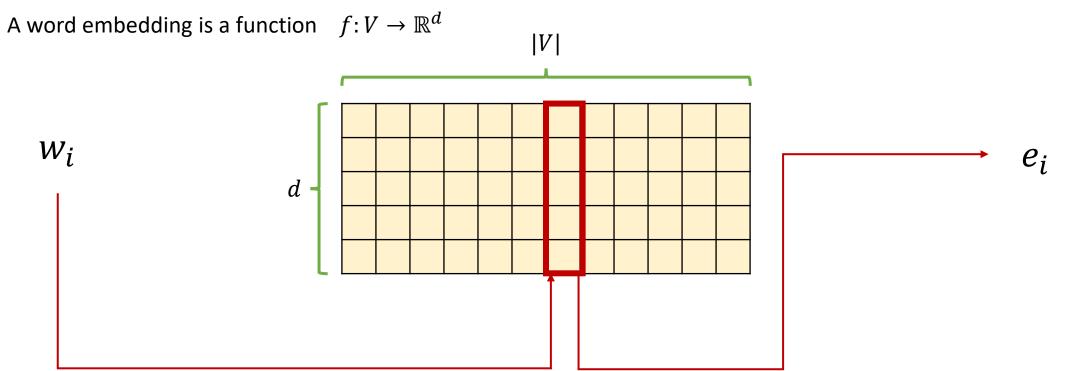
NLP Basic Architectures

Seminar in Deep Neural Network

Presenter: Nathan Corecco Supervisor: Ard Kastrati 11/04/2022

Word Embedding

 $V = \{w_1, w_2, \dots, w_m\}$



Or equivalent to: $w_i \rightarrow o_i \rightarrow E \cdot o_i = e_i$

Example

Vocabulary:

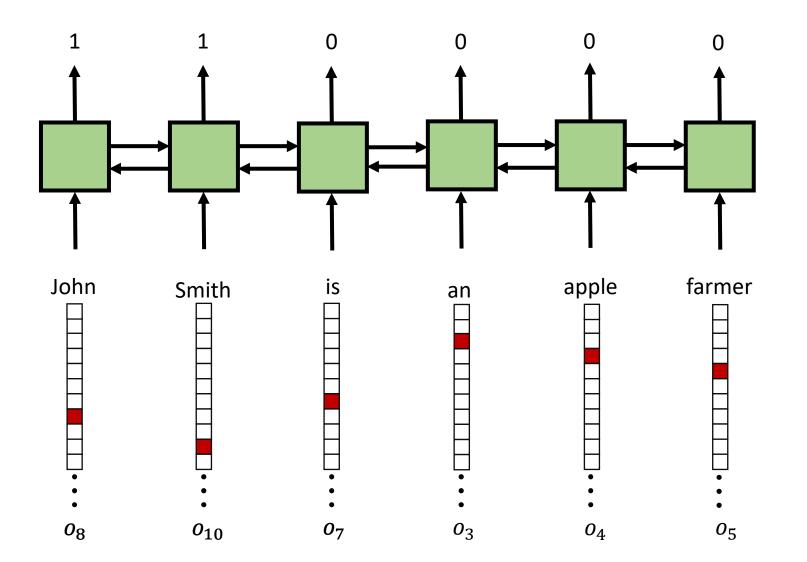
 $V = \{$ a, Alfred, an, apple, farmer, grower, is, John, Kiwano, Smith, Weber, ... $\}$ |V| = 10'000

Task: Name entity recognition

Training set: $D_1 = \{..., John Smith is an apple farmer,... \}$ Test set: $D_2 = \{..., Alfred Weber is a Kiwano grower,... \}$

