color root 0, send to kids

Each node v does the following:
« Receive message x from parent
« Choose color y=1-x
« Sendy to kids

Stefan Schmid @ T-Labs Berlin, 2013/4

15

Slow Tree

Two colors suffice: root sends binary message down...

Stefan Schmid @ T-Labs Berlin, 2013/4

16

Slow Tree

Two colors suffice: root sends binary message down...

Stefan Schmid @ T-Labs Berlin, 2013/4

17

Slow Tree

Two colors suffice: root sends binary message down...

Stefan Schmid @ T-Labs Berlin, 2013/4

18

Slow Tree

Two colors suffice: root sends binary message down...

Jo 5

Time complexity?
Message complexity?
Local computations?

Synchronous or
asynchronous?

Stefan Schmid @ T-Labs Berlin, 2013/4

19

Slow Tree

Two colors suffice: root sends binary message down...

Jo 5

Time complexity? depth < n
Message complexity? n-1

Local computations? laughable...
Synchronous or asynchronous? both!

Stefan Schmid @ T-Labs Berlin, 2013/4 20

Discussion

Time complexity? depth <n
Message complexity? n-1

Local computations? laughable...
Synchronous or asynchronous? both!

Can we do better?

Stefan Schmid @ T-Labs Berlin, 2013/4

21

Local Vertex Coloring for Tree?

Can we do faster than diameter of tree?!

Yes! With constant number of colors in \O
log*(n) time b

One of the fastest non-constant time algos that exist! (... besides
inverse Ackermann function or so)

(log = divide by two, loglog = ?, log* = ?)
log* (# atoms in universe) =~ 5

Why is this good? If something happens (dynamic network),
back to good state in a sec!

There is a lower bound of log-star too, so that's optimal!

Stefan Schmid @ T-Labs Berlin, 2013/4 22

How does it work?

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

0010110000

1010010000

0110010000

b

ldea:
root should have label O (fixed)
in each step: send ID to c, to all children;
receive c, from parent and interpret as little-endian bit string: c,=c(k)...c(0)
let i be smallest index where ¢, and c,, differ
set new c, =i (as bit string) || c,(i)
until c, € {0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2013/4

23

6-Colors

6-Colors

Assume legal initial coloring
Root sets itself color O
Each other node v does (in parallel):
1. Send c, to kids
2. Repeat (until c,, € {0,...,5} for all w):

. Receive ¢, from parent

. Interpret c,/c, as little-endian bitstrings c(k)...c(1)c(0)
. Letibe smallest index where c, and c, differ

. New label is: i||c,(i)

. Send c, to kids

Stefan Schmid @ T-Labs Berlin, 2013/4 24

How does it work?

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

0010110000

0110010000

Idea:
root should have label O (fixed)
in each step: send ID to c, to all children;
receive c, from parent and interpret as little-endian bit string: c,=c(k)...c(0)
let i be smallest index where ¢, and c, differ
set new c, = i (as bit string) || c,(i)
until c, € {0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2013/4

Round 1

25

How does it work?

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

Differ at position 5 = (0101),

* IIIIIIIIIIIIIIIIIIIIIIIIII
0010110000 <"
1010010000 _¥..

01010 1010010000

..... i Round 1
5y
Differ at position 8 = (1000), " /
T
1010010000 * 110010000
0110010000 “
10001
Idea:

root should have label O (fixed)

in each step: send ID to c, to all children;

receive c, from parent and interpret as little-endian bit string: c,=c(k)...c(0)
let i be smallest index where c, and c, differ

set new c, = i (as bit string) || c,(i)

until c, € {0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2013/4 26

How does it work?

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

10010

Round 2

Idea:
root should have label O (fixed)
in each step: send ID to c, to all children;
receive c, from parent and interpret as little-endian bit string: c,=c(k)...c(0)
let i be smallest index where c, and c, differ
set new c, = i (as bit string) || c,(i)
until c, € {0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2013/4 27

How does it work?

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

Differ at position 3 = (11),

el
\ v
111
‘‘‘‘‘‘‘‘‘‘‘ @ QO Round 2

0..
3

Idea:
root should have label O (fixed)
in each step: send ID to c, to all children;
receive c, from parent and interpret as little-endian bit string: c,=c(k)...c(0)
let i be smallest index where c, and c, differ
set new c, = i (as bit string) || c,(i)
until c, € {0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2013/4 28

How does it work?

