Meta Reinforcement
Learning

SiDNN 01.03.2022
Jingyu Liu

Outline

e Motivation for meta-reinforcement learning
e Problem setups (RL, meta learning, meta-RL)
e Common approaches
o Black-box adaptation (based on recurrent policies)
o Optimization-based methods
o Inference-based methods (solving equivalent POMDP)
e Comparison
e Task design (unsupervised meta-RL)
e Summary and conclusions

Outline

e Motivation for meta-reinforcement learning

Why do we care about meta-rl?

RoboschoolHumanoid-v0

4000
Mnih et al. Playing Atari with Deep Reinforcement Learning [2013] 3000
B ¢ T —

T T L

) 1000 @=b> \

Lillicrap et al. Continuous Control with Deep RL [2015] |)

0 ,"J
0 50M
Timestep

graph: Schulman et al. ‘17

e Humans can learn new skills very
quickly, efficiently adapting to new
environments and tasks.

e Can we design algorithms that learn to

Deepmind. Grandmaster level in StarCraft Il using .

multi-agent reinforcement learning [2019] rei nforcement Iea I'n'?

Outline

e Problem setups (RL, meta learning, meta-RL)

The reinforcement learning problem

Markov Decision Process: M = {S, A, P, r}

S : state space

A : action space

P : transition probability, p:SX A — S
r: reward function, r: SXA - R

ni(als) : the policy, 1:S = A(R)or mt:S > A

Transitions : {s;, a;, ¢, St+1}i
Trajectory : t = {sq, a9, 70, 51,41, 11,--» ST, AT, T}

The reinforcement learning problem

Goal :
learn a policy that maximizes the expected (discounted) sum of rewards

Parameterized policy (infinite horizon) :
Z y'r(se, ar)
t=0

Expectation over (discounted) state visitation distribution
0" = argmaxyE, s 4)[r(s, a)]

0" = argmaxylE,,

General procedure

> Agent | How do we optimize our policy?

» Ngent |

tat d i

e Z‘ft'on 1. policy gradient
R 2. value function or Q function estimation
Suq Environment]' 3. model learning + MPC

1. get initial state so~p(s)

2. choose an action from policy a;~mg(- |s¢)

3. observe reward r; = r(s;, a;) and new state sy.1~p(- |s¢, ar)
4. optimize 0" = arg maxyE, [R(7)]

5. store experiences (s¢, a;, 5141, 1) in replay buf fer

6. repeat until convergence

The meta learning problem

O : meta parameter
¢; : task specific adaptation parameter
p(D) : a distribution over meta training dataset (or tasks)

learn O such that ¢; = fo (Dfr) fits DI well

Probabilistic view :

0" = arg maxaz logp (cjbiIDfs)

Deterministic view :

0" = arg min, E L ((Pi, Dfs)

Meta learning + RL

Traditional (supervised) learning :
0" = argmin,L(6, D)
Traditional (supervised) meta learning :

0" = arg minez.ﬁi (qbi, Dfs) where ¢; = fo (Dfr)
Dmeta—train = {(Dg, Dés) ’ (Dir, Dis) yoos }

Tralmng s Testing

1@ .ﬁ‘. .
‘%ﬁé&-

!Wﬁﬁ
Bﬁ.l

Graph: ICML 2019 tutorial on meta learning

Rein forcement learning :
0" = argmaxyE..,[R(7)] = frL(M)
Meta reinforcement learning :

0" = arg maxgz Er, [R(T)] where ¢; = fo(M)
D meta—train = {Mo, My,... }

10

Meta learning RL procedure

1. [initialization] given a distribution over MDPs p(M), draw M;~p(M)
2. [task adaptation] get our policy 11y, by the meta learner fo(M;)

3. [data collection] explore or exploit M; with 4, and collect experiences
4. [meta learning]| maximize the meta parameter O with collected data

5. repeat

11

Core problem

0" = arg maxgz Ern, [R(7)] where ¢; = fo(M;)

How do we design fg(M;)? What does f o(M;) do?
1. f ¢ improves the policy with experiences from M,
2. fo can also choose how to interact with M; (exploration vs exploitation)

12

Popular approaches to meta-rl

e Memory-based approach (black-box adaptation)
o Recurrent policy (RNN, LSTM)
o Attention + temporal convolution
o Mean field assumption

e Optimization-based approach
o MAML and its variants

e POMDP perspective
o Task inferences and embedding

13

Outline

e Common approaches
o Black-box adaptation (based on recurrent policies)

14

Memory-based approach (black-box adaptation)

e Key idea: in order to learn a "good" prior, we need to somehow 1) "memorize" experiences
we've seen so far, 2) and to “adapt” quickly to new tasks with our memory.