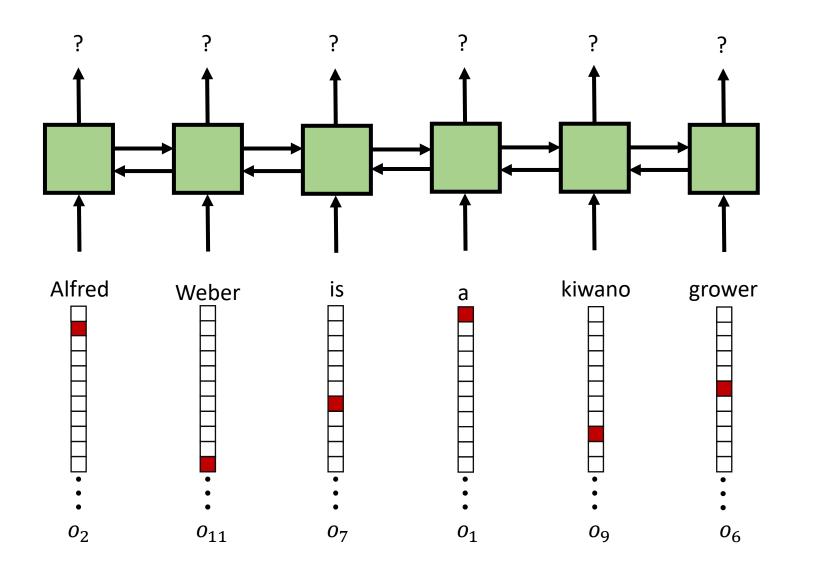
Word embedding: we use the one hot encoding, for word j in the vocabulary we map it to o_j

Training Phase



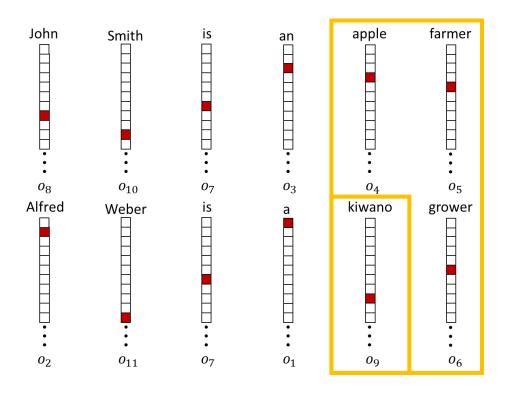
4

Testing Phase



5

Problems



• Kiwano is a rare word

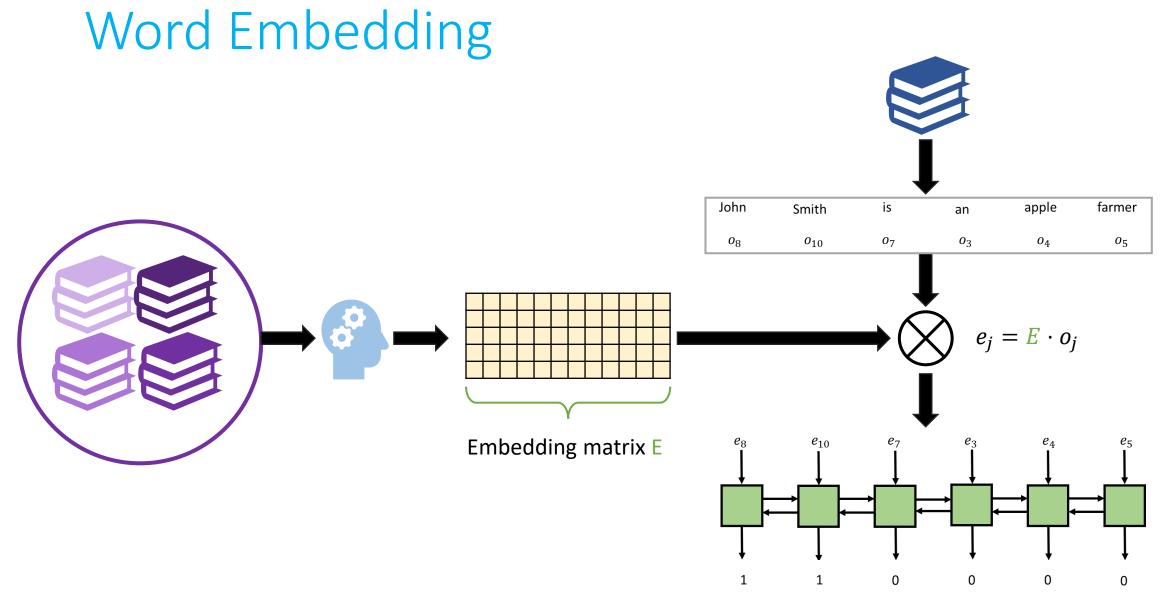
• Word with similar meaning don't have a similar vector sim(u, v)

$$v) = \frac{u^T v}{\|u\| \cdot \|v\|}$$

Hard to learn !

