## **Graph Neural Networks** Randomization & Features

Viviane Potocnik, 15.03.22

## Outline

#### 1. Introduction

- i. Overview on GNNs
- ii. Limitations of GNNs
- 2. Motivation
- 3. Extensions of Classical GNNs
  - i. GNNs w/ RNI
  - ii. DropoutGNN
  - iii. Graph with Substructure Network (GSN)
- 4. Discussion

### Introduction Overview on GNNs





### **Introduction** Overview on GNNs - MPM



#### MESSAGE AGGREGATE UPDATE

### **Introduction** Overview on GNNs - MPM



### MESSAGE AGGREGATE UPDATE READOUT

#### Prediction

*e*<sub>6,2</sub>

*e*<sub>3,2</sub>

### Introduction Limitations of GNNs

1. Cannot learn simple graph algorithms 2. Cannot distinguish non-isomorphic graphs 1. Only (at most) as powerful as 1-WL test 3. No notion of local (sub-) structures

## Outline

- 1. Introduction
  - i. Overview on GNNs
  - ii. Limitations of GNNs

#### 2. Motivation

- 3. Extensions of Classical GNNs
  - i. rGINs
  - ii. GNNs w/ RNI
  - iii. DropoutGNN
  - iv. Graph with Substructure Network (GSN)
- 4. Discussion

7

## Motivation

- 3. Viability (w.r.t complexity and performance)

1. Increase the expressive power (Universality) 2. Invariance and Equivariance (Ability to Generalize)

# Introduction





|  | - |
|--|---|
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |

#### Introduction Example of the WL test

Following the WL-test we can conclude that since the histograms are equal the graphs are possibly isomorphic.



### **Introduction** Example of the WL test of non-isomorphic graphs







0



## Outline

- 1. Introduction
  - i. Overview on GNNs
  - ii. Limitations of GNNs
- 2. Motivation

#### **3. Extensions of Classical GNNs**

- i. GNNs w/ RNI
- ii. DropoutGNN

iii. Graph with Substructure Network (GSN)

4. Discussion

12

### **Extension of GNNs** GNNs w/ RNI - Introduction

#### Key Ideas

- 1. distinguishable.
- 2. Invariance maintained in expectation via randomness.

Randomly initialize nodes, s.t. non-isomorphic graphs become

## **Extension of GNNs** GNNs with RNI- Illustrative Example



#### Problem 3: GNNs have no notion of local (sub-)structures





## **Extension of GNNs** GNNs with RNI- Illustrative Example



## Problem 3: GNNs have no notion of local (sub-)structures





#### **Extension of GNNs** rGIN - Back to the WL-Test



GNNs w/ RNI can distinguish these molecules by the existence of cycles of length five





#### **Extension of GNNs** GNNs w/ RNI - Results



17

## Outline

- 1. Introduction
  - i. Overview on GNNs
  - ii. Limitations of GNNs
- 2. Motivation

#### **3. Extensions of Classical GNNs**

- i. rGINs
- ii. GNNs w/ RNI

#### iii. DropoutGNN

iv. Graph with Substructure Network (GSN)

4. Discussion

## **Extension of GNNs DropoutGNNs** - Introduction

#### Key Ideas

- 1. Multiple runs with random dropout combinations
- 2. Aggregate perturbed neighborhood information
- 3. Dropout during testing and training
- 4. Reduce randomization effect (overfitting)

Run No. 1



#### AGGREGATE

Run No. 2





Run No. 3

#### AGGREGATE



Run No. 4



#### AGGREGATE

**Evaluation** 



#### $e \rightarrow \sigma(W \cdot e + b)$ **RUN AGGREGATION**

 $e_1$ 

 $e_2$ 

*e*<sub>3</sub>

 $e_4$ 



Figure 1: Graph with two 4-cycles

Figure 2: Graph with one 8-cycle













## Problem 2: GNNs are at most powerful as the WL-test





## Problem 2: GNNs are at most powerful as the WL-test





## Problem 2: GNNs are at most powerful as the WL-test





Problem 2: GNNs are at most powerful as the WL-test

1-WL fails even with angles and port numbers

#### Different color distributions according to WL-test

DropGNN is able to distinguish







Problem 2: GNNs are at most powerful as the WL-test

1-WL fails again when determining the histogramm

\*nodes are labeled according to their degree GNN not able to distinguish nodes X and Y

Y









Problem 2: GNNs are at most powerful as the WL-test

1-WL fails again when determining the histogramm

Node U will recognize different neighborhoods & on the right no cycle

DropGNN is able to distinguish









Problem 2: GNNs are at most powerful as the WL-test

Naive **mean** aggregation fails

Let p = 0.25Probabilities of seeing mean = 1: Left 0.19 Right 0.06

DropGNN is able to increase **mean** expressiveness

1



### **Extension of GNNs** DropGNNs - Results



# **Conclusion** More runs yield higher ACC, as we observe more variants in NH **Pitfalls** Requires more time, computationally expensive



### **Extension of GNNs** DropGNNs - Results



(a) LIMITS 1 (b) 4

#### **Conclusion** We can find an optimal range/value for p

#### (b) 4-CYCLES

#### (c) TRIANGLES



### **Extension of GNNs** DropGNNs - Note on the dropout probability



For 1-dropouts node U will receives different messages, hence the graphs are distinguishable.





### **Extension of GNNs** DropGNNs - Note on the dropout probability



For 2-dropouts node U will receive same messages, hence the graphs are not distinguishable.





## Outline

- 1. Introduction
  - i. Overview on GNNs
  - ii. Limitations of GNNs
- 2. Motivation

#### **3. Extensions of Classical GNNs**

- i. rGINs
- ii. GNNs w/ RNI
- iii. DropoutGNN

iv. Graph with Substructure Network (GSN)

4. Discussion

37

## **Extension of GNNs** Graph Structure Networks (GSNs) - Introduction

#### Key Ideas

- 1. Make model aware of local substructures in the graph
- 2. Node extended by structural descriptors (obtained from subgraph) isomorphism counting)
- 3. Requires additional computing step

### **Extension of GNNs** GSNs - Example



## Problem 3: GNNs have no notion of local (sub-)structures



#### **Extension of GNNs** GSN - Back to the WL-Test



2-WL would fail here, while GSNs can distinguish





## Outline

- 1. Introduction
  - i. Overview on GNNs
  - ii. Limitations of GNNs
- 2. Motivation
- 3. Extensions of Classical GNNs
  - i. rGINs
  - ii. GNNs w/ RNI
  - iii. DropoutGNN
  - iv. Graph with Substructure Network (GSN)

#### 4. Discussion

41

## Discussion

#### **Some Inspirations**

- 1. What is the problem with **invariance in expectation**?
- 2. Which approach do you think is superior? Why?
- 3. What is the advantage of increasing mean expressiveness?

riance in expectation? 's superior? Why? asing mean expressiveness'