e “Good” prior:

o Internalize the dynamics about the MDP; interactions with previous tasks help future tasks
e “Memorization”:

o Recurrent networks, temporal convolutions + attentions
e “Adapt™

o Few shot experiences from the test MDP lead to a decent policy

15

Memory-based approach (black-box adaptation)

e Key idea: in order to learn a "good" prior, we need to somehow 1) "memorize" experiences
we've seen so far, 2) and to “adapt” quickly to new tasks with our memory.

e Recipe:
o Augmented “observation space”: include past experience (states, actions, rewards)
o A policy that takes into account all its past trajectory in a MDP by using this augmented
observation (RNN policy for example)

meta-learned

6*
RNN hidden state :
r ﬁ weights

[o s as before, ¢; = [h;, 0]
I I |

(s1,0a1,82,71) (52, a2, s3,72) (53,03,54,73)

[V — —_— Q

_'_I
Ty, (als)

Graph: ICML 2019 tutorial on meta learning

16

Memory-based approach (black-box adaptation)

e Key idea: in order to learn a "good" prior, we need to somehow 1) "memorize" experiences
we've seen so far, 2) and to “adapt” quickly to new tasks with our memory.

e Procedures:
o Sample a new MDP
o Reset the hidden state
o Collect trajectories and update the model by maximizing total return (using RL algorithms)

v |4
nt \/ n \/
c
v
n \/
c enc enc
x/ rl-l al-l t x/ rV~l al-l xl rl-l al-l Trial 1 Trial 2
(a) LSTM A2C (b) LSTM A3C (c) Stacked-LSTM A3C
Wang et al. Learning to Reinforcement Learn [2016] Duan et al. RL*2: Fast Reinforcement Learning via Slow Reinforcement Learning [2016]

17

Memory-based approach (black-box adaptation)

e Key idea: in order to learn a "good" prior, we need to somehow 1) "memorize" experiences we've
seen so far, 2) and to “adapt” quickly to new tasks with our memory.

e How to design architectures for the memory?
o RNN, LSTM, GRU
o Attention + temporal convolution

Reinforcement Learning
at_3 at_z at,l at Actions

@@@@d@@@@i

Episode 1 Episode 2 Episode 1

b | L

Trial 1 Trial 2

Actions Mishra, Rohaninejad et al. A Simple Neural
d., a ! i
t-3 t2 Gt Rewards) Attentive Meta-Learner [2018]

t-3 rt~2 rt- 1

Duan et al. RL*2: Fast Reinforcement Learning via Slow Reinforcement

A

ot-3 ot.z Ot.l Ot (Observations,
Learning [2016] a
r

18

Memory-based approach (black-box adaptation)

e Problems?
o [Learnability] Memory (gradient vanishing/explosion during BPTT, etc)

o [Data efficiency] Works mostly in conjunction with on-policy RL algorithms

o [Optimality] Trade-offs between exploration and exploitation

19

Outline

e Common approaches

O

Optimization-based methods

20

Optimization-based approach

e Most of the works in this category is based on ideas from MAML.

e Learn a proper initialization of the parameters so that after few-shot experiences from
the new MDP, the policy nicely adapts to the new task.

e The learned meta parameter lies in the parameter space where it's close to the optimal
task specific parameters on average.

e The meta parameters and the task-specific parameters coincide.

21

Optimization-based approach

e A quick recap of MAML (meta-rl as an optimization problem)

Meta rein forcement learning goal : — I’E:;‘ii':]eg""/;”;ggtation
0" = arg maxez E+-rn, [R(7)] where ¢; = Y VL,
VL, -
In MAML we have 6 = ¢, so the goal of MAML RL : VL P
0" = arg maxez E.-n, [R(7)] where 6; = f LML 01" \\.9;

Where the meta learner takes a specific form:
5 MH(M,) = 0 +aVeli(6)

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [2017]

When in the context of reinforcement learning :
Ji(0) = Er-r,[R(7)], the expected sum of rewards in M;

Which can be estimated by interacting with M,;

22

Optimization-based approach

e Recipe:
In traditional RL, we optimize our parameter via : R R
9 «— 9 + aVe](Q) 0 ---- learning/adaptation
VE:;

. - VL,
In MAML, we optimize our parameter via : VL 05
0—0+B X. Voli(0+aVei(0))

1 — " L) 91" e 9;
over all tasks per task adaptation
[Inte rp retations: Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [2017]

o Run one iteration of ascent and update our parameter based on how
much such one step optimization can help with the task.