$$sim(apple, kiwano) = \frac{o_4^T o_9}{\|o_4\| \cdot \|o_9\|} = 0$$

 $sim(farmer, grower) = \frac{o_5^T o_6}{\|o_5\| \cdot \|o_6\|} = 0$



Properties of a good Word Embedding

	Man	Woman	King	Queen	Apple	Kiwano	Granpa
Gender	-1	1	-0.96	0.97	0.01	0	-0.97
Royal	0.02	0.03	0.94	0.93	0	0.02	0.1
Age	0.01	0.02	0.65	0.63	0.03	-0.04	0.072
Fruit	-0.07	0.06	0.02	0.03	0.98	0.99	0.01

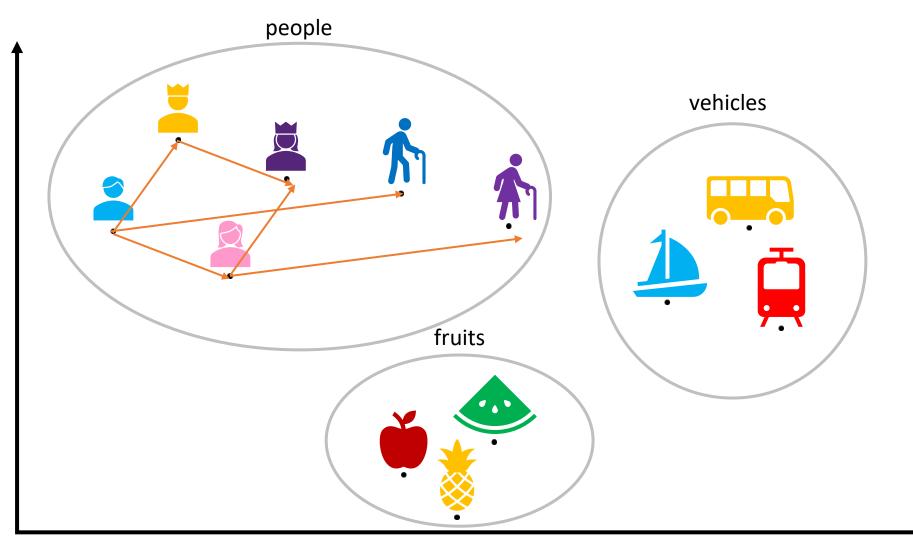
• Word with similar meaning have a similar embedding:

$$sim(apple, kiwano) = \frac{(e_{apple}^{T} \cdot e_{kiwano})}{\left|\left|e_{apple}\right|\right| \cdot \left|\left|e_{kiwano}\right|\right|} \approx 1$$

• Relation are preserved:

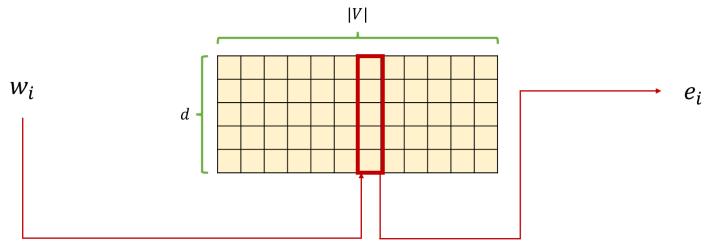
 $sim(king - man + woman, queen) \approx 1$

What a good word embedding can learn



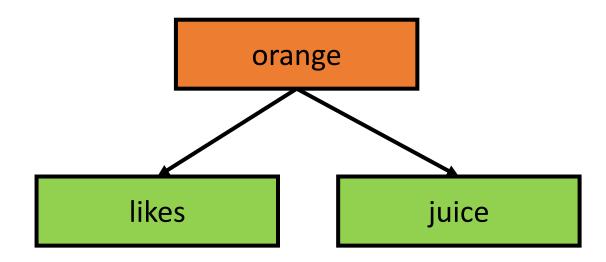
Skip Gram Model

- Easy model that allows to learn a good word embedding
- We learn E by predicting words
- Vocabulary: $V = \{w_1, w_2, ..., w_{10000}\}$
- Embedding dimension: d = 300

