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Why meta-learning?

Large, diverse data = Broad generalization

+ Large models
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Figure 1: The Transformer - model architecture.
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Why meta-learning?

* Sometimes we don’t have large datasets/huge compute resources
medical imaging translation for rare languages
robotics personalized education recommendation system

* We want to develop a general-purpose Al system in the real world

continuously gain experiences over multiple related tasks and
improve its future learning performance

learning strategies improve on an evolutionary timescale
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Two ways to view meta-learning

Mechanistic view Probablisitic view

* DNN model that can read in an entire ¢ Extract prior information from a set of

dataset and make predictions for new tasks that allows efficient learning of
datapoints new tasks

* Training this network uses a meta- e Learning a new task using this prior
dataset, which itself consists of many and a (small) training dataset to infer
datasets, each for a different task most likely posterior parameters

* This view makes it easier to * This view makes it easier to

implement meta-learning algorithms understand meta-learning algorithms



Meta-learning: Probablistic View

* supervised learning:

:}j‘:: . D=1{(x1.y1),...,(Tr, Yp
arg max log p(¢|D) U }(- : '/1‘)\ @k i)}
Y / \ input (e.g., image) label
model parameters training data
= arg max log p(D|¢) + log p(¢) (Bayes’ Rule)
@ \
data Iikelﬁd regularizer (e.g., weight decay)
— arg max Z log p(yi|xi, @) + log p(o) (i.i.d)
@ :

* The most powerful models typically require large amounts of labeled data
* Labeled data for some tasks may be very limited



Meta-learning: Probablistic View

* supervised learning:

argmde}xlogp(mD) D= (&1 )5 o6 w3 {88 U) }
* Can we incorporate additional data?
arg max log p(o|D, Dmeta-train) Dreta-train = {D1, ..., Dn }
? Di = {(21,41)s -+ (Ths Y1)}

5-way classification
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Image adapted from Ravi & Larochelle
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Meta-learning Problem

* meta-learning: D= {(z1,11),..., (Tr, yx)}
arg max 10gp((/5|p, /Dm(‘t;l—l 1‘;|i11) ,Dlllf'r}l—Tl'}'lill - {Dl g soey ID/) }
b o

* What if we don’t want to keep Dicta-train ?

learn meta-parameters 6: p(0|Dmeta-train) (information we need to know about D,,ctatrain)

logp(qbﬂ), Ianla—lmm) &= 10g/ p(¢|D, ""*')p(f""|’Dm(\m_11»211“)61"7" (&SSUIIIG (bJ—Dmcra—trz—lin|9)
~ log p(¢|D, 0*) + log p(0* | Dmeta-train) (MAP estimate)
meta-learning problem adaptation

0" = arg max log p(' ""IDm(_‘l_a-l. mm) QS* = arg max lOg p(qbﬂ), Duwtu—truin) ~ &rg max log p(¢|p, 0" )
¢ ¢
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Reserve a test set for each task

meta-train — M mn

meta-learning 0" = arg maxlog p(/|Detatrain) ks e
t) REiudatan Dmeta—train — {(YDEl ) D?)a i | (D}II ) D}:)}

adaptation ¢* = arg maxlog p(o|D, ")
¢

tr ts
D; D,

D : . --- -' M meta-training time )
meta-train : = *
‘ " | . i | : I | ¢‘
’ T ™ - g I l l “

: (e1.90) (eh.v3) (ahuh) 2
T
92- (ajts’ ytS) ~ D,fb
,Dt';r 11
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Meta-learning: Bilevel Optimization View

meta-learning 0" = arg max 1Og p(“|Dmeta-train) Dmeta-train — {(lDtll.a Dlls) ceey (D“ D}z\)}

adaptation ~ ¢* = arg;naxlogp(d>l’l>“', 0*) D;" = {(x1,91) - (T}, Y)}
‘ D;* = {(x1,41), -, (x1,y7)}
¢* = fo-(D™)

learn ¢ such that ¢ = f,(D!") is good for D!*

% = arg max Z log p(¢:|D;*)

