
Chapter 11

Graph Neural Networks

Neural networks have been successful in handling various forms of data, but
they are strongest when they work with highly structured and ordered input
data: simple scalars, vectors, matrices (images, temporal data), tensors (multi-
dimensional matrices).

Since some of the world’s most interesting data is represented by graphs, it
would be great to be able to perform (deep) learning on graph-structured inputs
as well. This is an area which has only recently started developing, mostly in
the form of Graph Neural Networks (GNNs). Since the study of GNNs overlaps
quite substantially with the study of distributed graph algorithms, GNNs fit
nicely with our other material.

11.1 What are GNNs?

Graph Neural Networks (GNNs) are one of the success stories of machine learn-
ing in the past few years: they have achieved remarkable results in various appli-
cations, such as chemistry, physical systems, social science or recommendation
systems.

Remarks:

• Similarly to our previous algorithms, GNNs operate on graphs. For
simplicity, we will assume that these graphs have a bounded degree,
i.e. ∆ is a constant.

• In GNNs, nodes do not have identifiers; instead they have features,
which describe some properties of the node. We can assume that
features are represented as real numbers. Unlike IDs, these features
might not be unique.

• To make our examples simpler, we assume that a node only has a
single feature. However, in most cases, nodes actually have d different
features, so the features of each node are stored as a vector v ∈ R

d.

• A GNN is similar to our synchronous message passing model (Defini-
tion 1.8): the GNN operates in rounds, and every node communicates
with their neighbors in each round.

115

116 CHAPTER 11. GRAPH NEURAL NETWORKS

Definition 11.1. A Graph Neural Network (GNN) operates in synchronous
rounds. In each round, every node v independently computes a new state; we

denote the state of v after time step t by h
(t)
v . The initial state h

(0)
v is the node

feature(s) of v.
The state in time step t is always computed from (i) the node’s own state

h
(t−1)
v in the previous time step, and (ii) the state h

(t−1)
u of the nodes’ neighbors

u ∈ N(v) in the previous time step. More specifically, GNNs are described in
terms of two functions:

a(t)v = aggregate({{h(t−1)
u | u ∈ N(v)}})

and
h(t)
v = update(h(t−1)

v , a(t)v),

where aggregate is a permutation-invariant function, which can handle any
number of inputs.

Remarks:

• The double brackets {{·}} denote a multiset, where the same element
can also appear multiple times.

• Permutation-invariance means that if the same multiset of states was
distributed in any other way among the neighbors, then the function
would still return the same value.

• In the machine learning literature, the states of nodes are also called
embeddings.

• In the context of GNNs, the rounds are also called layers. We will
denote the number of rounds/layers by r, where r is usually a small
constant.

• GNNs can also operate on directed graphs, by only taking in-neighbors
into account when aggregating.

• In more sophisticated models, the aggregate and update functions
may also depend on the time step t. However, they cannot depend on
the node v, since each node uses the same function (i.e. executes the
same program).

• How can we make sure that the aggregate function is permutation-
invariant, but still expressive?

Example 11.2. Aggregation is often implemented as

aggregate(M) := A({{f(i) | i ∈M}})

where f is some transformation f : R → R, and A is one of the following
permutation-invariant functions: max, mean, sum. In the simplest case, the
transformation f is implemented as

f(x) := σ(w · x),

where w ∈ R is a learnable weight, and σ is a simple non-linearity.

11.1. WHAT ARE GNNS? 117

Remarks:

• Executing a transformation f before A ensures that the GNN can
represent a large class of functions. The non-linearity σ is usually a
simple function such as the step function (σ(x) = 0 for x < 0, σ(x) = 1
for x ≥ 0), a ReLU (σ(x) = 0 for x < 0, σ(x) = x for x ≥ 0), or some
kind of a sigmoid.

• If our states are in R
d instead of just R, then the transformation is

a function f : Rd → R
d, W ∈ R

d×d is a matrix, and σ is applied
element-wise on each cell of Wx.

• The main idea behind GNNs is that these functions are not all hard-
coded. That is, while A and σ are usually decided in advance, the
weight w is learnt by the neural network on a large set of data; that
is, they are adjusted repeatedly during training, until the output of
the GNNs (the final state) is of good enough quality.

• Some applications use a more sophisticated function f ; for example,
a so-called multi-layer perceptron (MLP), which is essentially a small
network formed from a repeated application of the transformation
f(x) = σ(w ·x), with a different choice of weights on different levels. It
is known that MLPs can approximate any continuous R→ R function,
which hints that with such a powerful f, GNNs can compute many
different things.

• Let us see an example for a GNN!

Example 11.3. Let us construct a GNN to decide if a node v is adjacent
to a leaf node. Assume for convenience that the initial node features are the

degrees: h
(0)
v = δ(v). Then we can easily solve this task by a 1-layer GNN that

has
aggregate(N(v)) = min({{h(t−1)

u | u ∈ N(v))}}

and
update(h(t−1)

v , a(t)v) = a(t)v .

This ensures that if h
(1)
v = 1, then v has an adjacent leaf neighbor, whereas if

h
(1)
v ̸= 1, then this is not the case.

Remarks:

• GNNs are similar to our distributed algorithms in the message pass-
ing model: for a given number of rounds r, they aggregate messages
from their neighbors, do a computation, and then they pass on the
new states to their neighbors again. However, there are some key
differences.