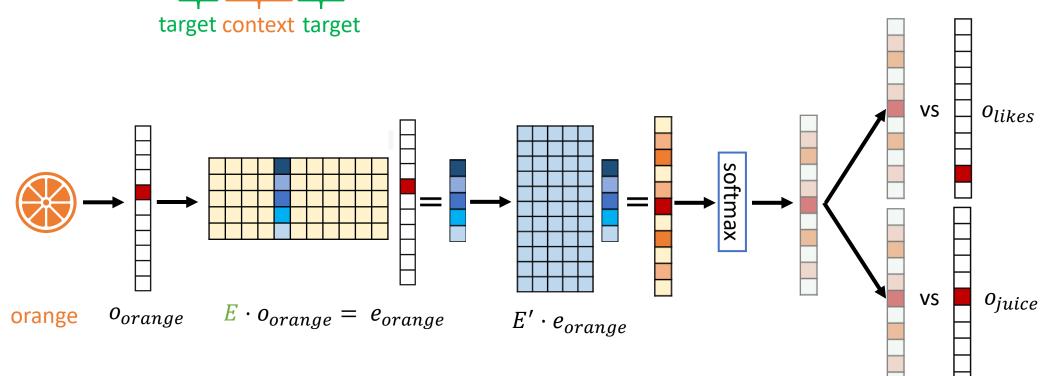


Or equivalent to: $w_i \rightarrow o_i \rightarrow E \cdot o_i = e_i$

The king Smith likes orange juice and apple pie for breakfast target context target



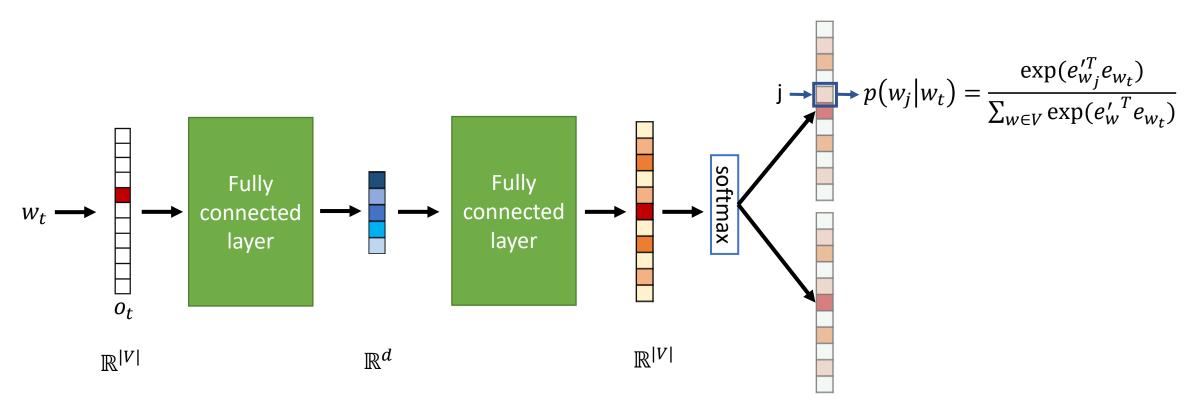
The king Smith likes orange juice and apple pie for breakfast



Notation: j-th column of E:= e_j , j-th row of E':= e_j'

Skip Gram Model as Neural Network

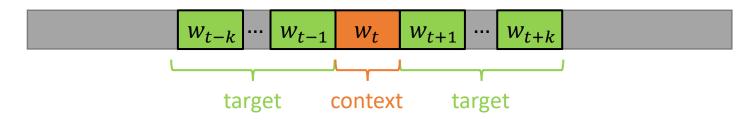
d: dimension of the embedding



Loss: $L_{\theta}(w_t) = \text{NLL} = -\log(p_{\theta}(w_{t-1}|w_t)) - \log(p_{\theta}(w_{t+1}|w_t))$

Skip Gram Model

• We can generalize to a window size of k

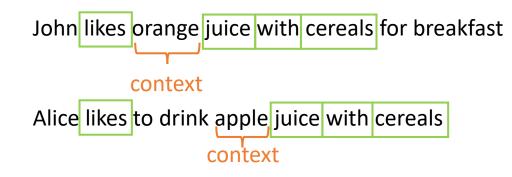


• We can consider a sequence of words w_1, w_2, \dots, w_T instead of a single word at the time