=1

where ¢; = fy(D")

unobserved at
meta-test time
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Meta-learning: Terminology

learn ¢ such that ¢ = f,(D!") is good for D}

Dmeta—train — {(Dllla Dtls)a ceey (D}:, D}:)}
g = arg(r/naleogp(qMD}s) DY = {(2%,y}),..., (z%,yp)}
1=1 - i i
ths - {(:I;lv yl)v o0y (51713 Y )}

where ¢; = fy(D}")
training data test set /(mEta‘training) task T

D,

Dmeta—train

meta-training

meta-testing

support (set) \ . _ _
query  Finn et al. Meta-learning Tutorial, ICML 2019
image credit: Ravi & Larochelle ‘17 13



Related Fields

Meta-Learning
learn ¢ such that ¢ = f,(D}") is good for D* Deta-train = {(D}", D), ..., (D)

0" = arg 1naleogp((bz|D}S) D}I — {(1’1 . (/ll ) (1} (//l>}

= o o
DY = (¥ 4y, ... (xt. v
where ¢; = fy(DL") i {(z1,91) (1, 91)}

V.S.

Multi-task Learning jointly learns several tasks with parameter sharing.

n
0" = arg max Z log p(“IDi)

i=1
special case where ¢; = (/
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Related Fields

Meta-Learning

learn ¢ such that ¢ = f (pjl) is good for D}H Dmeta-train = {(ID‘Il.v ’Dlls): oo (Dl l‘ D:z\)}

“n

mn
= arg maXZIOgP((bH'D}H) 'DI-I‘ {(-1'/i - !/li )y e (,1'}"‘. .’///;~ ).

|
J
= L, R B 2 A |
where ¢; = fy(D") / 15 Y1 1> Yl

V.S.

Transfer Learning uses past experience from source task to improve learning on a
target task.

Common approach: parameter transfer + optional fine tuning
The prior is extrated by vanilla learning on the source task without the use of
meta-objective
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B | d Ck‘bOX Ad d ptatlo N learn ¢ such that ¢ = fy(D}") is good for D}*

i * = arg max lo 02 - '
adaptation Cb‘ g; xlog p(¢|D™, 07) w‘:argmaleOgP((MD}h)

1=1

¢* = fo. (DY) where ¢; = fy(D}")

* Key idea: Train a neural network to represent p(¢;|D.", )

ts

fo '7? Train with standard supervised learning!
o s [Ta maxY" Y logas (i)
I I I It T ($ y NDtest
(z1,91) (22,92) (73,93) T —
- > . test
Dir Djest H9 D)

max 37 £(f,(Di), Dies)

0
T: 17



meta-learning (" = arg maxlog p(?|Dmeta-train)

Black-box Adaptation adaptation  ¢* = argmaxlogp(¢[D", 1)

$
TR
| 2 t‘ I X

¢* = fo- (D)
szr ;cst

* Key idea: Train a neural network to represent »(¢i|D;",0)

ts
fo J
I 1. Sample task T; (or mini batch of tasks)
: - : _' I — ¢ gf’ i 2. Sample disjoint datasets D;", D{**" from D;
(z1,91) (22,92) (23,¥3) g® | 8 COmpuie @ 5= fo(Dy')
O 4. Update 0 using VyL(¢p;, Di*")
Dt;r D{;est

Finn et al. Meta-learning Tutorial, ICML 2019
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Black-box Adaptation

meta-learning ¢ = arg max log p(?|Dueta-train)

adaptation ¢* = arg maxlog p(¢|D",0")

s

.

& = fi (D)

tr
D;

test
D;

« Key idea: Train a neural network to represent p(¢:|D;",0)

fe yts
! Formof fy?
=) = .6 | 9o - LSTM
]‘ I I I - Neural turing machine (NTM)
(z1,91) (2,92) (73,y3) . - Seli-attention
- » - 1D convolutions
ptr Dtest - feedforward + average
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Black-box Adaptation

* Key idea: Train a neural network to represent p(¢;| D!, 1)
* Challenge: outputting all neural net parameters does not seem scalable
* |dea: Do not need to output all parameters, only sufficient statistics

fo y's (Santoro et al. MANN, Mishra et al. SNAIL)
" . | gL,. Low dimentional vector A;
| | | hi [ represents contextual task information
(z1,91) (z2,y2) (3,¥3) z'
W—J (pl = {h...,j,Hg}
D}r D}L‘st

Is there a way to infer all parameters in a scalable way?