• Most obviously, GNNs do not have infinite computational power: they
can only compute the next node state with the formulas above.

• Furthermore, they do not have the ability to send different, specialized
messages to different neighbors: their current node state is essentially
their entire view of the world, and they can only pass on this node
state to each of their neighbors in each round.

118 CHAPTER 11. GRAPH NEURAL NETWORKS

• Another important difference is that nodes do not have unique iden-
tifiers in this setting. Hence symmetry breaking and distinguishing
specific structures are some of the main challenges.

• Finally, nodes do not have a port numbering, i.e. they cannot dis-
tinguish their different neighbors. This means that if the neighbor

states form a multiset M = {{h
(t)
u | u ∈ N(v)}}, then any other per-

mutation of M along the neighbors would also produce the same next

state h
(t+1)
v . In this framework, a node might not even be able to

execute simple tasks that were fundamental steps in our distributed
algorithms, e.g. a node cannot decide if it received the same message
from a specific neighbor in two consecutive rounds.

• So what kind of graph-related questions do we want to answer with a

GNN? We know that GNNs compute a final state h
(r)
v for each node v.

In the simplest case, node labels are already the thing we are looking
for in the first place.

Definition 11.4 (Node Regression/Classification). In a node regression task,
we want to compute (or approximate) a function V → R. For example, we want
to compute some property of the nodes (represented as a real number or vector).
In node classification, we want to partition the nodes into different classes.

Remarks:

• If nodes are people and edges are family relations, we might classify
the nodes by their nationality. (Node regression is uncommon, but we
might for instance guess their height).

• The final state of the node can be interpreted as the value of this
property or the class.

• For more sophisticated classification, we can also apply a function

g(h
(0)
v , h

(1)
v , . . . , h

(r)
v) which predicts the final label of v from all the

states it had during the different rounds.

• In other applications, however, node states are not even the end of
the story.

Definition 11.5 (Graph Classification). In a graph classification task, we want
to estimate a function that is dependent on the entire graph; i.e. a function
G → R, where G denotes the set of all possible input graphs.

Remarks:

• For example, given the structure of a specific molecule, we want to
estimate some physical or chemical property of the molecule.

• In this case, we can collect the set of states of all of the nodes into
a multiset M with |M | = n, and learn a so-called readout function
M→ R for the graph classification task, whereM denotes the set of
all multisets of size n.

11.1. WHAT ARE GNNS? 119

• e.g. if each state h
(r)
u describes how faulty node u is, then we could

simply compute
∑

u∈V h
(r)
u as the total “faultiness” of the entire net-

work. For a classification task, we could also introduce a threshold
θ, e.g. θ = 3 or θ = n/5, and classify a network as too faulty if
∑

u∈V h
(r)
u ≥ θ.

• For another example, if we compute a state where h
(r)
u = 1 if node

u satisfies some (local) constraint and h
(r)
u = 0 otherwise, then an

aggregation with ANDu∈V allows us to decide if the constraint is
fulfilled at every node in the graph.

• Finally, another popular task is link prediction.

Definition 11.6 (Link Prediction). In a link prediction task, there is an orig-
inal graph G, but we only see a subset of the edges, i.e. we see another graph G′

where some of the edges of G are missing. Given a specific pair of nodes u and
v, our task is to predict whether the edge (u, v) is present in the original graph
G.

Remarks:

• In this case, we can learn a function R × R → [0, 1] which takes the

states h
(r)
u and h

(r)
v of u and v as inputs, and outputs the estimated

probability of the edge (u, v) being present in the graph.

• So what exactly can GNNs compute, and what not?

• Recall from Example 11.2 that some of the popular permutation-
invariant aggregation functions for A are max, mean and sum.

• So which of these three functions is the best choice? It depends on the
application. The example below shows that their expressive power is
different.

Example 11.7. In the example graphs of Figure 11.8, consider the state of v
after using a GNN with a single layer (r = 1).

The different values for the node feature are shown by colors. For simplicity,
assume that the orange feature corresponds to 1, and the green feature corre-
sponds to 2. Also, assume that we execute no transformation before aggregating
the values, i.e. f(x) = x in the formula of Example 11.2.

max aggregation cannot even distinguish the left and middle graphs, since
max returns 2 in both cases. However, mean can distinguish them: it returns
1.66 for the first graph, and 1.5 for the second.

However, even mean aggregation cannot distinguish the middle and right
examples: it returns 1.5 in both cases. On the other hand, sum can distinguish
these too: it returns 3 for the middle graph, and 6 for the right-hand graph.

120 CHAPTER 11. GRAPH NEURAL NETWORKS

2

1

2 2

1

1 2

2

1

v
v v

Figure 11.8: An example for the limits of different aggregators.

Remarks:

• Note that the choice of f does not matter for the example above: for

two nodes with the same feature h
(0)
v , the value of f(h

(0)
v) is the same

as well.

• This example suggests that mean aggregation is more expressive than
max, and sum is more expressive than mean.

• In terms of representative power, one can theoretically show that sum

indeed is the strongest one of these options. However, sum might not
always be the simplest choice in practice, since mean and max have
the useful property that the output does not scale with the number of
neighbors.

• So let us now revisit our original, general question: How can we de-
scribe the functions that GNNs can compute? In order to answer
this, we first have to make a brief detour to the Weisfeiler-Lehman
algorithm on graphs, also known as the state refinement algorithm.