o We want to optimize the parameter so that when we later do one step
gradient ascent (task adaptation) on the test task, the objective is
maximized in expectation (over the task distribution)

23

Optimization-based approach

e Recipe:
In traditional RL, we optimize our parameter via : R ATRIG
9 «— 9 + aVe](Q) 0 ---- learning/adaptation
VLs

. : VL,
In MAML, we optimize our parameter via : VL 05
0—0+B X. Voli(0+aVei(0)) N

1 — " L) 91" e 9;
over all tasks per task adaptation
Proced ure: Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [2017]

o Pick a random task i

o Make one (or more) gradient step(s) to find its adapted parameter 6 +aVy]i(0)

o Optimize the objective based on how good this adapted parameter performs v,j,6 + av,/.(0))
o So the final parameter results in policy that performs well on average

24

Optimization-based approach

g e e e

— meta-learning
---- learning/adaptation

VL
VL
VL /,/’. 93

Y 4 \\
01 03

e Procedure:
o Pick a random task i
o Make one (or more) gradient step(s) to find its adapted parameter 6 +aVy]i(0)
o Optimize the objective based on how good this adapted parameter performs v,j,6 + av,/.(0))
o So the final parameter results in policy that performs well on average

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [2017]
gif. tristandeleu/pytorch-maml-rl

25

Optimization-based approach

e One (or few) shot learning with new sampled goals in robotic controls
o Major drawbacks
m Requires Hessian calculation. Tricks for approximation or acceleration?
m What if the optimal parameters are not in the vicinity of each other in the

parameter space? Do we have guarantees on the generalization and
adaptation power?

hall.cheetah, goal velochly half-cheetah, forward/backward ant, goal velocity ant, forward/backward
120
500
100
g - 400
| MAML (ours)
] s 300 s :
| --=-- pretrained
‘ 40
97 200 o
M7 pE— 4 100 . orac'e
------------- N
S — R/ ™
------- -20)
0 3 0 ! ! | 0

: 2
number of gradient steps

1 2
number of gradient steps

& 2
number of gradient steps

Finn et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [2017]

26

Outline

e Common approaches

O

Inference-based methods (solving equivalent POMDP)

27

POMDP perspective

e How is meta-rl fundamentally different from generic reinforcement learning?

e Oris it different?

e In fact, meta-rl can be seen as a regular reinforcement learning except that the
state has to be partially observable.

28

POMDP perspective

e A quick recap of partially observed Markov decision process

Augment a reqular MDP with observation space and emission probability

M={S,A,P,r & O} where
O : observation space
& : emission probability, i.e. p(ot|st)

Graph: ICML 2019 tutorial on meta learning

29

POMDP perspective

e Under POMDPs, policy can only act on observations instead of the underlying states.
e POMDPs are known to be extremely difficult to solve as it requires reasoning about true states.

e Typically, to solve POMDPs:
o State estimations: model the distribution of states given the observations (history), and apply
usual RL procedures to find the optimal policy.

o Use policies with memory: implicitly infer the internal dynamics of the MDP based on
previous experiences.

30

POMDP perspective

e Meta-rl in the lens of regular rl in POMDPs:

e Key idea:

o 1. encapsulate task-specific information with a latent variable on which the policy depends

o 2. Learning involves inferring the task context variable and optimizing the policy

. \,.\ﬁ

The agents can grab and move objects The agents can lock objects in pla
in front of them y the team that lo \<elﬂ object can
unlock i

Regular RL:
1.MDP:M ={S, A, P, r}
2. policy : g (als)

Meta RL in the lens of POMDPs :
1. POMDP : M = {§ A, P,1,8, o} where

S X Z, the concatenation of the state space and the task context

p(") the new transition function on the new state space

S
(Ot |s)
gif: DeepMind. Emergent Tool Use from Multi-agent Auto
Curricula [2020]
policy : 1o (als, 2)
task context 31

Il

S
=
0]
&=
2.

POMDP perspective

Meta RL in the lens of POMDPs :
1. POMDRP . ﬁ = {g, A, 55, 1,5, O} where

S
=
0]
&
2.

~

S X Z, the concatenation of the state space and the task context

p(s sl |§t, at] , the new transition function on the new state space
S

=p[ok)
policy : 1o (als, k3)

task context

Remember, typically, to solve POMDPs:

(@)

(@)

State estimations: model the distribution of states given the observations (history), and apply
usual RL procedures to find the optimal policy

Use policies with memory: implicitly infer the internal dynamics of the MDP based on
previous experiences.