• General loss:

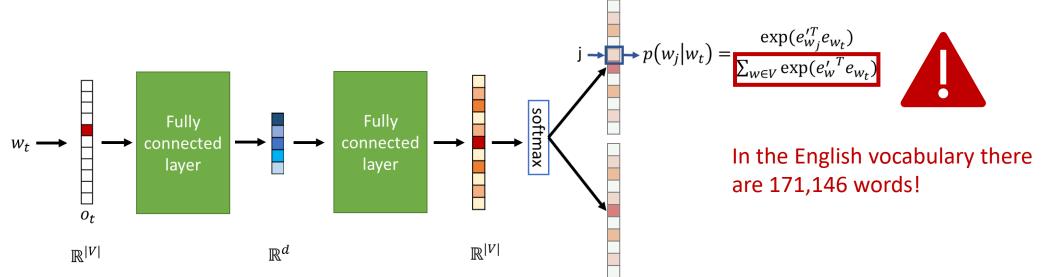
$$L_{\theta}(w_{1}, \dots, w_{T}) = -\frac{1}{T} \sum_{t \in [T]} \sum_{-k \le j \le k, j \ne 0} \log(p_{\theta}(w_{t+j}|w_{t})) \text{ , where } p_{\theta}\left(w_{j}|w_{t}\right) = \frac{\exp(e_{w_{j}}^{\prime T}e_{w_{t}})}{\sum_{w \in V} \exp(e_{w}^{\prime T}e_{w_{t}})}$$

Why this model works?



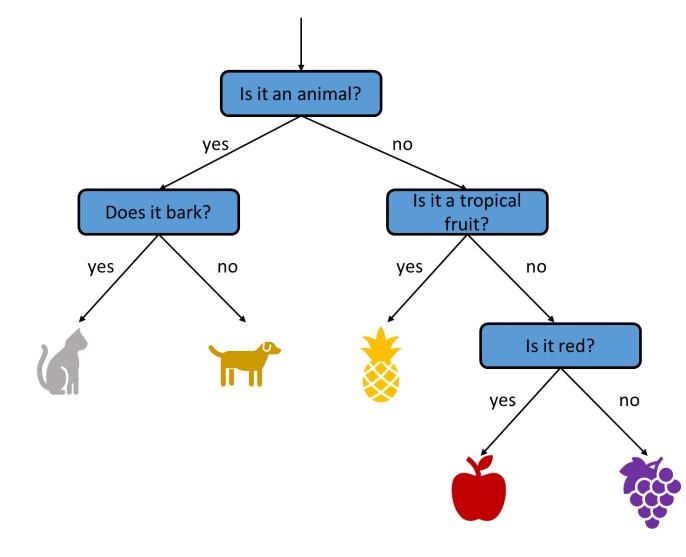
Problems

Do you see any problem?

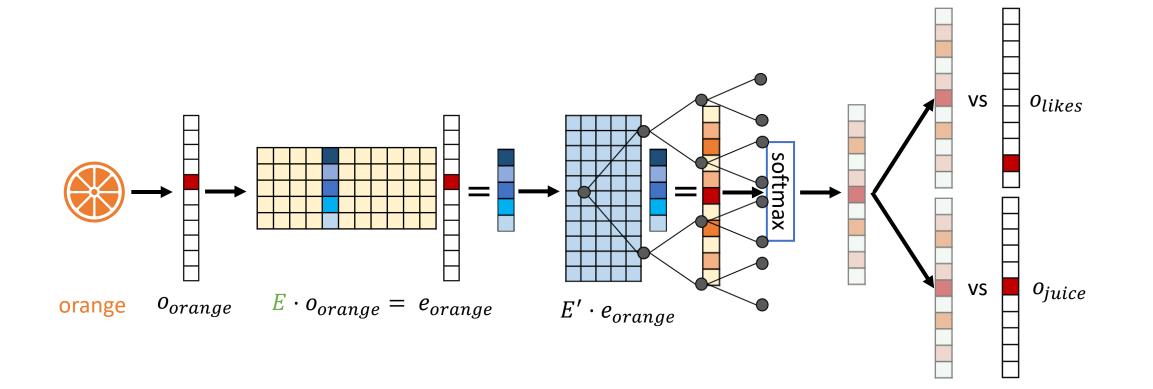


Loss: $L_{\theta}(w_t) = \text{NLL} = -\log(p_{\theta}(w_{t-1}|w_t)) - \log(p_{\theta}(w_{t+1}|w_t))$