11.2 WL Algorithm

Algorithm 11.9 State Refinement

1: t← 0
2: for all v ∈ V do

3: s
(0)
v ← 0

4: end for

5: while True do

6: for all v ∈ V do

7: s
(t+1)
v = relabel(s

(t)
v , {{s

(t)
u | u ∈ N(v)}})

8: end for

9: t← t+ 1
10: end while

Remarks:

• In the beginning of this algorithm, each node v has the same initial

state s
(0)
v , and these states are refined through multiple rounds.

• Throughout the algorithm, the state of a given node essentially rep-
resents its current knowledge about its local neighborhood.

11.2. WL ALGORITHM 121

• The relabel function is essentially a hash function which assigns a
different state to each possible configuration in the neighborhood of
the node. More formally, relabel is an injective function R×M→ R,
where M denotes all possible finite multisets of R.

• Intuitively speaking, this means that if two nodes u and v have the
same state in iteration t, then they will receive a different state in the
next time step if and only if there exists a state s such that u and v
have a different number of neighbors that are in state s at time step
t.

• After the first round of the algorithm, two nodes have the same state
if and only if they have the same degree.

• Note that there is no termination condition in the pseudocode: the
algorithm runs forever. However, in practice, we are only interested
in further refinement steps as long as the algorithm actually makes
progress, i.e. it distinguishes more nodes from each other.

Definition 11.10 (WL Termination). We say that state refinement has finished

at time step t if there exist no pair of vertices u, v such that s
(t)
u = s

(t)
v , but

s
(t+1)
u ̸= s

(t+1)
v .

Theorem 11.11. Algorithm 11.9 finishes in at most n rounds.

Proof. If the algorithm has not terminated after round t, then this means that

there are two vertices u and v such that s
(t−1)
u = s

(t−1)
v , but s

(t)
u ̸= s

(t)
v . On the

other hand, if nodes u and v have different states in round t, then they also
have different states in all subsequent rounds t′ > t.

Hence the number of different states that are present in the graph strictly
increases in each round. Since this can be at most n, the algorithm finishes after
at most n rounds.

Remarks:

• The state refinement algorithm is also known as the Weisfeiler-Lehman
(WL) algorithm. It was originally developed to test the isomorphism
of graphs.

Definition 11.12 (Graph Isomorphism). Two graphs G1(V1, E1) and G2(V2, E2)
are isomorphic if there exists a bijection π : V1 → V2 such that for any u, v ∈ V1,
we have (u, v) ∈ E1 if and only if (π(u), π(v)) ∈ E2.

Remarks:

• That is, if two graphs are isomorphic, then they are “essentially the
same”, but the nodes are (possibly) presented in a different order.

• Deciding if G1 and G2 are isomorphic is a fundamental problem, but
it is rather difficult: we do not know how to solve it in polynomial
time, even in a centralized setting. Think about a naive algorithm
that checks all possible bijections π: this would take Ω(n!) time.

122 CHAPTER 11. GRAPH NEURAL NETWORKS

Algorithm 11.13 Isomorphism testing with the output of Algorithm 11.9

1: M: = {{sv | v ∈ V1}} and M2 = {{sv | v ∈ V2}}
2: if M1 = M2 then

3: return “maybe isomorphic”
4: else

5: return “not isomorphic”
6: end if

• After running the state refinement algorithm on both G1 and G2, we
can test isomorphism with the following method.

Remarks:

• The equality of multisets can be checked, for example, by sorting both
multisets, and then comparing the corresponding elements.

• If these so-called canonical forms of two graphs are not equivalent,
then the two graphs are certainly not isomorphic.

• However, if the canonical forms are equivalent, then it is still possible
that the graphs are not isomorphic, but the test was unable to detect
this. In other words, the algorithm is a one-sided isomorphism test.

• Some examples for non-isomorphic graphs that are not distinguished
by the Weisfeiler-Lehman algorithm are as follows.

Example 11.14. The two 8-node graphs in Figure 11.15 are non-isomorphic: one
of them consists of two 4-cycles, the other consists of a single 8-cycle.

Since each node begins with the same state s and each node has exactly
two neighbors in state s, relabel assigns the same new state to each node.
Hence the algorithm already terminates in the first round on both graphs, and the
multisets M1 and M2 are identical; the algorithm outputs “maybe isomorphic”.

(a) (b)

Figure 11.15: Two graphs on 8 nodes, consisting of cycles of different length.

Example 11.16. The two graphs in Figure 11.17 are again non-isomorphic;
for example, one of them has a triangle, but the other does not.

In the first state refinement step, nodes receive different states based on their
degree. In the second step, however, nodes in the same state already all have
the same multiset of states in their neighborhoods, so the algorithm terminates.
The multiset of states is the same in the two graphs.

11.2. WL ALGORITHM 123

(a) (b)

Figure 11.17: Two graphs that cannot be distinguished by the WL algorithm.

Example 11.18. Figure 11.19 is a slight variation of Figure 11.17, where the
process goes on for three iterations instead of two, again outputting “maybe iso-
morphic”. The graphs in this case correspond to two different molecules, Decalin
and Bicyclopentyl.

(a) (b)

Figure 11.19: Two graphs that cannot be distinguished by the WL algorithm.