Can we treat it as an optimization procedure?
20



Optimization-based Inference

* Key idea: acquire ¢; through optimization max log p(D;*|¢;) + log p(¢;|0)
* Meta-parameters 6 serve as a prior. |

* One form of prior knowledge: initialization for fine-tuning

-Arertzed-appreach- Optimization-based approach

1. Sample task 7;  (or mini batch of tasks)

2. Sample disjoint datasets D", D{**" from D,

3. Cemptte-p~— (P> Optimize ¢; < 0 — aVyL(0, D))
4. Update 0 using Vo L(¢p;, DY)

Finn et al. Meta-learning Tutorial, ICML 2019
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Optimization-based Inference

* Key idea: acquire ¢; through optimization

/— pre-trained parameters
Fine-tuning ¢ < 0 — (XVQ,C(Q, Dtr)

. training data
[test-time]

for new task

: : . tr ts
Meta-learning m91n Z ,C(H CEV@[:(H,'DZ ),'Dz )

task 2
— meta-learning
9 parameter vector ---- |learning/adaptation
being meta-learned VC;;
¢* optimal parameter VL, 5
¢ vector for task i VLI N\ 3
* 7 \\\ -
'y 'Qb; Finn et al. MAML

22



Optimization-based Inference

» Key idea: acquire ¢; through optimization

* Challenge: second-order derivative :(
3. Compute-r~—F(P+Y Optimize ¢; < 0 — aVoL(0, DY)
4. Update 0 using VoL(¢p;, Di*")
do; . .
2 as identity
(Finn et al. first-order MAML, Nichol et al. Reptile)
Idea: Automatically learn inner vector learning rate, tune outer learning rate
(Li et al. Meta-SGD, Behl et al. AlphaMAML)

Idea: Optimize only a subset of the parameters in the inner loop
(Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: [Crudely] approximate

Idea: Decouple inner learning rate, BN statistics per-step  (Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.
(Finn et al. bias transformation, Zintgraf et al. CAVIA)

23



Optimization-based Inference

» Key idea: acquire ¢; through optimization

* Meta-parameters 0 serve as a prior.
* One form of prior knowledge: initialization for fine-tuning

Gradient-descent + early stopping (MAML): implicit Gaussian prior ¢ < 8 — aVL(6, D)

Other forms of priors?

A
Gradient-descent with explicit Gaussian prior ¢ < min £(¢’, D'") + 5”9 —¢'||?
¢I
Rajeswaran et al. implicit MAML ‘19

Bayesian linear regression on learned features Harrison et al. ALPaCA 18

Closed-form or convex optimization on learned features

ridge regression, logistic regression support vector machine
Bertinetto et al. R2-D2 ‘19 Lee et al. MetaOptNet ‘19

24



Non-parametric Methods

* Key idea: use non-parametric learner

> fola

(z,y)€D;”

e exp(—d(fo(x),ck))
po(y = kl|z) = > i exp(—d(fo(z),cpr))

(a) Few-shot
d: Euclidean, or cosine distance

Snell et al. Prototypical Networks, NeurlPS 2017
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Black-box vs. Optimization vs. Non-parametric

Computation graph perspective

Black-box amortized Optimization-based Non-parametric
yts — fO ('Dgr, xtS) yts — fMAML (D'Erv xtS) yts — fPN (D;r,l’ts)
£ = faa®) = softmax (~d(fy(x). ¢ >>
| I ! : 1 I ! T | where ¢; = 0 — aVyL(0,D]")  where ¢; = Z fo(x

(z1,91) (22,92) (z3,y3) 27 (:c y)ED"

Note: (again) Can mix & match components of computation graph
Gradient descent on

relation net embedding.

Both condition on data & MAML, but initialize last layer as

E:-ul
run gradient descent. f’ﬁ \ ProtoNet during meta-training
Jiang et al. CAML ‘19 F Triantafillou et al. Proto-MAML ‘19

Rusu et al. LEO ‘19

26



Black-box vs. Optimization vs. Non-parametric

Black-box amortized Optimization-based Non-parametric
+ easy to combine with variety of  + handles varying & large K well + simple
learning problems (e.g. SL, RL) + structure lends well to out-of- + entirely feedforward
_ challenging optimization (no distribution tasks + cc?m.putatlonally fast & easy to
inductive bias at the initialization) - second-order optimization opHmize
- often data-inefficient - harder to generalize to varying K
- model & architecture - hard to scale to very large K
intertwined - so far, limited to classification

Generally, well-tuned versions of each perform comparably on existing few-shot benchmarks!
27
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Applications in computer vision

few-shot image recognition human motion and pose prediction

training data test set

e N
HnERE -
o= W B Be

meta-testing [ﬁ @ ﬁ m ;

see, e.g.: Gui et al. Few-Shot Human Motion Prediction via Meta-Learning.
Alet et al. Modular Meta-Learning.