Hierarchical Softmax



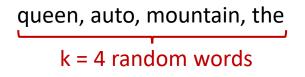
Hierarchical Softmax



Loss: $L_{\theta}(w_t) = \text{NLL} = -\log(p_{\theta}(w_{t-1}|w_t)) - \log(p_{\theta}(w_{t+1}|w_t))$

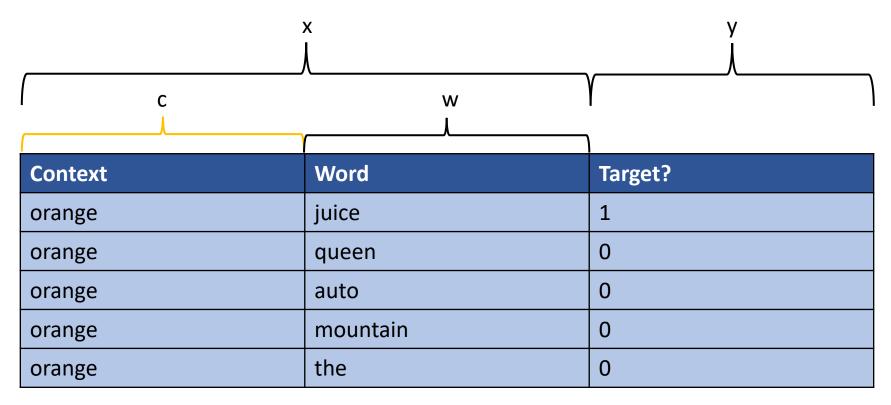
• This methods define a new learning problem: distinguish context target pair from k context random pair

The king Smith likes orange juice and apple pie for breakfast	
context target	

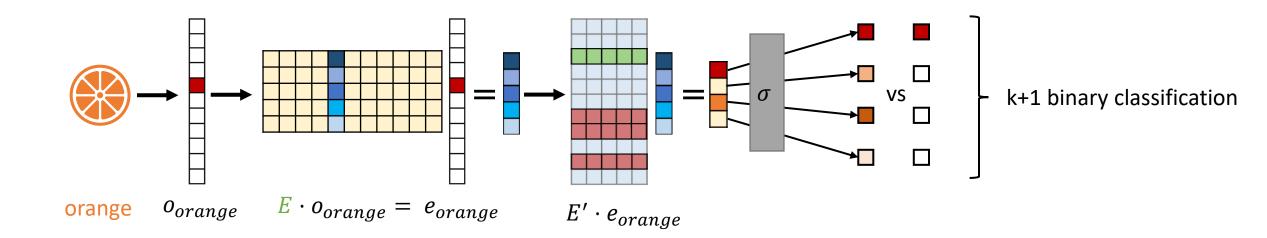


Context	Word	Target?		
orange	juice	1	positive example	
orange	queen	0		
orange	auto	0	negative example	
orange	mountain	0	negative example	
orange	the	0		

• The task is a supervised learning from x to y, more precisely we have k+1 binary classification



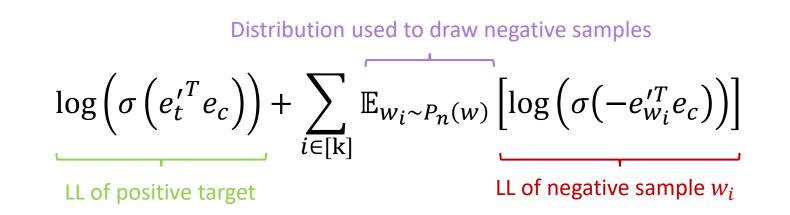
$$p_{\theta}(y=1|c,w) = \sigma(e_w'^T e_c)$$