Remarks:

• For the full power of the algorithm, it is important that we compare
the actual states in M1 and M2, and not just the number of the oc-
currences of each state. For example, consider a clique on 4 nodes as
G1, and a cycle of length 4 as G2. Both graphs are regular, so the
refinement process will stop after one step in both cases, and both
graphs will end up with 4 nodes of identical state. However, this state
is different, since nodes in G1 have degree 3, while nodes in G2 have
degree 2. As such, M1 and M2 are different, and the WL-test can
distinguish the two graphs.

• In general, if both G1 and G2 are k-regular (every node has degree ex-
actly k), then the algorithm cannot distinguish them, since it already
terminates in the first iteration.

• We have already seen one example for non-isomorphic regular graphs
in Example 11.14: the WL-test cannot distinguish cycles of different
length. Another example is below.

Example 11.20. The molecules Decaprismane and Dodecahedrane both form
a 3-regular graph, as shown in Figure 11.21. However, they are not isomor-
phic: for example, Decaprismane contains a 4-cycle, while Dodecahedrane does
not. The WL algorithm cannot distinguish the two graphs.

124 CHAPTER 11. GRAPH NEURAL NETWORKS

(a) Decaprismane. (b) Dodecahedrane.

Figure 11.21: Two graphs that are both 3-regular.

Remarks:

• On the positive side, it was shown that the majority of graphs can
indeed be distinguished by the algorithm. That is, if we look at the
probability that two random graphs on n nodes can be distinguished
by the algorithm, then this probability goes to 1 as n goes to infinity.

• One can also show stronger results for special classes of graphs such
as trees.

Remarks:

• But how is the WL algorithm connected to GNNs?

• It turns out that they are closely related. Let us assume that a GNN
begins with no information on the nodes, i.e. any two nodes u, v have

the same features h
(0)
u = h

(0)
v .

Theorem 11.22 (GNN ⊆WL). If two nodes u and v in G have the same state

s
(r)
u = s

(r)
v after r rounds of the state refinement algorithm, then any r-layer

GNN on G will compute the same final states for the nodes u and v after r

rounds: h
(r)
u = h

(r)
v .

Proof. We can prove this by induction, showing that the states h
(t)
u and h

(t)
v are

identical after each time step t ∈ {0, . . . , r}. For t = 0, this is straightforward,
since all nodes begin with the same feature.

For a general t, assume that the statement is already proven for t−1. Assume
that u and v still have the same state in round t; due to the state refinement

algorithm, this implies that they had the same state s
(t−1)
u = s

(t−1)
v at time t−1,

and the same multiset of states in their neighborhood: {{s
(t−1)
u′ | u′ ∈ N(u)}} =

{{s
(t−1)
v′ | v′ ∈ N(v)}}. Due to the induction hypothesis, this means that h

(t−1)
u =

h
(t−1)
v and {{h

(t−1)
u′ | u′ ∈ N(u)}} = {{h

(t−1)
v′ | v′ ∈ N(v)}} in our GNN. However,

then according to the formulas in Definition 11.1, the nodes will also have the

same state h
(t)
u = h

(t)
v .

11.2. WL ALGORITHM 125

Remarks:

• This shows that the expressive power of GNNs is at most as high
as that of the WL-test: if the WL algorithm fails two distinguish two
graphs, then a GNN will also produce the same result on these graphs.

• For example, for several applications, it is important to know whether
a node is contained in a triangle. However, as Example 11.16 shows,
GNNs are unable to decide this from the final state of a node: the
blue nodes in the left graph are contained in a triangle, while the blue
nodes in the right graph are not. According to Theorem 11.22, these
blue nodes will end up with the same final state in the two graphs.

• So what about the other direction: are GNNs indeed as powerful as
the WL-test? Yes, it turns out!

Theorem 11.23 (WL⊆ “good” GNN). There exists an r-layer GNN that fulfills

the following property: if two nodes u and v are in different states s
(r)
u ̸= s

(r)
v

after r rounds of state refinement, then the GNN assigns different final states

h
(r)
u ̸= h

(r)
v to u and v.

Proof. We only outline the main idea of the proof here, which is quite natural: if
both aggregate and update are injective on their respective domains, then
whenever two nodes are in different states in the state refinement procedure,
then they are also in different states in the GNN. In particular, if this is the
case, then, through another induction, one can show that if the final states of u

and v are different in the state refinement procedure, then also h
(r)
u ̸= h

(r)
v . It

remains to show how to construct injective aggregate and update functions.
To construct such functions, we first need to make a technical assumption.

In particular, we assume that the initial (input) features are positive integers.
Note how this is not too constraining, since the set of all possible input feature
values is countable, as they can be represented inside computer memory. These
being said, we will construct our GNN to only ever operate on positive integers
during all rounds.

Now, to construct an injective aggregate function, first note that the de-
gree of the graph is bounded by ∆, meaning that aggregate takes multisets of
cardinality at most ∆ as its only argument. Then, let b be any integer such that
b > ∆ and define aggregate(M) =

∑

x∈M bx. This ensures that aggregate

is indeed injective: for any multiset M , the value aggregate(M) uniquely en-
codes M as a number in base b, where each position corresponds to a positive
integer, and the base-b digit at that position gives the multiplicity of this inte-
ger in M. Another way to construct aggregate that does not rely on ∆ being

bounded would be to take aggregate(M) =
∏

i∈Z+ p
M(i)
i , where pi denotes

the i-th prime number and M(i) denotes the multiplicity of i in multiset M .
An injective update function can be created in several ways, of which per-

haps the simplest is to define it as 2h
(t−1)
v ·3a

(t)
v . A specific value h

(t)
v then uniquely

determines the corresponding h
(t−1)
v and a

(t)
v .

