Interpretable AI & GNN Explainability

David Gu SiDNN – 22.03.2022

Why care about Interpretability?

John

It's not always about predictive performance!

What we want:

id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1

John's medical data

Today: Explaining = identifying important features!

Brain with tumor

Brain without tumor

Why care about interpretability?

- Requirement by the end-user
- Model debugging
- Safety & Trust

Interpretable ML: Basics

Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions

Interpretable ML: Basic Types

- Intrinsic interpretability vs. Post-hoc explanation methods
- Global vs. Local Interpretability
- Model-specific vs. Model-agnostic

Ex. 1: Permutation Feature Importance

	Date	Team	Opponent	Goal Scored	Ball Possession %	Attempts	On- Target	 Man of the Match
0	14-06-2018	Russia	Saudi Arabia	5	40	13	7	 Yes
1	14-06-2018	Saudi Arabia	Russia	0	60	6	0	 No
2	15-06-2018	Egypt	Uruguay	0	43	8	3	 No
3	15-06-2018	Uruguay	Egypt	1	57	14	4	 Yes
4	15-06-2018	Morocco	Iran	0	64	13	3	 No

 \rightarrow randomly permute!

	Weight	Feature
0.1750 ±	0.0848	Goal Scored
0.0500 ±	0.0637	Distance Covered (Kms)
0.0437 ±	0.0637	Yellow Card
0.0187 ±	0.0500	Off-Target
0.0187 1	0.0637	Free Kicks
0.0187 ±	0.0637	Fouls Committed
0.0125 ±	0.0637	Pass Accuracy %
0.0125 ±	0.0306	Blocked
0.0063 ±	0.0612	Saves
0.0063 ±	0.0250	Ball Possession %
0 ±	0.0000	Red
0 ±	0.0000	Yellow & Red
0.0000 ±	0.0559	On-Target
-0.0063 ±	0.0729	Offsides
-0.0063 ±	0.0919	Corners
-0.0063 ±	0.0250	Goals in PSO
-0.0187 ±	0.0306	Attempts
-0.0500 ±	0.0637	Passes

Ex. 2: Counterfactual Explanation

- "If X hadn't occured, Y hadn't occured."
- Ex.: "If I hadn't partied all night, I wouldn't be hungover."

Ex.: Graph classification task (Blood-Brain Barrier Permeation Prediction)

CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

GNNExplainer

GNNExplainer: Generating Explanations for Graph Neural Networks

GNNExplainer

- Assume for now: node classification!
- GOAL: Identify small subgraph and associated features that are important for the GNN's prediction \hat{y} !

Computation graph:

 $G_c(v)$

Intuition: Remove subset of nodes...

...if the prediction of the GNN changes, then the removed nodes are a good counterfactual explanation!

Mathematical Formalization

• GOAL: Choose subgraph G_S s.t. the mutual information between the prediction of the GNN using G_C and G_S and features X_S is maximized!

$$\max_{G_S} MI(Y, (G_S, X_S)) = H(Y) - H(Y|G = G_S, X = X_S)$$

or equivalently minimize

 $H(Y|G=G_S, X=X_S) = -\mathbb{E}_{Y|G_S, X_S} \left[\log P_{\Phi}(Y|G=G_S, X=X_S) \right]$

• Challenge: Exponentially many subsets G_S !

Continuous relaxation

• Idea: For tractability, learn mask M on the adjacency matrix of G_C

	-	1	1	1	0	0	(
	1	-	0	0	1	0	(
	1	0	-	0	0	1	1
	1	0	0	-	1	0	C
	0	0	0	1	-	0	C
	0	0	1	0	0	-	0
	0	0	1	0	0	0	-

-	7.2	0.3	5.2	0.5	1.2	0.9
7.2	-	0.1	0.6	4.3	0.8	1.1
0.3	0.1	-	0.7	0.6	0.0	0.1
5.2	0.6	0.7	-	8.1	0.9	0.6
0.5	4.3	0.6	8.1	-	0.2	0.8
1.2	0.8	0.0	0.9	0.2	-	1.0
0.9	1.1	0.1	0.6	0.8	1.0	-

 A_C

Μ

Mathematical Formalization

• Learn mask M on the adjacency matrix of G_C that minimizes

• Optimize objective via gradient descent!

 \sim

Feature selection

So far:

$$\min_{M} - \sum_{c=1}^{C} \mathbbm{1}[y=c] \log P_{\Phi}(Y=y|G=A_c \odot \sigma(M), X=X_c)$$

Apply same idea to learn optimal subset of the features via mask X_S^F !

Feature selection

Optimize jointly via gradient descent:

$$\max_{G_S, F} MI(Y, (G_S, F)) = H(Y) - H(Y|G = G_S, X = X_S^F)$$

Q: What is missing in this objective?

(Hint: How is this objective trivially maximized?)

- Regularization:
 - Mask size: Penalize <u>high explanation size</u> by adding sum of all mask parameters
 - Entropy of the parameters: Explanation should be discriminative
- Constraint:
 - Output should be a connected subgraph!

Extensions

- Link prediction: Learn two masks explaining both endpoints of the link
- Multi-instance explanation: aggregate explanations of nodes to a class c to get a "typical explanation"

References

- Motivation:
 - Deepfindr: <u>https://www.youtube.com/watch?v=NvDM2j8Jgvk</u>
 - Stroke dataset: https://www.kaggle.com/fedesoriano/stroke-prediction-dataset
 - Brain MRI dataset: <u>https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection</u>
 - Self-driving car meme: <u>https://m.facebook.com/TrolleyProblemMemes/photos/a.250373635311569.1073741827.2503531819</u> <u>80281/353949958287269?locale=ar_AR&_rdr</u>
 - Awkward silence meme: from book below
- Interpretable ML Book: <u>https://christophm.github.io/interpretable-ml-book/</u>
- Chart: Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions

References

- FIFA World Cup dataset: <u>https://www.kaggle.com/mathan/fifa-2018-match-statistics</u>
- Molecule example/CF-GNNExplainer: https://arxiv.org/abs/2102.03322
- GNNExplainer: <u>https://arxiv.org/abs/1903.03894</u>
- GNN Explainability Taxonomy: https://arxiv.org/pdf/2012.15445.pdf

Backup slide: GNNExplainer results