32

POMDP perspective

POMDRP: f)\\/\/ = {g, A, ES, r, &, O},policy 1Ty (als, z)

task context
The goal is to estimate the posterior probability of the task context variable given experiences
p(z | swoure)
— N ——’

task context experiences from tha task

_ Use locked objects
~ to block the room

33

POMDP perspective

POMDP: M = {g, A, f‘i)/, r, &, O},policy Ty (als, Z)
task?o;text
The goal is to estimate the posterior probability of the task context variable given experiences

p(oz | swaur)
[—— \—,—/

task context oyperiences from tha task

posterior sampling with latent context : e Comments on posterior sampling:

o Often uses variational inference
1. sample the latent variable with our current model to approximate the posterior
z~p(z¢[S1:t, A1t T1:4) o Enables exploration
2. act according to Tg(als, z) to collect more data o Not optimal

o Works well in practice

34

POMDP perspective

Goal : optimize both the policy Tg(a;|s;, z;) and the posterior context variable q,(z;|71.)

Optimization :
ELBO
1. 5 - = ~
(6, 1) = arg maxg , NZizl Eg no Ri(7) = Dxe(92(2)llp(2))
—— trajectory rethign veoularizine the
average over tasks under the gvariutio fa l
context dependent poli I

e Comments:
o We can think of the return as the likelihood as in VI,
which means we want to find the task context variable
that makes high trajectory rewards more likely.

e This is actually an

Rakelly, Zhou et al. Efficient Off-Policy Meta-Reinforcement
Learning via Probabilistic Context Variables [2019]

important design choice.

35

POMDP perspective

e How do we optimize the policy?

e How do we parameterize the variational family?

e Can we choose other “likelihood” function?

Rakelly, Zhou et al. Efficient Off-Policy Meta-Reinforcement
Learning via Probabilistic Context Variables [2019]

36

POMDP perspective

e How do we optimize the policy?
o Using soft actor critic (SAC)

e How do we parameterize the variational family?
o Mean-field assumption (permutation invariance of MDP encoding)
o Accept variable length of history

e (Can we choose other “likelihood” function?
o Maximize the return (as mentioned before)

o Reconstruction of the MDP (reward and dynamics modeling)
o Model state, or state-action value functions

e PEARL = all above (s,a,s’,7) — —»\IJ¢ |01 g6 (zlc)

Rakelly, Zhou et al. Efficient Off-Policy Meta-Reinforcement (S, a, S,’ ']”) N— — \IJ(]‘) Z | CN
Learning via Probabilistic Context Variables [2019]

37

Outline

e Comparison

38

Model-free meta-rl perspectives summary

Recipes for three model free perspectives :

O
1. memory based :

fo(M;) := RNN(11;)
:= TemporalConv Attentive(t.)

2. bi level optimization :
fo(My) := 0 +aVg]i(0)

3. POMDP and posterior inference :
task context aware policy To(als, z)

posterior p(z:|T1.)

e Relationships:

3 is the stochastic version of 1 where
the task context variable z is the
adaptation parameter.

2 is the same as 1 and 3 conceptually
except that it chooses a specific form
of the meta learner than a black-box
function approximator.

39

Model-free meta-rl perspectives summary

Recipes for three model free perspectives :

1. memory based :
fg (Mz) = RNN(let)
:= TemporalConv Attentive(t.)

2. bi level optimization :
fo(My) := 0 +aVg]i(0)

3. POMDP and posterior inference :
task context aware policy To(als, z)

posterior p(z¢|T1:t)

1. memory based :

simple to understand and implement
vulnerable to meta over fitting
optimization challenges

2. bi level optimization :
consistency
poor sample ef ficiency

3. POMDP and posterior inference :

ef fective exploration

special perspective

same problems as memory based approaches

40

Outline

e Task design (unsupervised meta-RL)

41

How to design the meta training tasks?

e All the methods we talked about so far take as granted a distribution of tasks (MDPs).

e In lots of scenarios, the performance of the meta testing heavily depends on this distribution:

Are the tasks structurally related?

Is the testing task in-distribution or similar to tasks from the meta training distribution?
Are the tasks rich enough to provide powerful prior?

How to systematically design such tasks for different problem?

O O O O O

e Successful applications of these methods often are coupled with hand-crafted tasks.

e Can we automate task designing while maintaining the power of meta RL?

