ETH o

Distributed ;

Eidgendssische Technische Hochschule Ziirich

. . : . fetGen B
Swiss Federal Institute of Technology Zurich Computmg (GO B
FS 2023 Prof. R. Wattenhofer

Principles of Distributed Computing
Exercise 6: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

DISJ | 000 001 010 011 100 101 110 111 <z
000 | 1 1 1 1 1 1 1
001 | 1 0 1 0 1 0 0
010 | 1 1 0 0 1 0 0
AfDIST _ 011 | 1 0 0 0 0 0 0
100 | 1 1 1 1 0 0 0 0
101 | 1 0 1 0 0 0 0 0
110 | 1 1 0 0 0 0 0 0
111 | 1 0 0 0 0 0 0 0
Ty

For the Bonus task you can see for instance this short article for a nice visual.
b) When k = 3 a fooling set of size 4 for DISJ is, e.g.,

Sy == {(111,000), (110,001), (101,010), (100,011)}.
Entries in M P57 corresponding to elements of S; are marked dark gray. Note that a fooling
set need not be on a diagonal of the matrix. E.g.
S, := {(001, 110), (010, 001), (011, 100), (100, 010)},

marked light gray in M P57,

c) If 21 = z9, then we would have (z1,y;) = (z2,y;) for j € {1,2} and thus f(z1,32) =
f(z2,y2) = f(z1,11) = f(x1,y2) = 2z, contradicting the definition of a fooling set. Similarly
for y1 = yo.

d) S:={(x,7) | z € {0,1}*} is a fooling set for DIS.J:
e For any (z,y) € S, DISJ(z,y) = 1, by our definition of S.

e Now, consider any two distinct elements of S: (z1,77) and (x2,Tz). Since x; # o,
either z1 has set bit which zo does not, or x5 has some set bit which z; does not (or
both). Without loss of generality, 1 has some set bit which x5 does not, but then z
and T3 are not disjoint, meaning that DISJ(z1,T2) = 0.

The size of S is 2%, so k is a lower bound for the CC(DISJ) by the result from the lecture.

https://www.johndcook.com/blog/2019/11/26/fractal-via-bit-twiddling/

2
a)

b)

f)

g)

Distinguishing Diameter 2 from 4

Note that O(D) = O(1), since D < 4 holds for all graphs being considered.

e Choosing v € L takes time O(1): use any leader election protocol from the lectures.
E.g., the node with smallest ID in L can be elected as a leader. This leader node will
be node v. Note that, during the leader election protocol, if after 4 rounds no messages
are received, then a node can conclude that all nodes are in H, so checking whether
L # () does not need to be done separately.

e Computing a BFS tree from a vertex takes time O(D) = O(1). Since v € L, at most
|N1(v)] < s executions of BFS are performed. These can be started one after each other
and yield a total time complexity of O(s).

e The comment states: computing a dominating set DOM takes time O(D) = O(1).
e Since |[DOM| < "10%, the time complexity of computing all BF'S trees from each vertex
in DOM (one after each other) is O (W) .

S

e Checking whether all trees have depth at most 2 can be done in O(D) = O(1) as
well: each node knows its depth in any of the computed trees. If its depth is 3 or 4,
it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise, it decides that the diameter is 4. This decision will be consistent among
all nodes.

e By adding all these runtimes, we conclude that the total time complexity of Algorithm
2-vs-4 is O (s + "IC;J) .

By differentiating s + ”lo% as a function of s we can argue that s + ”10% is minimal for

s = y/nlogn. Alternatively, one can use the fact that a + b > 2v/ab, with equality if and
only if a = b, to get that s + "10# > /25108 — | /pTogn, with equality if and only if

- s -

s="men s — /nlogn. For this value of s, we get a runtime of O(y/nlogn).

S

Since in this case no BFS tree can have depth larger than 2, the algorithm will always return
“diameter is 2”.

If w = s, the claim is immediate. Otherwise, using the triangle inequality we have that
d(s,w) +d(w,t) >4 <= 1+d(w,t) >4 < d(w,t) > 3, so the BFS tree of w has depth
at least 3. Therefore, Algorithm 2-vs-4 decides “diameter is 4”.

If the BF'S started in v has depth at least 3, then we are done. Otherwise, we have d(s,v) < 2.
Using d) we conclude that d(s,v) = 2. Let w be a node that connects s to v. Since w € Ny (v),
Algorithm 2-vs-4 executes a BFS from w. Then, apply d) using that w € Ny (s).

Since DOM is a dominating set, it follows that the algorithm executes a BFS from a node
w € DOM N Ny(s) # 0. Now apply d).

A careful look into the construction of family G reveals that we essentially showed an
Q(n/logn) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.
Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using
this exact algorithm. Indeed, if the algorithm finds a BF'S tree of depth greater than 2, then
the diameter is 3. However, if all BF'S trees found are diameter 2 or less, the diameter could
still be 3.

h) Counsider a clique with n nodes, where n should be large enough, and remove an arbitrary
edge (u,v) from it. Since d(u,v) = 2, the graph has diameter 2. We have that L = () and
that for any w ¢ {u, v} the set {w} is a dominating set. If one such DOM = {w} is selected
in the algorithm, then Algorithm 2-vs-4 executes exactly one BFS (from w), which has depth
1, disproving the claim. Note that this proof works for all s <n — 2.

	Communication Complexity of Set Disjointness
	Distinguishing Diameter 2 from 4