126 CHAPTER 11. GRAPH NEURAL NETWORKS

Remarks:

• This means that the most powerful GNNs we can design are exactly
as powerful as Algorithm 11.9!

• Intuitively speaking, this also shows that whenever we can describe
an algorithm in the corresponding message passing model (constantly
many rounds, not distinguishing a node’s neighbors, no node IDs),
then a GNN can indeed express the function computed by the algo-
rithm. This allows us to discuss the expressiveness of GNNs on a
higher abstraction level, and ignore the details of the actual imple-
mentation. Of course, this only describes the theoretical capabilities
of a GNN — whether a GNN in practice can indeed learn such com-
plicated functions is another question.

• The WL-algorithm is in fact a hierarchy of isomorphism-heuristics;
what we discussed here is the 1-WL algorithm, but there are also more
sophisticated variants called k-WL (for each k ∈ Z

+). However, these
higher-order WL algorithms require at least Ω(nk) space and even
higher time complexity, so they are often not applicable in practice.

11.3 Over and Under

Apart from WL, GNNs also suffer from other fundamental problems.

Definition 11.24 (Oversmoothing). Oversmoothing is a GNN problem where
information quickly washes out because nodes aggregate all their neighbor infor-
mation.

Remarks:

• A problem that quickly emerged with GNNs is that we cannot have
many GNN layers. Each layer averages and hence smoothens out
the neighborhood information and the node’s features. This effect
leads to features converging after some layers, which is known as the
oversmoothing problem.

• Several works address the oversmoothing problem, for example by
sampling nodes and edges to use in message passing, leveraging skip
connections, additional regularization terms, or by adopting an asyn-
chronous model of communication.

Definition 11.25 (Underreaching). Using normal GNN layers, a GNN with
r layers can only learn about nodes at most r hops away. A node cannot act
correctly if it would need information that is r + 1 hops away.

Remarks:

• In other words, underreaching is closely related to locality, i.e., that
a distributed algorithm needs more rounds to gather all the necessary
information. This is one of the main themes in distributed computing.

11.4. MORE EXPRESSIVE GNNS 127

• There exist counter measures, for example, having a global exchange
of features, or spreading information using diffusion processes.

• Methods that help against oversmoothing are usually also applied
against underreaching, since we can use more layers and increase the
neighborhood size.

Definition 11.26 (Oversquashing). In many graphs, the size of k-hop neigh-
borhoods grows substantially with k. This requires squashing more and more
information into a node state. Eventually this leads to the congestion problem
(too much information having to pass through a bottleneck). This problem is
known as oversquashing.

Remarks:

• In distributed computing, oversquashing has a lot to do with conges-
tion. We studied congestion in the context of global problems, i.e., in
Chapter 6.

• One approach to solve oversquashing is introducing additional edges
that function as shortcuts to non-direct neighbors.

11.4 More Expressive GNNs

The examples in Figures 11.15–11.19 show that some neighborhoods cannot be
distinguished by the WL algorithm, and hence also not by GNNs. This raises a
natural question: how can we make GNNs more expressive?

Remarks:

• One natural approach is to introduce port numbers into our model;
this takes the setting closer to classical distributed algorithms.

Definition 11.27. In a GNN with port numbers, each node v numbers its
incident edges from 1 to δ(v), and the domain of aggregate is not a multiset
as before, but a vector R

∆, which allows the result to depend on the different
neighbors in a different way.

More formally, the domain of the aggregate function is R̂
∆, where R̂ =

R ∪ {⊥}, and ⊥ is a special symbol denoting that the node does not have a
neighbor with the given port number.

Remarks:

• Of course, there are multiple ways a node can number its incident
edges. In these GNNs, the final state also depends on the port numbers
assigned to the edges: for a different assignment of port numbers in
the same graph, the nodes might compute a different state!

• Port numbers are still not always enough to distinguish some of our
examples.

Theorem 11.28. GNNs with port numbers are still unable to distinguish some
of the previous examples in case of an unlucky port numbering.

128 CHAPTER 11. GRAPH NEURAL NETWORKS

Proof. Consider Figure 11.29, which is an extension of the graph in Figure 11.15
with port numbers and some node features (colors). However, port numbers and
features are chosen such that the two graphs still cannot be distinguished by a
GNN.

1 1

1 1

2

2

2

2

1 1

1 1

2

2

2

2

(a)

1 1

1 1

2

2

2

2

1 1

1 1

2

2

2

2

(b)

Figure 11.29: Graphs that cannot be distinguished even with port numbers.
(Note that the node colors are not really necessary.)

Remarks:

• A more practice-oriented approach is to apply more insights from the
given application area, e.g. by adding more node features which help
us distinguish the different cases. For example, in molecule modeling,
one possibility is to also measure the angles of the different edges
between the graphs, and use these as an extra features.

• Note that this raises some difficult representation questions about how
we store/use these angles: we either have to tie these features to pairs
of edges, or we have to come up with a structured way to store all the
(

δ(v)
2

)

angles at each node v. For simplicity, we will only consider some
specific graphs now where each node has degree two; this means that
each node only needs to store exactly 1 angle parameter, i.e. a single
extra feature.

• However, given an unlucky geometric embedding, there are graphs
that still cannot be distinguished with this method.

