
Autobahn:  
Automorphism-based Graph Neural Nets
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MPNNs are not expressive enough
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Different Problem – Same Architecture 
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How can GNN expressivity be ranked? 
Weisfeiler-Lehman Test
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1-WL Test cannot detect cycles:
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Weisfeiler-Lehman Hierarchy

• k-WL is a higher-order extension of WL test 
• Determine color for each k-tuple instead of individual node 
• Can count substructures up to size k 

•  

• (k+1)-WL strictly stronger than k-WL 
• MPNNs ≤ 1-WL expressive 
• k-GNN extension possible, but k>3 computationally infeasible

𝒪(nk)
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Performance on molecular graphs
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Goals of Autobahn’s Architecture

1. Computationally feasible 
2. Able to incorporate Domain Knowledge 
3. Invariant to Input Graph Permutations 

“Same Input => Same Output”
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𝜌(𝑥,  𝑦) = (𝑥 + 𝑡1,  𝑦 + 𝑡2)
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Layer Hierarchy
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Layer Hierarchy – CNN Example
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Permutation Invariance Examples
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Graph Automorphism Group

• Definition of Algebraic Group: 
• Set + Binary Operation 
• Closure 
• Associativity 
• Identity Element 
• Inverse 

• Def. Automorphism Group: 
Group of Permutations, which 
preserve edge-vertex connectivity
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Graph Automorphism Group



Convolutions on Automorphism Groups
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Derivate MPNN from Star Graph
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Benefits of Automorphisms

• Enables new subgraph structures 
• Computation over Automorphism Group preserves more information: 
• Aggregating over a cycle preserves more structure 
• => more information 

• => faster computation:  

• Most expressive Aggregation step: Convolution over Aut(G)

|Aut(S6) | = 120, |Aut(C6) | = 12
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Foundational Realizations

• Convolutions work well in the image domain 
• Automorphisms of the substructures form the basis for calculation 

• Example: Benzene Ring – natural notion of convolution
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Overview of Architecture
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Computing on Substructures 

Automorphism-based Neurons
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Step 1: Find μ ∈ 𝕊n Step 2: Apply μ Step 3: Convolute over Aut(𝒯) Step 4: Map output  
to original ordering



• Narrowing: Project each incoming activation to the corresponding 
intersection 
• Promotion: Extend the activation to not involved nodes
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Narrowing & Promotion 
Transfer information between subgraphs

Narrowing Promotion



Narrowing & Promotion 
Transfer information between subgraphs
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Narrowing & Promotion



Some Implementation Details

• Efficiently find graph substructures? => yes! 
• How is convolution efficiently computed? 

 
 
 
 
 
 

• https://github.com/risilab/Autobahn

24

https://github.com/risilab/Autobahn
https://github.com/risilab/Autobahn
https://github.com/risilab/Autobahn
https://github.com/risilab/Autobahn
https://github.com/risilab/Autobahn


Representing Convolution as Matrix Mult.
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Outlook

• Published 3rd Feb 2022 
• “Only” on-par performance compare to state of the art 
• Many Experiments left: 
• Different Problem Domains 
• Different Substructures 
• Graph Coarsening 
• Different Activations
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