1 2 51020 50100 12 5§ 10 20 50100 A A
-

see, e.g.: Vinyals et al. Matching Networks for One Shot
Learning, and many many others

domain adaptation few-shot segmentation

Source Domains Target Domains
O OO Meta t | e St ommw“
: 00 F - 7 i
OOOOQ % Test B%%\ . & @ @ . o
..M.c:t.a..t.e.s.t..," On On ™ -

. OOogooO i W SR

Train %% OO OO see, e.g.: Shaban, Bansal, Liu, Essa, Boots. One-Shot Learning for Semantic Segmentation.

Rakelly, Shelhamer, Darrell, Efros, Levine. Few-Shot Segmentation Propagation with Guided Networks.
see, e.g.: Li' Yang' Song' Hospedales_ Learning to Generalize: Dong, Xlng Few-Shot Semantic Segmentation with Prototype Learning-
Meta-Learning for Domain Adaptation. 29



Applications in image & video generation

few-shot image generation

Source With Attn No Attn Source

EEE ot @i Lll!'m;
Tne geo~ e
-r= ‘ﬂ 14"
Fodbeh weRsz Jvaynl il SR
dbgdd pdoo B ra=

Q™ »
o%ited o BldH

No Attn

see, e.g.: Reed, Chen, Paine, van den Oord, Eslami, Rezende, Vinyals, de Freitas. Unsupervised Image-to-Image Translation
Few-Shot Autoregressive Density Estimation. and many many others.

LN il

generation of novel viewpoints

o
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> s e & 2 C-VAE
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Y
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see, e.g.: Gordon, Bronskill, Bauer, Nowozin, Turner. VERSA: Versatile
and Efficient Few-Shot Learning.
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few-shot image-to-image translation

3 Training Deployment
B ; Content Few-shot Translation - Sowdin Translation
urce cass image Unsupervised _-ﬂ e aass Unsupervised _ﬁ
Image-to-image Content Image-to-image
Source da e Class 2

\
q
rc
Translation
55 #2 Sowrc
} image(s)

E e
ERard TR ok ﬁ

Source class #|S| Source class #| S| Target class

see, e.g.: Liu, Huang, Mallya, Karras, Aila, Lehtinen, Kautz. Few-Shot

generating talking heads from images

- ;
|
et .
|
:
|
4 -y
! &
:
I
Target — Landmarks — Result

Source :

see, e.g.: Zakharov, Shysheya, Burkov, Lempitsky. Few-Shot Adversarial
Learning of Realistic Neural Talking Head Models 30



Applications in NLP

Adapting to new programs

Meta Program Induction
Learn new program from a
few /O examples.
Devlin*, Bunel* et al. NeurlPS ‘17

Program Synthesis

Question:
[How many CFL teams are from York College?]

SQL

SELECT COUNT CFL Team FROM
CFLDraft WHERE College = “York”

Result:

Construct pseudo-tasks with

relevance function
Huang et al. NAACL ‘18

Adapting to new languages
Low-Resource Neural Machine Translation

(a) Transfer Learning (b) Multilingual Transfer Learning (c) Meta Learning

Learn to translate new language pair

w/o a lot of paired data?
Gu et al. EMNLP ‘18

Learning new words
One-Shot Language Modeling

Learn how to use a new word
from one example usage.

Vinyals et al. Matching Networks, ‘16

Adapting to new personas
Personalizing Dialogue Agents

a) b)
0 0

x |

(7 ' W
Py R ) A

Adapt dialogue to a persona

with a few examples
Lin*, Madotto* et al. ACL ‘19
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Thank you for your attention!

learn to learn tasks

f,A-./ ‘§\

quickly learn

—_—

new task

A

=
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