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Sets and Multisets

Set : Collection of different elements

Multiset : Collection of elements, where we 
allow for multiple instances of the same 
element

{𝑎, 𝑏, 𝑐}

{𝑎, 𝑎, 𝑏, 𝑎, 𝑏, 𝑐}

Example : Definition : 
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Motivation for set models
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Point Clouds Set expansion Outlier detection



Point Clouds

Qi et al. – PointNet : Deep Learning on Point Sets for 3D Classification and 
Segmentation - CVPR 2017 6

→ Set of point in space, representing 3D shape or object



Outlier Detection

7Zaheer et al. – Deep Sets - NeurIPS 2017



What should a set model account for ?
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→ The set can have varying number of elements

→ The order of the elements doesn’t count
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Two types of tasks

Entire set Elementwise
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Two notions arise

Permutation Invariance Permutation Equivariance
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Group Invariance/Equivariance
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→ there are other relevant groups

Example :
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→ In this example, the group acts on each individual element

→ For permutation inv-/equivariance
the group acts between elements of the set

Group Invariance/Equivariance

Rotation

Translation

Scale



Permutation Invariance / Equivariance

→ two connected notions, often used side by side
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Framework
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Equivariance

How do we model this with neural networks ?
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→ the activation       is equivariant 
(elementwise operations)
→ need to pay attention to 



Equivariance

One Natural way :

→ apply an elementwise function : 
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Equivariance

One Natural way :

→ apply an elementwise function : 
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→ Drawback : no interaction between elements of the set

Leads to :



Equivariance
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→ no interactions

Zaheer et al. – Deep Sets - NeurIPS 2017



Equivariance
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→ both are universal 
approximator 

Deepsets : 

PointNetST : 

Segol et al. – On Universal Equivariant SetNetworks- 2020
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Equivariance

Qi et al. – PointNet : Deep Learning on Point Sets for 3D Classification and 
Segmentation - CVPR 2017

For each element, concatenate : 
- features obtained by applying elementwise function
- the output of an invariant function

PointNetSeg :



Comparison

22Segol et al. – On Universal Equivariant SetNetworks- 2020



Invariance
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Deep Sets
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→ Universal Approximator of invariant functions

Zaheer et al. – Deep Sets - NeurIPS 2017



Deep Sets
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Encoder

Aggregation 
/ Pooling

Decoder



Deep Sets

Other choices of aggregation functions : 

• Mean

• Max (ex : PointNet ) : 
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→ advantage of better generalization on varying set sizes

Qi et al. – PointNet : Deep Learning on Point Sets for 3D Classification and 
Segmentation - CVPR 2017



Deep Sets

Some information on interactions is discarded during the encoding 
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→ Use previously discussed equivariant layers
→ Higher order Janossy pooling



Janossy pooling

Idea : consider each possible permutation on the elements 
and pass them into the same function, then average

Wagstaf et al. – Universal Approximation of Functions on Sets - 2021 28

Encoder

Aggregation 
/ Pooling

Decoder



Janossy pooling

Solutions : 

• Sorting the elements

• Sampling among the permutations

• Restricting permutations to k-tuples
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Obvious drawback : computational complexity (number of 
permutations)



Janossy pooling with k-tuples

→ Reduces complexity to 

→ Tuples incorporate interactions between elements

→ Deep Set : 30
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Janossy pooling

Wagstaf et al. – Universal Approximation of Functions on Sets - 2021
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Janossy pooling

Wagstaf et al. – Universal Approximation of Functions on Sets - 2021



Set transformer
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Deal with interaction ?
→ Using self-attention

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019



Set transformer
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Deal with interaction ?
→ Using self-attention

Multi Attention Block Set Attention Block

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019

Complexity is 



Set transformer

→ Further reduce the complexity using inducing points
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Complexity is now : 

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019



Set transformer

Improve the aggregation function ?

→ differentiate influence of each instance
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Set transformer
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Pooling Multihead Attention :

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019

Idea : 

• Aggregate the encodings of each element, using attention to 
weight them according to their respective influence

• Output a set of k elements (usually k=1)



Recap of invariant models
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Encoder

Aggregation 
/ Pooling

Decoder

Deep Sets :

Set Transformer :

→ It is possible to mix those methods



Comparison

39

Deep Sets

Set Transformer

rFF :              Row-wise Feed Forward layer
rFFp-max :   rFF with permutation equivariant variants
ISAB :            Inducing Set Attention Block
Pooling :       Usual pooling without attention
PMA :           Pooling by Multihead Attention

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019



Comparison
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Deep Sets

Set Transformer

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019
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Conclusion

Questions ?
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Set transformer
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Multihead-Attention : Attentions blocks :



Set transformer

44
Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019



Set transformer

Improve the aggregation function ?

→ differentiate influence of each instance
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Pooling Multihead Attention :

Lee et al. – Set Transformer: A Framework for Attention-based Permutation-
Invariant Neural Networks – ICML 2019

Idea : 

• Aggregate the encodings of each element, 
using attention to weight them according 
to their respective influence

• Output a set of k elements


