
Distributed
 Computing

FS 2023 Prof. R. Wattenhofer

Principles of Distributed Computing

Exercise 11: Sample Solution

1 GNNs for Algorithmic Problems

a) We want to update the states for every node v ∈ V as follows:

h(t)
v = min

(
{h(t−1)

w + 1 | w ∈ N(v)} ∪ {h(t−1)
v }

)
This is a somewhat simplified version of the Bellman-Ford algorithm for unweighted graphs.
To do so, we choose Aggregate to be the min function and Update to simply add 1 to
the aggregated value.

aggregate ({{hu
(t−1) |u ∈ N(v)}}) = min

(
{{hu

(t−1) + 1 |u ∈ N(v)}}
)

and
update (hv

(t−1), av
(t)) = min(a(t)v , h(t−1)

v).

b) Consider a cycle where every node has the same initial state. As every node gets the exact
same inputs for its state update function in every iteration k, it follows that for any k all
nodes will be in the same state after k steps. This means that the GNN can either put all
nodes or no nodes in the vertex cover, in both cases it is not a minimal vertex cover.

c) Consider a tree of size 2. The two leafs will always be in the same color class, so either both
or none will end up in the vertex color. Similar to the argument in the previous question,
this makes it impossible for the GNN to compute a minimal vertex cover.

d) The algorithmic idea that we use is to identify leaves in every iteration of the GNN and
add their parents to the minimal vertex cover. We then remove the parents and leaves
from the tree and repeat the same action. To encode this information we use the following
representations for the states:

0 — no decision has been taken yet, node is indecisive;

1 — indecisive leaf;

2 — indecisive non-leaf;

3 — node is in the vertex cover;

4 — node is not in the vertex cover and does not take part in the computation anymore.

For now, we set h
(0)
v = 0 for all nodes v ∈ V and choose:

aggregate (M) =

{
1, if there are at most one 0 and at most one 2 in M

2, otherwise

where M = {{hu
(t−1) | u ∈ N(v)}} and

update (hv
(t−1), av

(t)) =



0, if h
(t−1)
v ∈ {1, 2} and a

(t)
v = 2

1, if h
(t−1)
v = 0 and a

(t)
v = 1

2, if h
(t−1)
v = 0 and a

(t)
v = 2

3, if h
(t−1)
v = 3 or h

(t−1)
v = 2 and a

(t)
v = 1

4, if h
(t−1)
v ∈ {1, 4}

After enough iterations all nodes will be in either state 3 or 4, representing our minimal
vertex cover. Until here, we did not use the color information and assumed that all initial
states are 0. As we showed previously, this algorithm can not be correct. It breaks when
being executed on a connected component of size 2. In this case we want to add exactly one
of the two nodes to the vertex cover. We can identify this case and use the three-coloring as
a tie-break as we know that both nodes have to be colored differently.

2 The Weisfeiler-Lehman Test for Trees

a) Consider a path of n vertices. Then, WL takes ≈ n/2 rounds to finish.

b) Consider graphs G1 = the chain 1 − 2 − 3 − 4 − 5 and G2 = the cycle a − b − c − d − a.

Taking t = 2, we have that s
(2)
3 = s

(2)
a , yet the 2-hop neighborhood of 3 is a path, while the

2-hop neighborhood of a is a cycle, so they are not isomorphic.

c) Let G be the path 1 − 2 − 3. Then, the rooted trees (G, 1) and (G, 2) have the required
property.

d) This is the more difficult part of the question, and solving it requires a bit of insight. To
begin, note that relabel is injective, so it is invertible on its codomain; let relabel−1 be
its inverse. What does this give us? Recall that for any node w ∈ V and t > 0:

s(t)w = relabel(s(t−1)
w , {{s(t−1)

u | u ∈ N(w)}})

so, by taking inverses:

relabel−1(s(t)w) = (s(t−1)
w , {{s(t−1)

u | u ∈ N(w)}})

This means that whenever s
(t)
w is known, the value s

(t−1)
w and the multiset {{s(t−1)

u | u ∈ N(w)}})
can be uniquely determined/recovered.

