

Seminar in Deep Neural Networks: Graph Generation

Julius Schulte 29.03.2022

Outline

- 1. Motivation & Background
- 2. GraphVAE
- 3. 3D Generative Model
- 4. Taking Stock
- 5. Sources

1. Motivation

ML helps Drug Design Process

- Molecular Property Prediction
- Molecule Generation + Optimisation (our focus!).

[De Cao 2022, INSILICO] 🗗

ETH zürich

1.2 Molecule Representations

1.3 Molecule Evaluation

[Kim et al. 2021]

1.4 Graph Generation - Approaches

Paper	Authors	Year	Data	Classification
GraphVAE	Simonovsky et al.	2018	QM9, ZINC (2D)	VAE, <mark>A</mark> , <mark>ST</mark>
MolGAN	De Cao, Kipf	2018	QM9 (2D)	GAN (+), <mark>A</mark> , <mark>ST</mark>
GCPN	You et al.	2019	ZINC (2D)	RL, <mark>S</mark> , <mark>ST</mark>
ligan	Masuda et al.	2020	CrossDocked (3D)	Conv+GAN, A, LI
3D Generative Model	Luo et al.	2021	CrossDocked (3D)	Autoregressive, S, LI

Generation: All at once \rightarrow A, Sequentially \rightarrow S Target: Structure based \rightarrow ST, Ligand based \rightarrow LI

2. Variational Autoencoder

[Image Credit: Jeremy Jordan 2]

ETH zürich

2.1 Challenges

- Graph size is dynamic
- Number of predicted nodes \neq number of nodes ground truth \rightarrow how to calculate the loss?
- Node ordering (graphs are isomorphic)

2.2 GraphVAE

[Simonovsky and Komodakis 2018]

ETH zürich

2.3 Loss Function

$$\mathcal{L}(\phi,\theta;G) = \mathbb{E}_{q_{\phi}(Z|G)}[-\log p_{\theta}(G|z)] + KL[q_{\phi}(z|G)||p(z)]$$
(1)

with

$$-\log p(G|z) = -\lambda_A \log p(A'|z) - \lambda_F \log p(F|z) - \lambda_E \log p(E|z)$$
(2)

[Simonovsky and Komodakis 2018]

ETH zürich

2.4 Challenges Addressed

Challenge	GraphVAE Approach
Dynamic Graph Size Number of predicted nodes \neq number of nodes ground truth Node Ordering	Fixed max graph size (k) Max Pooling Matching - polynomial:(Max Pooling Matching

2.5 Results I

- On average 50% of generated molecules are chemically valid.
- With larger embedding size the percentage of unique samples increases but accuracy decreases.
- About 60% of generated molecules are out of the data-set, i.e. the network has never seen them during training.

[Simonovsky and Komodakis 2018]

2.6 GraphVAE - Taking Stock

- Easy to train (especially in comparison to GANs)
- · Graph matching is computationally expensive and thus scalability limited
- 2D input and output as well as scalability might lessen relevance
- \rightarrow How can we use these molecules?

3. Ligand Identification

[Image Credit: Creative Proteomics Z,Luo et al. 2021]

ETH zürich

3.1 Overview

[Luo et al. 2021]

Seminar in Deep Neural Networks

GNN: Graph Generation 14/35

3.2 A 3D Generative Model for Structure-Based Drug Design

Goal: Generate of a "set of atoms that is able to form a valid drug-like molecule fitting to a specific binding site".

We define the **binding site** as $C = (a_i, r_i)_{i=1}^{N_b}$, where N_b is the number of atoms in the binding site, a_i is the i-th atom's attributes and r_i is its 3D coordinate.

- 1. Context Encoder
- 2. Spatial Classifier
- 3. Sampling

[Luo et al. 2021]

ETH zürich

3.3 Context Encoder

The context encoder aims to create a representation that is both context aware and invariant to rotations as well as translations.

Input + Output

The **input** is a k-nearest neighbour graph (inter-atomic distances) denoted as $G = \langle C, A \rangle$.

The **output** are structure-aware node embeddings.

