Set Models

Markus Chardonnet SiDNN – 29.03.2022

Outline

- Sets and Multisets
- Motivations for set models
- Setup
 - Permutation Invariance
 - Permutation Equivariance
- Models
 - Equivariant models
 - Invariant models
- Conclusion

Sets and Multisets

Definition :

Example :

Set : Collection of different elements

{*a*, *b*, *c*}

Multiset : Collection of elements, where we allow for multiple instances of the same element

 $\{a, a, b, a, b, c\}$

Sets and Multisets

Definition :

Set : Collection of different elements

Example :

{*a*, *b*, *c*}

Multiset : Collection of elements, where we allow for multiple instances of the same element

{*a*, *a*, *b*, *a*, *b*, *c*}

Motivation for set models

Point Clouds

Set expansion

Outlier detection

SA,	Israel, France	Cle
		Expand
#	Results	Score
0	Germany	0.7273473739624023
1	the USA	0.7269347310066223
2	Lebanon	0.7219724655151367
3	Belgium	0.7119301557540894
4	the United States	0.7025378942489624
5	Saudi Arabia	0.6978805065155029

Point Clouds

 \rightarrow Set of point in space, representing 3D shape or object

Qi et al. – PointNet : Deep Learning on Point Sets for 3D Classification and Segmentation - CVPR 2017

Outlier Detection

What should a set model account for ?

 \rightarrow The set can have varying number of elements

 \rightarrow The order of the elements doesn't count

What should a set model account for ?

 \rightarrow The set can have varying number of elements

 \rightarrow The order of the elements doesn't count

Two types of tasks

Entire set

Two notions arise

Permutation Invariance

Permutation Equivariance

Group Invariance/Equivariance

Let $\phi : X \to Y$ be a map and let G be a group acting on X. This means that G is identied by a sub-group of the bijections of X.

<u>Invariance</u> : we say ϕ is *G*-invariant if $\forall g \in G, x \in X, \ \phi(g.x) = \phi(x)$.

 $\underbrace{\text{Equivariance}}_{\phi(g.x) = g.\phi(x)} : \text{ If } G \text{ acts also on } Y, \text{ we say } \phi \ \mathcal{G}\text{-equivariant if } \forall g \in G, x \in X,$

Group Invariance/Equivariance

\rightarrow there are other relevant groups

Example :

→ For permutation inv-/equivariance the group acts between elements of the set

Rotation

Translation

Scale

Permutation Invariance / Equivariance

 \rightarrow two connected notions, often used side by side

Framework

We will consider a set of n elements $x_1, ..., x_n$, each having features in \mathbb{R}^k , and group them into one matrix $\mathbb{R}^{n \times k} \ni X = (x_1, ..., x_n)^T$.

How do we model this with neural networks ?

$$\phi : \mathbb{R}^{n \times d_{in}} \to \mathbb{R}^{n \times d_{out}}$$
$$X \to L_m \circ \nu \circ \dots \circ \nu \circ L_1(X)$$
$$L_i : \mathbb{R}^{n \times d_i} \to \mathbb{R}^{n \times d_{i+1}}$$

→ the activation \mathcal{V} is equivariant (elementwise operations) → need to pay attention to L_i

One Natural way :

 \rightarrow apply an elementwise function :

$$x_1, .., x_n \longrightarrow (\pi(x_1), .., \pi(x_n))$$

One Natural way :

 \rightarrow apply an elementwise function :

$$x_1, ..., x_n \longrightarrow (\pi(x_1), ..., \pi(x_n))$$

 $L_i(X) = \lambda_i I X + \mathbf{1} c_i$

Leads to :

 $I \in \mathbb{R}^{n \times n}$ is the identity $\mathbf{1} = [1, .., 1]^T \in \mathbb{R}^n$ $\lambda_i \in \mathbb{R}^{d_i \times d_{i+1}}, c_i \in \mathbb{R}^{d_{i+1}}$

→ Drawback : no interaction between elements of the set

$$L_i(X) = \lambda_i I X + \mathbf{1} c_i$$

 \rightarrow no interactions

Input

Output

 $X \to L'_m \circ \nu \circ \dots \circ \nu \circ L'_1(X)$

 $-\phi \rightarrow$ $\phi \rightarrow$

Φ

 κ_{out}

 κ_{in}

 $-\phi \rightarrow$ $-\dot{\phi} \rightarrow$

Φ

\rightarrow both are universal approximator

Deepsets:

PointNetST:

For each element, concatenate :

- features obtained by applying elementwise function
- the output of an invariant function

PointNetSeg :

Qi et al. – PointNet : Deep Learning on Point Sets for 3D Classification and Segmentation - CVPR 2017

Comparison

Knapsack test

Fiedler test

 $\sum_{x \in \mathbf{X}} (x - \frac{1}{2})^2$ test

width

Segol et al. – On Universal Equivariant SetNetworks- 2020

Invariance

<u>Permutation Invariance</u> : ϕ is permutation invariant if for all permutation π , we have :

$$\phi(x_{\pi(1)}, .., x_{\pi(n)}) = \phi(x_1, .., x_n)$$

→ Universal Approximator of invariant functions

Encoder

Decoder

Other choices of aggregation functions :

• Mean • Max (ex : PointNet): $f(X) = \rho\left(\max_{i=1..n} \phi(x_i)\right)$

\rightarrow advantage of better generalization on varying set sizes

Qi et al. – PointNet : Deep Learning on Point Sets for 3D Classification and Segmentation - CVPR 2017

Some information on interactions is discarded during the encoding

$$f(X) = \rho\left(\sum_{i=1}^{n} \phi(x_i)\right)$$

→ Use previously discussed equivariant layers
→ Higher order Janossy pooling

Idea : consider each possible permutation on the elements and pass them into the same function, then average

Janossy pooling

Obvious drawback : computational complexity (number of permutations)

Solutions :

- Sorting the elements
- Sampling among the permutations

Restricting permutations to k-tuples

Janossy pooling with k-tuples

$$f(X) = \rho\left(\frac{(n-k)!}{n!}\sum_{X_k}\phi(X_k)\right)$$

Sum over X_k formed by any k-tuple of elements in any order.

 \rightarrow Reduces complexity to $\mathcal{O}(n^k)$

→ Tuples incorporate interactions between elements

→ Deep Set : k = 1

Janossy pooling

(a) Janossy pooling with k = 1 (*Deep Sets*)

Janossy pooling

Deal with interaction ? → Using self-attention

 $\begin{aligned} \text{MultiHead}(\mathbf{Q},\mathbf{K},\mathbf{V}) &= [\text{head}_1;\ldots;\text{head}_h]\mathbf{W}^O\\ \text{where head}_i &= \text{Attention}(\mathbf{Q}\mathbf{W}_i^Q,\mathbf{K}\mathbf{W}_i^K,\mathbf{V}\mathbf{W}_i^V) \end{aligned}$

Deal with interaction ? → Using self-attention

Complexity is $\mathcal{O}(n^2)$

 \rightarrow Further reduce the complexity using inducing points

Improve the aggregation function ?

→ differentiate influence of each instance

Idea :

- Aggregate the encodings of each element, using attention to weight them according to their respective influence
- Output a set of k elements (usually k=1)

Pooling Multihead Attention :

$$PMA_k = MAB(S, rFF(Z))$$

encoder output $Z \in \mathbb{R}^{n \times d}$ k seed vectors $S \in \mathbb{R}^{k \times d}$

Recap of invariant models

 Encoder
 Aggregation / Pooling
 Decoder

Set Transformer :

Deep Sets :

 $FF \circ SAB \circ PMA_1 \circ ISAB_m \circ ...ISAB_m(X)$

 \rightarrow It is possible to mix those methods

Comparison

	Architecture	100 pts	1000 pts	5000 pts
Deep Sets	rFF + Pooling (Zaheer et al., 2017) rFFp-max + Pooling (Zaheer et al., 2017)	0.82 ± 0.02	$\begin{array}{c} 0.83 \pm 0.01 \\ 0.87 \pm 0.01 \end{array}$	0.90 ± 0.003
	rFF + Pooling	0.7951 ± 0.0166	0.8551 ± 0.0142	0.8933 ± 0.0156
	rFF + PMA (ours)	0.8076 ± 0.0160	0.8534 ± 0.0152	0.8628 ± 0.0136
Set Transformer 🚽	ISAB (16) + Pooling (ours)	0.8273 ± 0.0159	0.8915 ± 0.0144	0.9040 ± 0.0173
	ISAB (16) + PMA (ours)	$\textbf{0.8454} \pm \textbf{0.0144}$	0.8662 ± 0.0149	0.8779 ± 0.0122
		rFF: Row	/-wise Feed Forwa	rd layer