The rest of the solution relies on an observation, which we outline in what follows. Assume
we root the whole tree in node v, and consider two nodes x, y ∈ V in the tree, such that
x is the parent of y with respect to the root v. Furthermore, assume that N(y) = {x} ∪
{z1, z2, . . . , zℓ}. This is depicted below.

v

. . .

x

y

z1 z2 . . . zℓ

2

Now, assume that we are know the values s
(k)
x and s

(k−1)
y for some k ≥ 2. If so, by taking

the inverse on s
(k)
x , we can recover the value s

(k−1)
x . By taking the inverse again, on s

(k−1)
x ,

we can also recover s
(k−2)
x . Moreover, by taking the inverse on s

(k−1)
y , we can recover the

multiset {{s(k−2)
u | u ∈ N(y)}}. Now, since N(y) = {x} ∪ {z1, z2, . . . , zℓ}, we have that

{{s(k−2)
u | u ∈ N(y)}} = {{s(k−2)

x }} ∪ {{s(k−2)
zi | 1 ≤ i ≤ ℓ}}

from which we get that:

{{s(k−2)
zi | 1 ≤ i ≤ ℓ}} = {{s(k−2)

u | u ∈ N(y)}} \ {{s(k−2)
x }}

Since we were able to uniquely recover the value s
(k−2)
x , this means that, by taking the

set difference above, we are also able to uniquely recover {{s(k−2)
zi | 1 ≤ i ≤ ℓ}}. Why is this

useful? Well, starting with s
(k)
x and s

(k−1)
y we were able to uniquely determine the multiset

{{s(k−2)
u | u is a child of y}}. Intuitively, this reasoning can then be repeated for each of

z1, . . . zℓ with parent y to find the s(k−3) values of their children, and so on. Observe how
we used node indices v, x, y, z1, . . . , zℓ ∈ V in explaining the approach, but, in reality, all
operations performed do not require knowledge of the node indices, only the assumption that
they exist being enough. We make this formal in Algorithm 1. The algorithm is recursive,
it takes as arguments k and two values sp and s, which, as a precondition, are required to

correspond to some values s
(k)
x , s

(k−1)
y in the original tree, such that x is the parent of y

when the tree is rooted in v. The return value is an isomorphic copy of the subtree of y
with respect to root v, truncated to depth k − 1. The case where y = v is special, since
v does not have a parent, so in the implementation we use the special value ⊥ to signify
a missing value. In order to recover the t-hop neighborhood of v, the initial call has to

be RecoverSubtree(t + 1,⊥, s(t)v). To help the exposition, in comments on the right hand
side we wrote the algorithm again, only this time with node indices. A fully formal proof
of correctness would, in fact, carefully leverage the connection with the version with node
identities through code invariants. The details are technical and out of the scope of this
exercise.

Algorithm 1 Recovering a subtree, truncated to depth k − 1.

procedure RecoverSubtree(k, sp, s) ▷ RecoverSubtree(k, x, y, s
(k)
x , s

(k−1)
y)

1: n← new node.
2: T ← rooted tree consisting of just node n.
3: if k = 1 then
4: return T
5: end if
6: (−, Sc)← relabel−1(s) ▷ (−, {{s(k−2)

u | u ∈ N(y)}})← relabel−1(s
(k−1)
y)

7: if sp ̸= ⊥ then ▷ if y ̸= v then

8: (s−1
p ,−)← relabel−1(sp) ▷ (s

(k−1)
x ,−)← relabel−1(s

(k)
x)

9: (s−2
p ,−)← relabel−1(s−1

p) ▷ (s
(k−2)
x ,−)← relabel−1(s

(k−1)
x)

10: Sc ← Sc \ {{s−2
p }} ▷ {{s(k−2)

zi | 1 ≤ i ≤ ℓ}} = {{s(k−2)
u | u ∈ N(y)}} \ {{s(k−2)

x }}
11: end if
12: for sc ∈ Sc do ▷ for i = 1 to ℓ do
13: T ′ ← RecoverSubtree(k − 1, s, sc) ▷ Ti ← RecoverSubtree(k − 1, y, zi, s

(k−1)
y , s

(k−2)
zi)

14: Make n the parent of the root of T ′. ▷ Make n the parent of the root of Ti.
15: end for
16: return T

As a side note, an efficient implementation of this algorithm requires that relabel−1 can
be computed efficiently (which is true for some complying relabel functions), but this is

3

not required for our proof, since we only need to prove that the neighborhood is uniquely
determined, not that it can be computed efficiently.

e) By part d), for any v ∈ V the value s
(t)
v uniquely determines the t-hop neighborhood of v up

to isomorphism. If t ≥ ∆, then this neighborhood will be the whole tree, no matter which
v ∈ V was used. If, instead, t ≥ ∆/2, then for some nodes v ∈ V the t-hop neighborhood
might not be the whole tree. However, if v is the midpoint of a diameter of G (if there
are two midpoints either will work), then the t-hop neighborhood will be the whole tree.
As a side note, such a node can be identified without knowledge of G by finding the t-hop
neighborhood of all nodes and taking the node for which this neighborhood consists of the
most nodes.