Theorem 11.30. Even if we add the angles of edges as extra features, there
are non-isomorphic graphs G1, G2 that cannot be distinguished by GNNs.

Proof. Consider the graphs in Figure 11.31, which are embeddings of the (non-
isomorphic) graphs in Figure 11.15 in 3-dimensional space. For all nodes in
both graphs, the two incident edges have an angle of 90◦ between them, so in
any representation, all nodes begin with the same feature. This means that the
upper bound in Theorem 11.22 still applies, and hence a GNN cannot distinguish
the two graphs.

11.4. MORE EXPRESSIVE GNNS 129

(a) (b)

Figure 11.31: Two graphs that cannot be distinguished even with angle features.

Remarks:

• Another approach on the more theoretical side: let us do symmetry
breaking by introducing random features to each node! That is, we
increase the dimension d of the feature vector by 1, and into this final
slot of the vector, we insert a uniform random integer in {1, . . . , L}
(for some constant L), which is chosen independently for each node.

Definition 11.32. In a GNN with random features, we assign a new random
feature to each node, i.e. an integer chosen uniformly at random from {1, . . . , L}
(for some constant limit L), independently from other nodes.

Remarks:

• With this approach, an algorithm can now recognize that two nodes
observed on two different paths actually correspond to the same node.
That is, if the random features are more-or-less unique in the neigh-
borhood (which becomes probable if the neighborhood has bounded
size and L is large enough), then we can essentially use them as pseu-
doIDs, and we obtain a model that is again quite close to classical
distributed algorithms.

Example 11.33. Random IDs already allow us to separate cycles of different
length. Consider a graph G1 that consists of 2 disjoint 3-cycles, versus a graph
G2 which consists of a single 6-cycle, as in Figure 11.34. Both in G1 and G2,
a standard GNN with 3-layers will observe the same structure.

However, let us now add a random feature to each node, and assume that
L is high enough such that all the six nodes receive a different pseudoID with
a decent probability. In this case, a node in G1 will always see a node with the
same pseudoID in a 3-hop distance, whereas in G2, this will not happen when
the pseudoIDs are unique. Based on this information, a sufficiently powerful
GNN can distinguish the two graphs.

Remarks:

• For this GNN variant, one can prove an even stronger result: in theory,
it can distinguish any two distinct neighborhoods.

Theorem 11.35. For any set of bounded-degree local neighborhoods S, there
exists a GNN with weights such that for each node v,

130 CHAPTER 11. GRAPH NEURAL NETWORKS

Figure 11.34: Distinguishing cycles of different length with random features.

• if the r-hop neighborhood of v is isomorphic to a graph in S, then h
(r)
v > 0.5

with high probability;

• if the r-hop neighborhood of v is not isomorphic to any graph in S, then

h
(r)
v < 0.5 with high probability.

Remarks:

• However, while this sounds convincing in theory, the situation is not
so simple in practice. If we train a GNN with random features, it
often learns to distinguish different structures by learning how the
different random features relate to each other. If we apply these learnt
functions later in a situation where the random features happen to
have a different relation to each other, then our learnt functions might
return something that is not useful. Therefore, while random features
often yield good results on the training data, the approach might not
generalize so well to new test data.

• Another method of introducing randomization is to use dropouts.

Definition 11.36. A GNN with dropouts executes the same r-round compu-
tation multiple times; each time is called a run. In each run, every node v is
“dropped out” independently with a fixed probability p, which means that both
v and all of its incident edges are removed from the graph. The GNN is then
simulated in this smaller graph G′ (remaining after dropouts) in the given run.

The final state of v in the ith run is denoted by h
(r) [i]
v . After the R runs,

each node v computes a final state ĥv by aggregating its final states in these R
runs through

ĥv = combine({{h(r) [1]
v , . . . , h(r) [R]

v }},

where combine is a permutation-invariant function.

11.4. MORE EXPRESSIVE GNNS 131

Remarks:

• The GNN now executes the same computation multiple times, but on
slightly different variants of the original graph where some nodes are
always removed randomly.

• The combine function has to be permutation-invariant because there

is no ordering between the different runs: a given final state h
(r) [i]
v is

obtained in each run i ∈ {1, . . . , R} with the same probability.

• But what if the final state h
(r) [i]
v of node v if v is removed in the ith

round? This is just a technical question. We can conveniently assume

that h
(r) [i]
v = 0 in this case, or that h

(r) [i]
v is then left out from the

multiset {{h
(r) [1]
v , . . . , h

(r) [R]
v }} altogether.

• The main idea is that even if two neighborhoods cannot be distin-
guished by the WL-test, the modified neighborhoods (when some
nodes are removed) are maybe still distinguishable.

Example 11.37. Recall that the graphs in Figure 11.15 cannot be distinguished
by standard GNNs.

However, consider a GNN with dropouts, r = 2 layers, and a simple choice

of a
(t)
v =

∑

u∈N(v) h
(t−1)
u and h

(t)
v = h

(t−1)
v + a

(t)
v . For example if all nodes start

with h
(0)
v = 1, and if no node is removed in a run, then each node ends up with

a final state of h
(2)
v = 9.