42

Unsupervised Meta Reinforcement Learning

e Designing general task proposal algorithm can be infeasible.

e We restrict our attention to the setting where all tasks only differ in the reward function.
o In this case, the dynamics of the environment serves as the supervision for

our task proposal algorithm
button press door open drawer close drawer open p%g insert
side

pick place push reach window open window close

Yu, Quillen, He, Julian, Narayan et al. Meta-World: A Benchmark and
Evaluation for Multi-Task and Meta Reinforcement Learning [2019]

43

Unsupervised Meta Reinforcement Learning

e In essence, the optimal unsupervised meta RL learner for a Controlled Markov process (MDP
without reward functions) is the procedure producing the policy which achieves the minimal
worst case regret. (Appendix for rigorous definition)

o Worst case over all possible reward distribution (task distribution).
o Minimal regret on expectation over the worst-case reward function distribution.
e Use a latent variable to control the reward function.

e Therefore, the most important design decision is the mapping from the latent variable to the reward
function.

Gupta, Eysenbach et al. Unsupervised Meta-Learning for
Reinforcement Learning [2019]

44

Unsupervised Meta Reinforcement Learning

e A practical implementation of the unsupervised reinforcement learning algorithm

Given a CMP
1. obtain the reward proposal procedure
2. sample latent task variable z~p(z)

3. define task reward r, using the reward proposal procedure and z

4. use standard meta learning algorithm with r,

Gupta, Eysenbach et al. Unsupervised Meta-Learning for
Reinforcement Learning [2019]

Reward proposal procedure can
be defined in many ways
o Randomly initialized
o Or optimized with some
objective

Latent task variable can be
simple distribution

The proposal procedure takes in
the value of the latent variable
and produces a family of reward
functions

45

Unsupervised Meta Reinforcement Learning

DIAYN : a method for learning use ful skills without a reward function

DIAYN does not depend on the rewards and only uses dyanmics as supervision.

Given Dg(z|s), define reward function r,(s,a) := log(Dg(z|s))

Gupta, Eysenbach et al. Unsupervised Meta-Learning for
Reinforcement Learning. [2019]

Eysenbach et al. Diversity is All You Need: Learning Skills
without a Reward Function [2018]

Use DIAYN to optimize the mutual in formation

by training a discriminator D g(z|s) which predicts
which latent variable was used to generate the rollout
according to the policy m(als, z).

46

Unsupervised Meta Reinforcement Learning

2D Navigation Half-Cheetah Ant

-125{

~—— UML-DIAYN = ~—— UML-DIAYN] = UML-DIAYN
—— UML-Random —— UML-Random = UML-Random

| = \/PG (Scratch) 1 = V\/PG (Scratch) - = VPG (Scratch)

- —— Handcrafted —— Handcrafted = Handcrafted

T———— earning nerations

2D Navigation Half-Cheetah Ant Navigation

Gupta, Eysenbach et al. Unsupervised Meta-Learning for
Reinforcement Learning [2019]

Summary

e \What we’ve covered:
o Model free meta reinforcement learning
m Black-box adaptation
m Optimization based methods
m Inference on POMDP
o Unsupervised Task designs (kinda of)

e What we haven'’t covered:

Model based meta reinforcement learning

Hybrid methods

Enhanced exploration

Optimization beyond gradient descent (evolution strategies)
Heterogeneous architectures to handle different state and action spaces

O O O O O O

48

References

e General
o Finn, Sergey. ICML 2019 tutorial on meta learning

e Black-box adaptation
o Wang et al. (2016) Learning to Reinforcement Learn
o Duan et al. (2016) RL”*2: Fast Reinforcement Learning via Slow Reinforcement Learning
o Mishra, Rohaninejad et al. (2018) A Simple Neural Attentive Meta-Learner

e Optimization-based methods
o Finn et al. (2017) Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

e POMDP perspective
o Rakelly, Zhou et al. (2019) Efficient Off-Policy Meta-Reinforcement Learning via
Probabilistic Context Variables

e Unsupervised meta learning
o Gupta, Eysenbach et al. (2019) Unsupervised Meta-Learning for Reinforcement Learning.
49

Thank you!

e Questions are welcome

50

Appendix: Unsupervised Meta Reinforcement Learning

Controlled Markov process (CMP)
C={S,A, P}

A learning procedure (meta learner)
f : D(Ml) — T

Evaluation of the meta learner for a specific reward function

R(f’ ry) = Z Eﬂ:f({Tl rrrrr Ti1h) [Z r2(St, at)}
i t

T~TC

Task distribution
= distribution over latent variable z
= distribution over reward functions

51

Appendix: Unsupervised Meta Reinforcement Learning

The optimal learning procedure under a specific reward function distribution
f* = arg max f]Ep(rz)[R(f,)]

Regret of a learning procedure under a specific reward function distribution
REGRET(f, p(r2)) := By | R(f*,72) = R(f, 7.) |

Regret of a learning procedure for a CMP
REGRETwc(f,C) := maxp(rz)REGRET(f, p(r2))

Optimal unsupervised learning procedure
fc = argmin REGRETwc(f, C)

52