f) We will show a stronger statement: there are infinitely many trees for which WL finishes
in O(1) rounds, while their diameter is ω(1). Consider the following tree. Start with a
chain of k ≥ 5 nodes: 1 − 2 − . . . − k and add extra leaves to it according to the list
w = [1, 1, 2, 3, 4, . . . , k− 3, k− 2, k]: for each node 1 ≤ v ≤ k link w[k] additional leaves to v.
For k = 5, this construction would look as follows:

1

2

3

4

5

The diameter ∆ = k + 2 is given by any path of the form − 1 − 2 − . . . − k − . In the
first round, WL assigns labels based on the degrees, so let us observe them: all vertices are
leaves, so they have degree 1, while for 1 ≤ v ≤ k the degree of v is v + 1. This means that
after one iteration the only vertices to get equal labels will be the vertices. After a second
iteration, the vertices will further partition themselves based on the label of their father.
Pictorially, the new partition after two iterations looks as follows for k = 5:

1

2

3

4

5

In the third iteration the partition will not change, so WL finishes in two iterations, or, more
precisely for our implementation, it finishes at t = 3 < ∆/2.

g) Note that, by taking relabel−1, we can construct a mapping f : {s(k)v | v ∈ V } → {s(k−1)
v |

v ∈ V }, mapping s
(k)
v 7→ s

(k−1)
v . Clearly, f is surjective, by definition. To show f is also

injective, assume v, v′ ∈ V are such that s
(k)
v ̸= s

(k)
v′ , and yet s

(k−1)
v = s

(k−1)
v′ . This means

that the color partition has been refined at iteration k − 1. This can not be the case, since

we assumed that k ≥ t, and t is such that (s
(t)
v)v∈V and (s

(t−1)
v)v∈V induce the same color

partition, so (s
(k)
v)v∈V and (s

(k−1)
v)v∈V also do so. These being said, f is a bijection between

{s(k)v | v ∈ V } and {s(k−1)
v | v ∈ V }.

4

Knowing this, consider an arbitrary value s
(k)
v and take relabel−1(s

(k)
v). This gives us s

(k−1)
v

and the multiset {{s(k−1)
u | u ∈ N(v)}}. By applying f−1 to all elements of this multiset we get

the multiset {{s(k)u | u ∈ N(v)}}. If we now compute relabel(s
(k)
v , {{s(k)u | u ∈ N(v)}}) this

will by definition give us s
(k+1)
v . Since the value s

(k)
v considered was arbitrary, by doing so for

all such values in {{s(k)v | v ∈ V }} we can exactly determine the multiset {{s(k+1)
v | v ∈ V }},

as required.

Note how, again, our argument hinged on the fact that relabel can be inverted. Taking
this inverse does not have to be computationally tractable in order for the proof to work.
Moreover, note how explicit knowledge of t is not required for our argument.

h) Consider a single tree G(V,E), and let {{s(t)v | v ∈ V }} be the values returned by WL when

run on G. For brevity, let n = |V | and introduce the notation Sk = {{s(k)v | v ∈ V }} for
k ≥ t. As such, St is the return value of WL. By repeatedly using part g), we can uniquely
determine St+1, St+2, . . . , Sn−1. Now, since we know Sn−1 and it holds that n − 1 ≥ ∆,

by part e) any value s
(n−1)
v ∈ Sn−1 is enough to completely determine the tree G up to

isomorphism. From here it follows that WL is a complete isomorphism test for the class of
trees, as required.

However, there is a subtlety still left to prove: here we made our argument assuming that
the value of t is known. Therefore, we still need to do a preprocessing step which computes
t before beginning with the rest of the argument. If we make the simplyfing assumption

that 0 is not in the image of relabel, then this can be done by just taking any s
(t)
v ∈ St

and taking inverses s
(t)
v → s

(t−1)
v → . . . until s

(0)
v = 0 is reached, counting the number of

steps required. Without this assumption, it might be that 0 is falsely reached before taking
the inverse t times, so one has to work slightly harder. In particular, we will start with the

whole set St = {{s(t)v | v ∈ V }} and invert all elements in it simultaneously: St → St−1 → . . .,
stopping when we reach S0 = {{0}}×n. We will now show that Si ̸= {{0}}×n for 1 ≤ i ≤ t.
To do so, assume for a contradiction that Si = S0 for some 1 ≤ i ≤ t. This can only be
the case if the partition did not refine in the first step: S0 = S1, also meaning that t = 1.
In general, the partition does not refine in the first step of WL if and only if the graph is
regular. Since G is a tree, this means that n ≤ 2. However, for n ≤ 2 WL can trivially
distinguish trees of size n anyway (since there are only two such trees: one with n = 1 and
one with n = 2).

5

	GNNs for Algorithmic Problems
	The Weisfeiler-Lehman Test for Trees