Now consider the probability of having a final state h
(r)
v = 7 in a run for

any of the nodes v (in a run where v itself is not removed). In the left graph
of Figure 11.15, this can already happen if the node at distance 2 from v is
removed. Assume that nodes are removed with a small probability p, so this
roughly happens with probability p(1− p)2 in each run. However, in the 8-cycle,
this only happens if both of the nodes at distance 2 from v are removed, which
happens with probability p2(1−p)2. As such, the combine function can separate
these cases based on the frequency of the value 7 in the multiset (with a decent
probability).

Example 11.38. Recall that the middle and right graphs in Figure 11.8 cannot
be distinguished with A = mean in case of r = 1.

However, in case of dropouts, the right graph can produce a final h
(1)
v value

of 1.33 or 1.66 in case a neighbor of v is dropped out. These final states can

never occur in the middle graph; as such, if the multiset {{h
(r) [1]
v , . . . , h

(r) [R]
v }}

contains either 1.33 or 1.66, then we know that v has the right-hand neighborhood
instead of the one in the middle.

Remarks:

• In case of dropouts, v essentially observes a probability distribution
of final states. If two such probability distributions are different, then
a sophisticated combine function can separate the two cases (if the
number of runs R is high enough).

• Of course, this only holds if the number of runs R is large enough.
But how large does R have to be?

132 CHAPTER 11. GRAPH NEURAL NETWORKS

• Note that, asymptotically speaking, if p,∆, r ∈ O(1), then the max-
imal size of the r-hop neighborhood is O(∆r), and the number of
possible dropout patterns is 2O(∆r) = O(1), each happening with a
constant probability. However, ensuring that we observe all such con-
figurations is usually not viable in practice.

• One simpler objective is to observe all the possible 1-dropouts.

Definition 11.39. Given the r-hop neighborhood Nr(v) of v, we say that a
specific run is a 1-dropout if exactly 1 node is removed from Nr(v), and v is
not removed.

Theorem 11.40. Let n0 := |Nr(v)| for a specific node v. In order to maximize
the probability of any 1-dropout for v, we should select p = 1

n0
.

Proof. The probability of any 1-dropout is p · (1− p)n0−1. Differentiation shows
that on p ∈ [0, 1], this probability is maximized if p = 1

n0
.

Remarks:

• Note that different nodes have a different r-hop neighborhood size
(i.e. different n0), but p is a global parameter. However, if the neigh-
borhood sizes are not so different, then this is not a problem in prac-
tice.

• How many runs does it take to ensure that we observe all the possible
1-dropouts?

Theorem 11.41. Let p = 1
n0

. Then with R = O(n0 log n0) runs, v observes all
the possible 1-dropouts in Nr(v) with high probability.

Proof. Let R = c0 · n0 · log n0 for some constant c0. In R runs, the expected
frequency µ of observing a specific 1-dropout is

µ = p · (1− p)n0−1 ·R =
1

n0
·

(

1−
1

n0

)n0−1

· c0 · n0 · log n0 ≥
1

e
· c0 · log n0.

This also shows that µ ≥ 2 as soon as c0 ≥ 2e. A Chernoff bound shows that
the probability of the fact that this frequency is below (1− 1

2)µ is at most

2e−
1
22

· 13 ·µ ≤ 2e−
1
12 ·

c0
e
·logn0 = 2n

−
c0
12e

0 .

Note that this already ensures that we observe this 1-dropout at least once,
since (1− 1

2)µ ≥ 1 due to µ ≥ 2. If we select c0 ≥ 24e, then this probability of

not observing a specific 1-dropout is below 2n−2
0 .

Since there are n0 − 1 different 1-dropouts in Nr(v), we can take a union
bound over these. The probability that any 1-dropout remains unobserved is
at most 2n−1

0 .

11.4. MORE EXPRESSIVE GNNS 133

v v

1–dropouts
v

Figure 11.43: Example of two graphs that are not separable by 1-dropouts (left
side). In both of the graphs, for any of the 1-dropouts, v observes the same tree
structure for r = 2, shown on the right side.

Remarks:

• Requiring O(n0 log n0) distinct runs is not too bad from a theoretical
perspective. However, this might already be too high to be feasible in
practice.

• Note that with dropouts, we not only have to execute multiple runs
while training the GNN, but also during testing, i.e. every time when
we want to apply the GNN on a new graph.

• Are 1-dropouts already enough to distinguish any two distinct r-hop
neighborhoods? Unfortunately not.

Theorem 11.42. There is a pair of non-isomorphic neighborhoods that cannot
be distinguished based on the 1-dropouts.

Proof. Consider the left and middle graphs in Figure 11.43, obtained by con-
necting v to each node in two 3-cycles or a 6-cycle, respectively, and assume
that r = 2. Note that in both cases, v can observe all the nodes and edges of the
graph in 2 hops; a classical message passing algorithm could easily distinguish
these cases.

However, a GNN without dropouts always computes the same state in both
graphs. Furthermore, in case of any of the 6 possible 1-dropouts (in either of
the graphs), v also observes the same tree structure (shown on the right side of

the figure), so it also computes the same h
(2)
v . As such, the two graphs cannot

be distinguished from the 1-dropouts.

Chapter Notes

GNNs have first been developed in [GMS05, SGT+09], and have been the subject
of intensive study in the last few years [Ham20]. They have also been success-
fully applied in a wide range of different application areas [GSR+17, YHC+18,
PKD+19].