Initially: each node has unique log(n)-bit ID = legal coloring
(interpret ID as color => n colors)

Round 3,
etc.

Idea:
root should have label O (fixed)
in each step: send ID to c, to all children;
receive c, from parent and interpret as little-endian bit string: c,=c(k)...c(0)
let i be smallest index where ¢, and c, differ
set new c, = i (as bit string) || c,(i)
until c, € {0,1,2,...,5} (at most 6 colors)

Stefan Schmid @ T-Labs Berlin, 2013/4 29

Why does it work?

Why is this log* time?!

Idea: In each round, the size of the ID (and hence the number of colors) is reduced by a log factor:
To index the bit where two labels of size n bits differ, log(n) bits are needed!
Plus the one bit that is appended...

Why is this a valid vertex coloring?!

Idea: During the entire execution, adjacent nodes always have different colors (invariant!) because:
IDs always differ as new label is index of difference to parent plus own bit there (if parent would differ
at same location as grand parent, at least the last bit would be different).

Why c,, € {0,...,5}?! Why not more or less?

Idea: {0,1,2,3} does not work, as two bits are required to address index where they differ, plus
adding the ,difference-bit“ gives more than two bits...

ldea: {0,1,2,...,7} works, as 7=(111), can be described with 3 bits, and to address index (0,1,2)
requires two bits, plus one ,difference-bit" gives three again.

Moreover: colors 110 (for color ,,6) and 111 (for color ,,7%) are not needed, as we can do another
round! (IDs of three bits can only differ at positions 00 (for ,,0), 01 (for ,1%), 10 (for ,2%)

Stefan Schmid @ T-Labs Berlin, 2013/4 30

Everything super?

When can | terminate?

Not a local algorithm like this! Node cannot know when *all* other nodes have colors in that range!
Kid should not stop before parent stops! Solution: wait until parent is finished?

No way, this takes linear time in tree depth!
Ideas?

If nodes know n, they can stop after the (deterministic) execution time...
Other ideas? Maybe an exercise...

Six colors is good: but we know that tree can be colored with two only!

How can we improve coloring quickly?

Stefan Schmid @ T-Labs Berlin, 2013/4 31

Shift Down

Shift Down

Each node v concurrently does:
recolor v with color of parent

Property?

Preserves coloring legality!

Siblings become monochromatic!
Stefan Schmid @ T-Labs Berlin, 2013/4 (Make siblings ,independent®.)

6-t0-3

6-t0-3

Each other node v does (in parallel):
1. Run ,6-Colors” for log*(n) rounds
2. For x=5,4,3:

1. Perform Shift Down
2. If (c,=x) choose new color c, € {0,1,2} according

Jfirst free” principle

Why still log*? Why does it work?

One of the three colors must be free!
(Need only two colors in tree, and due

Why {3,4,5} recoloring not in same step? to shift down, one color is occupied by
parent, one by children!)

Make sure cglqrmg remains lega _ We only recolor nodes simultaneously
Cancel remaining colors one at a time which are not adjacent.

(nodes of same color independent, but not others: And afterwards no higher color is left...
parent may also be in {3,4,5})!

Rest is fast....

Stefan Schmid @ T-Labs Berlin, 2013/4 33

Example: Shift Down + Drop Color 4

first free
for 4

—

Siblings no longer have
same color => must do
shift down again first!

Stefan Schmid @ T-Labs Berlin, 2013/4 34

Example: 6-t0-3

new color for
5: first free

Careful: cannot
recolor 4 at
same timel

Stefan Schmid @ T-Labs Berlin, 2013/4 35

Discussion

Can wereduce to 2 colors?

Not without increasing runtime significantly!
(Linear time, more than exponentially worse!)

Other topologies?

Yes, similar ideas to O(A)-color general graphs
with constant degree A in log* time!
How?

Lower bounds?

Yes. ©

In particular, runtime of our algorithm is asymptotically optimal.

Stefan Schmid @ T-Labs Berlin, 2013/4

36

Literature for further reading:

- Peleg’s book:

DISTRIBUTED COMPUTING

End of lecture

37