[Luo et al. 2021]

3.4 Spatial Classifier

The spatial classifier aims to predict the type of atom that occupies the position r, taking the context around r into account.

Input + Output

The **input** is a query position $r \in \mathbb{R}^3$. together with the atom embeddings from the context encoder:

$$v = \sum_{j \in N_k(r)} W_0 w_{\text{aggr}}(||r - r_j||) \odot W_1 h_j^{(L)}$$
(3)

$$c = \mathsf{MLP}(v) \tag{4}$$

$$p(e|r,C) = \frac{\exp(C[e])}{1 + \sum_{e' \in \mathcal{E}} \exp\left(c[e']\right)} = \mathsf{MLP}(v)$$
(5)

The **output** is given the position r and the binding site C the probability that we observe a certain type of atom e.

[Schütt et al. 2017; Luo et al. 2021]

ETHZÜRICh Seminar in Deep Neural Networks

3.5 Auto-Regressive Sampling

Sampling Procedure

- 1. A joint distribution of an atom of a certain type e and the position r given the binding site C is defined (MCMC).
- 2. At each step one atom is sampled from the joint distribution taking into account the *t* atoms that have been sampled beforehand. This process is repeated until all sampled atoms are "non-frontier" (i.e. no space available anymore) and a binding molecule is obtained.
- 3. In the end, OpenBabel $\mathbb{C}^{\mathbf{r}}$ is used to generate final structures with bonds.

3.6 Auto-Regressive Sampling

[Luo et al. 2021]

3.7 Training I

Procedure

Mask random portion of target molecules during training and train with three loss functions:

- 1. L_{BCE} enables us to optimize for the prediction of a position that actually contains an atom.
- 2. L_{CAT} helps us to predict the chemical element of the atom.
- 3. L_F is necessary to make the sampling process stop. Note that F is the frontier network.

$$L = L_{\mathsf{BCE}} + L_{CAT} + L_F \tag{6}$$

[Luo et al. 2021]

3.8 Training II

[Luo et al. 2021]

ETH zürich

3.9 Results

Metric		liGAN	Ours	Ref	
Vina Score	Avg.	-6.144	-6.344	-7.158	
(kcal/mol, ↓)	Med.	-6.100	-6.200	-6.950	
QED (†)	Avg.	0.371	0.525	0.484	
	Med.	0.369	0.519	0.469	
SA (†)	Avg.	0.591	0.657	0.733	
	Med.	0.570	0.650	0.745	
High Affinity	Avg.	23.77	29.09		
(%, ↑)	Med.	11.00	18.50		
Diversity (†)	Avg. Med.	0.655 0.676	0.720 0.736	-	

[Luo et al. 2021]

4. A 3D Generative Model - Taking Stock

Positives

- High relevance and applicability
- Innovative use of existing approaches
- Recent paper with corresponding limitations in benchmarking

To remark

- Gaps persist in the paper's explanation of the normalization constant, encoder method used etc.
- · Limited reproducibility despite code published on Github
- Dependency on outside software (see OpenBabel)

5. Conclusion

- Generated molecules mostly small (<50 nodes).
- There is no clear winner in terms of architecture for graph generation.
- Exploration into 3D molecule representations and molecules present avenues for future research.

DISCUSSION

Sources I

- Laurianne David et al. "Molecular Representations in Al-driven Drug Discovery: A Review and Practical Guide". In: Journal of Cheminformatics 12.1 (Sept. 17, 2020), p. 56. ISSN: 1758-2946. DOI: 10.1186/s13321-020-00460-5 C. URL: https://doi.org/10.1186/s13321-020-00460-5 (visited on 03/02/2022).
- [2] Nicola De Cao. Publications. Nicola De Cao. URL: https://nicola-decao.github.io/publications/ (visited on 03/16/2022).
- [3] Nicola De Cao and Thomas Kipf. "MolGAN: An Implicit Generative Model for Small Molecular Graphs". 2018. arXiv: 1805.11973 🕝.
- [4] Jintae Kim et al. "Comprehensive Survey of Recent Drug Discovery Using Deep Learning". In: International Journal of Molecular Sciences 22.18 (2021). ISSN: 1422-0067. DOI: 10.3390/ijms22189983 C. URL: https://www.mdpi.com/1422-0067/22/18/9983.