The Weisfeiler-Lehman algorithm is a graph isomorphism heuristic that has
been studied for decades [CFI92, GKMS14, WL68]. It is in fact a hierarchy
of isomorphism-heuristics with increasing power: for each k, there are non-
isomorphic graphs that cannot be distinguished by the so-called k-WL algo-
rithm, but they can be distinguished by (k+1)-WL [CFI92]. The WL algorithm
is also one of the main ingredients of Babai’s celebrated result on the complexity
of the isomorphism problem [Bab16].

134 CHAPTER 11. GRAPH NEURAL NETWORKS

The fact that GNNs are as exactly as expressive as the WL-test has first
been shown by [XHLJ19]. Since then, various GNN extensions have been sug-
gested in order to overcome this limitation. GNNs with port numbers have been
introduced by Sato and others [SYK19], who show that they are essentially as
powerful as the so-called anonymous model of distributed computing. GNNs
with angle parameters are studied in [KGG20]. GNNs equipped with random
features was studied in [SYK21], which is also the source of our Figure 11.34.
GNNs with dropouts was introduced and studied in [PMFW21]. GNN variants
with the expressive power of higher-dimensional WL algorithms have also been
built in [MBHSL19]; however, these are often not viable in practice due to higher
space and time complexity. Other works, such as [GJJ20], shown examples for
graphs that cannot be distinguished even by these more powerful GNN variants.
A survey on different GNN variants is also available in [Sat20], which is also the
source of Figure 11.21. A theoretical comparisons between different GNN vari-
ants revealed that strength of expressivity is depending on the problem [PW22].
Oversmoothing was for instance studied by [OS20]. Underreaching was named
by [BKM+20]. And oversquashing was brought to the GNN context by [AY21].

This chapter was written in collaboration with Pál András Papp.

Bibliography

[AY21] Uri Alon and Eran Yahav. On the bottleneck of graph neural net-
works and its practical implications. In International Conference
on Learning Representations (ICLR), 2021.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In
Proceedings of the Forty-Eighth Annual ACM Symposium on The-
ory of Computing (STOC), page 684–697, New York, NY, USA,
2016. ACM.

[BKM+20] Pablo Barceló, Egor Kostylev, Mikael Monet, Jorge Pérez, Juan
Reutter, and Juan-Pablo Silva. The logical expressiveness of graph
neural networks. In International Conference on Learning Repre-
sentations (ICLR), 2020.

[CFI92] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower
bound on the number of variables for graph identification. Combi-
natorica, 12(4):389–410, 1992.

[GJJ20] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization
and representational limits of graph neural networks. In Proceed-
ings of the 37th International Conference on Machine Learning
(ICML), volume 119, pages 3419–3430. PMLR, 2020.

[GKMS14] Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Sel-
man. Dimension reduction via colour refinement. In Algorithms -
ESA 2014, pages 505–516. Springer Berlin Heidelberg, 2014.

[GMS05] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning
in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., pages 729–734 vol. 2, 2005.

BIBLIOGRAPHY 135

[GSR+17] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Conference on
Machine Learning, pages 1263–1272, 2017.

[Ham20] William L Hamilton. Graph representation learning. Synthesis
Lectures on Artifical Intelligence and Machine Learning, 14(3):1–
159, 2020.

[KGG20] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Direc-
tional message passing for molecular graphs. In 8th International
Conference on Learning Representations (ICLR), 2020.

[MBHSL19] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lip-
man. Provably powerful graph networks. In Advances in Neural
Information Processing Systems (NeurIPS), volume 32. Curran As-
sociates, Inc., 2019.

[OS20] Kenta Oono and Taiji Suzuki. Graph neural networks exponen-
tially lose expressive power for node classification. In International
Conference on Learning Representations (ICLR), 2020.

[PKD+19] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and
Christos Faloutsos. Estimating node importance in knowledge
graphs using graph neural networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, page 596–606. Association for Computing Machin-
ery, 2019.

[PMFW21] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wat-
tenhofer. Dropgnn: Random dropouts increase the expressiveness
of graph neural networks. In 35th Conference on Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2021.

[PW22] Pál András Papp and Roger Wattenhofer. A Theoretical Compar-
ison of Graph Neural Network Extensions. In 39th International
Conference on Machine Learning (ICML), Baltimore, Maryland,
USA, July 2022.

[Sat20] Ryoma Sato. A survey on the expressive power of graph neural
networks, 2020. arXiv preprint 2003.04078.

[SGT+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuch-
ner, and Gabriele Monfardini. The graph neural network model.
IEEE Transactions on Neural Networks, pages 61–80, 2009.

[SYK19] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approxima-
tion ratios of graph neural networks for combinatorial problems.
In Advances in Neural Information Processing Systems (NeurIPS),
volume 32. Curran Associates, Inc., 2019.

[SYK21] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random fea-
tures strengthen graph neural networks. In Proceedings of the 2021
SIAM International Conference on Data Mining (SDM), pages
333–341, 2021.

136 CHAPTER 11. GRAPH NEURAL NETWORKS

[WL68] Boris Weisfeiler and Andrei Leman. The reduction of a graph to
canonical form and the algebra which appears therein. Nauchno-
Technicheskaya Informatsi series, 2(9):12–16, 1968.

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In 7th International Confer-
ence on Learning Representations (ICLR), 2019.

[YHC+18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,
William L. Hamilton, and Jure Leskovec. Graph convolutional neu-
ral networks for web-scale recommender systems. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, page 974–983. Association for Comput-
ing Machinery, 2018.

