Autobahn: Automorphism-based Graph Neural Nets

MPNNs are not expressive enough

 $h_u^{(k)} = embedding \ of \ u \ at \ k^{th} - iteration$

$$m_{N(u)}^{(k)} = AGGREGATE^{(k)}\left(\left\{h_{v}^{(k)}, \forall v \in N(u)\right\}\right)$$

$$h_u^{(k+1)} \leftarrow UPDATE^{(k)}\left(h_u^{(k)}, m_{N(u)}^{(k)}\right)$$

$$f_i^{(l+1)} = \nu \left(w_{self} f_i^l + w_{neigh} \sum_{v \in N(i)} f_v^l \right)$$

Different Problem – Same Architecture

How can GNN expressivity be ranked? Weisfeiler-Lehman Test

How can GNN expressivity be ranked? Weisfeiler-Lehman Test

1-WL Test cannot detect cycles:

Weisfeiler-Lehman Hierarchy

- k-WL is a higher-order extension of WL test
 - Determine color for each k-tuple instead of individual node
 - Can count substructures up to size k
 - $\mathcal{O}(n^k)$
- (k+1)-WL strictly stronger than k-WL
- MPNNs \leq 1-WL expressive
- k-GNN extension possible, but k>3 computationally infeasible

Performance on molecular graphs

Goals of Autobahn's Architecture

- 1. Computationally feasible
- 2. Able to incorporate Domain Knowledge
- 3. Invariant to Input Graph Permutations "Same Input => Same Output"

& - invariance

 $f(\rho(\mathfrak{g})\boldsymbol{x}) = f(\boldsymbol{x})$

image classification

& - equivariance

$f(\rho(\mathfrak{g})x) = \rho(\mathfrak{g})f(x)$

image segmentation

Layer Hierarchy

Layer Hierarchy – CNN Example

Permutation Invariance Examples

Graph Automorphism Group

- Definition of Algebraic Group:
 - Set + Binary Operation
 - Closure
 - Associativity
 - Identity Element
 - Inverse
- Def. Automorphism Group: Group of Permutations, which preserve edge-vertex connectivity

Graph Automorphism Group

Convolutions on Automorphism Groups

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Derivate MPNN from Star Graph

$$(f^*w)_i = w_0 f(0) + w_1 f(1) + w_2 f(2) + w_0 f(2) + w_1 f(1) + w_2 f(0) = \underbrace{2w_1 f(1)}_{\alpha_1} + \underbrace{(w_0 + w_2)(f(0) + f(2))}_{\alpha_2} = \alpha_1 f(1) + \alpha_2 \sum_{j=1}^n f(j)$$

Benefits of Automorphisms

- Enables new subgraph structures
- Computation over Automorphism Group preserves more information:
 - Aggregating over a cycle preserves more structure
 - => more information
 - => faster computation: $|Aut(S_6)| = 120$, $|Aut(C_6)| = 12$
- Most expressive Aggregation step: Convolution over Aut(G)

Foundational Realizations

- Convolutions work well in the image domain
- Automorphisms of the substructures form the basis for calculation
- Example: Benzene Ring natural notion of convolution

Overview of Architecture

Computing on Substructures Automorphism-based Neurons

Narrowing & Promotion

Transfer information between subgraphs

- Narrowing: Project each incoming activation to the corresponding intersection
- Promotion: Extend the activation to not involved nodes

Narrowing & Promotion

Transfer information between subgraphs

Some Implementation Details

- Efficiently find graph substructures? => yes!
- How is convolution efficiently computed?

<u>https://github.com/risilab/Autobahn</u>

Representing Convolution as Matrix Mult.

Outlook

- Published 3rd Feb 2022
- "Only" on-par performance compare to state of the art
- Many Experiments left:
 - Different Problem Domains
 - Different Substructures
 - Graph Coarsening
 - Different Activations