Table 4. Test accuracy for the point cloud classification task using 100, 1000, 5000 points.

rFF:Row-wise Feed Forward layerrFFp-max:rFF with permutation equivariant variantsISAB:Inducing Set Attention BlockPooling:Usual pooling without attentionPMA:Pooling by Multihead Attention

Comparison

		Architecture	Test AUROC	Test AUPR
Deep Sets		Random guess rFF + Pooling rFFp-mean + Pooling rFFp-max + Pooling rFF + Dotprod	$\begin{array}{c} 0.5\\ 0.5643 \pm 0.0139\\ 0.5687 \pm 0.0061\\ 0.5717 \pm 0.0117\\ 0.5671 \pm 0.0139\end{array}$	$\begin{array}{c} 0.125\\ 0.4126\pm 0.0108\\ 0.4125\pm 0.0127\\ 0.4135\pm 0.0162\\ 0.4155\pm 0.0115\end{array}$
Set Transformer	-	SAB + Pooling (ours) rFF + PMA (ours) SAB + PMA (ours)	$\begin{array}{c} 0.5757 \pm 0.0143 \\ 0.5756 \pm 0.0130 \\ \textbf{0.5941} \pm \textbf{0.0170} \end{array}$	$\begin{array}{c} 0.4189 \pm 0.0167 \\ 0.4227 \pm 0.0127 \\ \textbf{0.4386} \pm \textbf{0.0089} \end{array}$

Table 5. Meta set anomaly results. Each architecture is evaluated using average of test AUROC and test AUPR.

References

- [1] Zaheer M., Kottur S., Ravanbakhsh S., Poczos B., Salakhutdinov R. R., and Smola A. J. **Deep sets**. In *Advances in Neural Information Processing Systems (NeurIPS),* 2017.
- [2] Charles R. Q., Su H., Kaichun M., and Guibas L. J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [3] Segol N., Lipman Y. On Universal Equivariant Set Networks, 2020.
- [4] Wagstaff E., Fuchs F. B., Engelcke M., Osborne M. A., Posner I. Universal Approximation of Functions on Sets, 2021.
- [5] Lee J., Lee Y., Kim J., Kosiorek A. R., Choi S., Teh Y. W. **Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks**, In *International Conference on Machine Learning (ICML)*, 2019.

Conclusion

Questions ?

Multihead-Attention :

$$\begin{aligned} \text{Multihead}(Q, K, V; \lambda, \omega) &= \text{concat}(O_1, .., O_h) W^O \\ O_j &= \text{Att}(QW_j^Q, KW_j^K, VW_j^V; w_j) \\ \text{Att}(Q, K, V; \omega) &= \omega(QK^T) V \end{aligned}$$

Attentions blocks :

 $\begin{aligned} \mathrm{SAB}(X) &= \mathrm{MAB}(X, X) \in \mathbb{R}^{n \times d} \\ \mathrm{MAB}(X, Y) &:= \mathrm{LayerNorm}(H + \mathrm{rFF}(H)) \\ \mathrm{where} \ H &= \mathrm{LayerNorm}(X + \mathrm{Multihead}(X, Y, Y; \omega)) \end{aligned}$

MAB(X, Y) := LayerNorm(H + rFF(H))where $H = LayerNorm(X + Multihead(X, Y, Y; \omega))$

 $ISAB_m(X) := MAB(X, H) \in \mathbb{R}^{n \times d}$ where $H = MAB(I, X) \in \mathbb{R}^{m \times d}$

Improve the aggregation function ?

→ differentiate influence of each instance

Pooling Multihead Attention :

Idea :

- Aggregate the encodings of each element, using attention to weight them according to their respective influence
- Output a set of k elements

$$\begin{split} \mathrm{MAB}(X,Y) &:= \mathrm{LayerNorm}(H + \mathrm{rFF}(H)) \\ \mathrm{where} \ H &= \mathrm{LayerNorm}(X + \mathrm{Multihead}(X,Y,Y;\omega)) \end{split}$$

 $PMA_k = MAB(S, rFF(Z))$ encoder output $Z \in \mathbb{R}^{n \times d}$ k seed vectors $S \in \mathbb{R}^{k \times d}$