Sources II

- [5] Renjie Liao et al. Efficient Graph Generation with Graph Recurrent Attention Networks. 2020. arXiv: 1910.00760 [cs.LG] C.
- [6] Shitong Luo et al. "A 3D Generative Model for Structure-Based Drug Design". In: Advances in Neural Information Processing Systems 34 (2021).
- [7] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. "Generating 3D Molecules Conditional on Receptor Binding Sites with Deep Generative Models". In: *Chemical Science* 13.9 (2022), pp. 2701–2713.
- [8] Roozbeh Razavi-Far et al. *Generative Adversarial Learning: Architectures and Applications*. 2022.
- [9] Kristof Schütt et al. "Schnet: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions". In: Advances in neural information processing systems 30 (2017).

Sources III

- [10] Martin Simonovsky and Nikos Komodakis. "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders". Feb. 9, 2018. arXiv: 1802.03480 [cs] C. URL: http://arxiv.org/abs/1802.03480 (visited on 03/06/2022).
- [11] Jiaxuan You, Rex Ying, and Jure Leskovec. Design Space for Graph Neural Networks. 2021. arXiv: 2011.08843 [cs.LG] Z.

BACKUP

Reparametrization Trick I

[Image Credit: Jeremy Jordan 2]

ETH zürich

Reparametrization Trick II

[Image Credit: Jeremy Jordan 2]

ETH zürich

Graph Matching

Approximate graph matching is used to **assign** nodes from \tilde{G} to nodes in *G*.

This gives us $X \in \{0, 1\}^{k \times n}$, where $X_{ij} = 1$ iff node $i \in \tilde{G}$ is assigned to node $j \in G$.

However, it is very **slow**.

GraphVAE - Results II

		$\log p_{ heta}(G \mathbf{z})$	ELBO	Valid	Accurate	Unique	Novel
Cond.	Ours $c = 20$	-0.578	-0.722	0.565	0.467	0.314	0.598
	Ours $c = 40$	-0.504	-0.617	0.511	0.416	0.484	0.635
	Ours $c = 60$	-0.492	-0.585	0.520	0.406	0.583	0.613
	Ours $c = 80$	-0.475	-0.557	0.458	0.353	0.666	0.661
Unconditional	Ours $c = 20$	-0.660	-0.916	0.485	0.485	0.457	0.575
	Ours $c = 40$	-0.537	-0.744	0.542	0.542	0.618	0.617
	Ours $c = 60$	-0.486	-0.656	0.517	0.517	0.695	0.570
	Ours $c = 80$	-0.482	-0.628	0.557	0.557	0.760	0.616
	NoGM $c = 80$	-2.388	-2.553	0.810	0.810	0.241	0.610
	CVAE $c = 60$	_	_	0.103	0.103	0.675	0.900
	GVAE $c = 20$	_	-	0.602	0.602	0.093	0.809

[Simonovsky and Komodakis 2018]

ETH zürich

Loss Functions Detail

Procedure

Mask random portion of target molecules during training and train with three loss functions:

$$L_{\mathsf{BCE}} = -\mathbb{E}_{r_+}[\log(1 - p(\mathsf{Nothing}|r, C))] - \mathbb{E}_{r \sim p_-}[\log p((\mathsf{Nothing}|r, C)]$$
(7)

$$L_{CAT} = -\mathbb{E}_{(e,r)\sim p_+}[\log p((e|r,C)]$$
(8)

$$L_F = \sum_{i \in \mathcal{F} \subseteq C} \log \sigma(F(h_i)) + \sum_{i \notin \mathcal{F} \subseteq C} \log(1 - \sigma(F(h_i)))$$
(9)

$$L = L_{\mathsf{BCE}} + L_{CAT} + L_F \tag{10}$$

[Luo et al. 2021]

Results II

