
Distributed
 Computing

FS 2023 Prof. R. Wattenhofer

Principles of Distributed Computing

Exercise 6: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

MDISJ =



DISJ 000 001 010 011 100 101 110 111 ← x
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
010 1 1 0 0 1 1 0 0
011 1 0 0 0 1 0 0 0
100 1 1 1 1 0 0 0 0
101 1 0 1 0 0 0 0 0
110 1 1 0 0 0 0 0 0
111 1 0 0 0 0 0 0 0
↑ y


For the Bonus task you can see for instance this short article for a nice visual.

b) When k = 3 a fooling set of size 4 for DISJ is, e.g.,

S1 := {(111, 000), (110, 001), (101, 010), (100, 011)}.

Entries in MDISJ corresponding to elements of S1 are marked dark gray. Note that a fooling
set need not be on a diagonal of the matrix. E.g.

S2 := {(001, 110), (010, 001), (011, 100), (100, 010)},

marked light gray in MDISJ.

c) If x1 = x2, then we would have (x1, yj) = (x2, yj) for j ∈ {1, 2} and thus f(x1, y2) =
f(x2, y2) = f(x1, y1) = f(x1, y2) = z, contradicting the definition of a fooling set. Similarly
for y1 = y2.

d) S := {(x, x) | x ∈ {0, 1}k} is a fooling set for DISJ :

• For any (x, y) ∈ S, DISJ(x, y) = 1, by our definition of S.

• Now, consider any two distinct elements of S: (x1, x1) and (x2, x2). Since x1 ̸= x2,
either x1 has set bit which x2 does not, or x2 has some set bit which x1 does not (or
both). Without loss of generality, x1 has some set bit which x2 does not, but then x1

and x2 are not disjoint, meaning that DISJ(x1, x2) = 0.

The size of S is 2k, so k is a lower bound for the CC (DISJ) by the result from the lecture.

https://www.johndcook.com/blog/2019/11/26/fractal-via-bit-twiddling/

2 Distinguishing Diameter 2 from 4

a) Note that O(D) = O(1), since D ≤ 4 holds for all graphs being considered.

• Choosing v ∈ L takes time O(1): use any leader election protocol from the lectures.
E.g., the node with smallest ID in L can be elected as a leader. This leader node will
be node v. Note that, during the leader election protocol, if after 4 rounds no messages
are received, then a node can conclude that all nodes are in H, so checking whether
L ̸= ∅ does not need to be done separately.

• Computing a BFS tree from a vertex takes time O(D) = O(1). Since v ∈ L, at most
|N1(v)| ≤ s executions of BFS are performed. These can be started one after each other
and yield a total time complexity of O(s).

• The comment states: computing a dominating set DOM takes time O(D) = O(1).

• Since |DOM | ≤ n logn
s , the time complexity of computing all BFS trees from each vertex

in DOM (one after each other) is O
(

n logn
s

)
.

• Checking whether all trees have depth at most 2 can be done in O(D) = O(1) as
well: each node knows its depth in any of the computed trees. If its depth is 3 or 4,
it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise, it decides that the diameter is 4. This decision will be consistent among
all nodes.

• By adding all these runtimes, we conclude that the total time complexity of Algorithm

2-vs-4 is O
(
s+ n logn

s

)
.

b) By differentiating s + n logn
s as a function of s we can argue that s + n logn

s is minimal for

s =
√
n log n. Alternatively, one can use the fact that a + b ≥ 2

√
ab, with equality if and

only if a = b, to get that s + n logn
s ≥

√
2sn logn

s =
√
n log n, with equality if and only if

s = n logn
s ⇐⇒ s =

√
n log n. For this value of s, we get a runtime of O(

√
n log n).

c) Since in this case no BFS tree can have depth larger than 2, the algorithm will always return
“diameter is 2”.

d) If w = s, the claim is immediate. Otherwise, using the triangle inequality we have that
d(s, w) + d(w, t) ≥ 4 ⇐⇒ 1 + d(w, t) ≥ 4 ⇐⇒ d(w, t) ≥ 3, so the BFS tree of w has depth
at least 3. Therefore, Algorithm 2-vs-4 decides “diameter is 4”.

e) If the BFS started in v has depth at least 3, then we are done. Otherwise, we have d(s, v) ≤ 2.
Using d) we conclude that d(s, v) = 2. Let w be a node that connects s to v. Since w ∈ N1(v),
Algorithm 2-vs-4 executes a BFS from w. Then, apply d) using that w ∈ N1(s).

f) Since DOM is a dominating set, it follows that the algorithm executes a BFS from a node
w ∈ DOM ∩N1(s) ̸= ∅. Now apply d).

g) A careful look into the construction of family G reveals that we essentially showed an
Ω(n/ log n) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.
Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using
this exact algorithm. Indeed, if the algorithm finds a BFS tree of depth greater than 2, then
the diameter is 3. However, if all BFS trees found are diameter 2 or less, the diameter could
still be 3.

2

h) Consider a clique with n nodes, where n should be large enough, and remove an arbitrary
edge (u, v) from it. Since d(u, v) = 2, the graph has diameter 2. We have that L = ∅ and
that for any w /∈ {u, v} the set {w} is a dominating set. If one such DOM = {w} is selected
in the algorithm, then Algorithm 2-vs-4 executes exactly one BFS (from w), which has depth
1, disproving the claim. Note that this proof works for all s ≤ n− 2.

3

	Communication Complexity of Set Disjointness
	Distinguishing Diameter 2 from 4

