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1. Motivation

ML helps Drug Design Process

• Molecular Property Prediction
• Molecule Generation + Optimisation (our focus!).

[De Cao 2022, INSILICO]

Seminar in Deep Neural Networks GNN: Graph Generation 2/35

https://insilico.com


1.2 Molecule Representations

[Kim et al. 2021; David et al. 2020]
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1.3 Molecule Evaluation

[Kim et al. 2021]
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1.4 Graph Generation - Approaches

Paper Authors Year Data Classification

GraphVAE Simonovsky et al. 2018 QM9, ZINC (2D) VAE, A, ST
MolGAN De Cao, Kipf 2018 QM9 (2D) GAN (+), A, ST
GCPN You et al. 2019 ZINC (2D) RL, S, ST
liGAN Masuda et al. 2020 CrossDocked (3D) Conv+GAN, A, LI
3D Generative Model Luo et al. 2021 CrossDocked (3D) Autoregressive, S, LI

Generation: All at once → A, Sequentially → S
Target: Structure based → ST, Ligand based → LI
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2. Variational Autoencoder

[Image Credit: Jeremy Jordan ]
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https://www.jeremyjordan.me/variational-autoencoders


2.1 Challenges

• Graph size is dynamic
• Number of predicted nodes ̸= number of nodes ground truth → how to calculate the loss?
• Node ordering (graphs are isomorphic)
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2.2 GraphVAE

[Simonovsky and Komodakis 2018]
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2.3 Loss Function

L(ϕ, θ; G) = Eqϕ(Z|G)[− log pθ(G|z)] + KL[qϕ(z|G)||p(z)] (1)

with

− log p(G|z) = −λA log p(A′|z) − λF log p(F |z) − λE log p(E|z) (2)

[Simonovsky and Komodakis 2018]
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2.4 Challenges Addressed

Challenge GraphVAE Approach

Dynamic Graph Size Fixed max graph size (k)
Number of predicted nodes ̸= number of nodes ground truth Max Pooling Matching - polynomial:(
Node Ordering Max Pooling Matching
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2.5 Results I

• On average 50% of generated molecules are chemically valid.
• With larger embedding size the percentage of unique samples increases but accuracy

decreases.
• About 60% of generated molecules are out of the data-set, i.e. the network has never seen them

during training.

[Simonovsky and Komodakis 2018]
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2.6 GraphVAE - Taking Stock

• Easy to train (especially in comparison to GANs)
• Graph matching is computationally expensive and thus scalability limited
• 2D input and output as well as scalability might lessen relevance

→ How can we use these molecules?
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3. Ligand Identification

[Image Credit: Creative Proteomics ,Luo et al. 2021]
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https://www.creative-proteomics.com/services/protein-ligand-binding-site-prediction-service.htm


3.1 Overview

[Luo et al. 2021]
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3.2 A 3D Generative Model for Structure-Based Drug Design

Goal: Generate of a "set of atoms that is able to form a valid drug-like molecule fitting to a specific
binding site".

We define the binding site as C = (ai, ri)Nb
i=1, where Nb is the number of atoms in the binding site, ai

is the i-th atom’s attributes and ri is its 3D coordinate.

1. Context Encoder
2. Spatial Classifier
3. Sampling

[Luo et al. 2021]
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3.3 Context Encoder

The context encoder aims to create a representation that is both context aware and invariant to
rotations as well as translations.

Input + Output
The input is a k-nearest neighbour graph (inter-atomic distances) denoted as G = ⟨C, A⟩.

The output are structure-aware node embeddings.

[Luo et al. 2021]
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3.4 Spatial Classifier

The spatial classifier aims to predict the type of atom that occupies the position r, taking the context
around r into account.

Input + Output
The input is a query position r ∈ R3. together with the atom embeddings from the context encoder:

v =
∑

j∈Nk(r)

W0waggr(||r − rj ||) ⊙ W1h
(L)
j (3)

c = MLP(v) (4)

p(e|r, C) = exp(C[e])
1 +

∑
e′∈E exp (c[e′])

= MLP(v) (5)

The output is given the position r and the binding site C the probability that we observe a certain type
of atom e.

[Schütt et al. 2017; Luo et al. 2021]
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3.5 Auto-Regressive Sampling

Sampling Procedure

1. A joint distribution of an atom of a certain type e and the position r given the binding site C is
defined (MCMC).

2. At each step one atom is sampled from the joint distribution taking into account the t atoms that
have been sampled beforehand. This process is repeated until all sampled atoms are
"non-frontier" (i.e. no space available anymore) and a binding molecule is obtained.

3. In the end, OpenBabel  is used to generate final structures with bonds.

[Luo et al. 2021]
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https://github.com/openbabel


3.6 Auto-Regressive Sampling

[Luo et al. 2021]
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3.7 Training I

Procedure
Mask random portion of target molecules during training and train with three loss functions:

1. LBCE enables us to optimize for the prediction of a position that actually contains an atom.
2. LCAT helps us to predict the chemical element of the atom.
3. LF is necessary to make the sampling process stop. Note that F is the frontier network.

L = LBCE + LCAT + LF (6)

[Luo et al. 2021]
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3.8 Training II

[Luo et al. 2021]
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3.9 Results

[Luo et al. 2021]
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4. A 3D Generative Model - Taking Stock

Positives
• High relevance and applicability
• Innovative use of existing approaches
• Recent paper with corresponding limitations in benchmarking

To remark
• Gaps persist in the paper’s explanation of the normalization constant, encoder method used etc.
• Limited reproducibility despite code published on Github
• Dependency on outside software (see OpenBabel)
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5. Conclusion

• Generated molecules mostly small (<50 nodes).

• There is no clear winner in terms of architecture for graph generation.

• Exploration into 3D molecule representations and molecules present avenues for future research.

[Information Credit: Petar Veličković]
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DISCUSSION
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BACKUP
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Reparametrization Trick I

[Image Credit: Jeremy Jordan ]
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https://www.jeremyjordan.me/variational-autoencoders


Reparametrization Trick II

[Image Credit: Jeremy Jordan ]
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Graph Matching

[Image Credit: Harish Rajagopal, SiDNN 2021 ]
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GraphVAE - Results II

[Simonovsky and Komodakis 2018]
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Loss Functions Detail

Procedure
Mask random portion of target molecules during training and train with three loss functions:

LBCE = −Er+ [log(1 − p(Nothing|r, C))] − Er∼p− [log p((Nothing|r, C)] (7)

LCAT = −E(e,r)∼p+ [log p((e|r, C)] (8)

LF =
∑

i∈F⊆C

log σ(F (hi)) +
∑

i ̸∈F⊆C

log(1 − σ(F (hi))) (9)

L = LBCE + LCAT + LF (10)

[Luo et al. 2021]
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Results II

[Luo et al. 2021]
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