• We use the sum of NLL for the loss

$$-\left(\log\left(\sigma(\mathbf{e}_{t}^{\prime \mathrm{T}}\mathbf{e}_{\mathrm{c}})\right) + \sum_{w,w \neq t}\log\left(1 - \sigma(\mathbf{e}_{w}^{\prime \mathrm{T}}\mathbf{e}_{\mathrm{c}})\right)\right)$$

• For a context target pair (c,t) we define the negative sampling by the objective

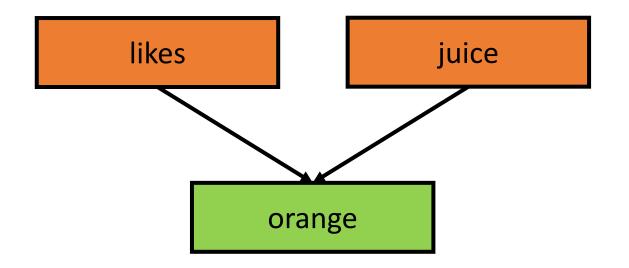


- How to choose k? $k \in \{5, ..., 20\}$ for small dataset, and $k \in \{2, ..., 5\}$ for large dataset
- How to choose $P_n(w)$? $p(w_i) = \frac{f(w_i)^{3/4}}{\sum_w f(w)^{3/4}}$

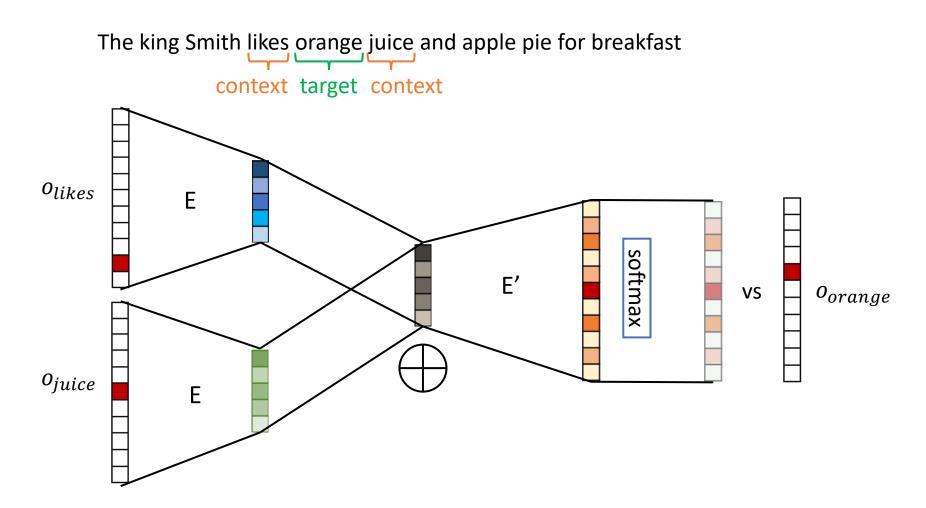
Continuous Bag of Words (CBOW)

The king Smith likes orange juice and apple pie for breakfast

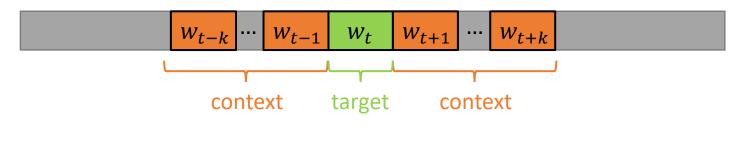
context target context



Continuous Bag of Words (CBOW)



Global Vectors for Word Representation (GloVe)



 $X_{ij} =$ #times i appear in context of the target j

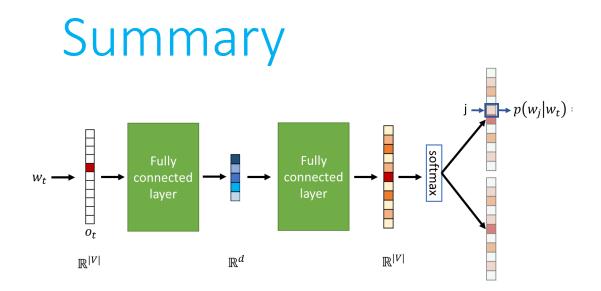
Note: $X_{ij} = X_{ji}$

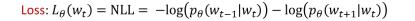
Global Vectors for Word Representation (GloVe)

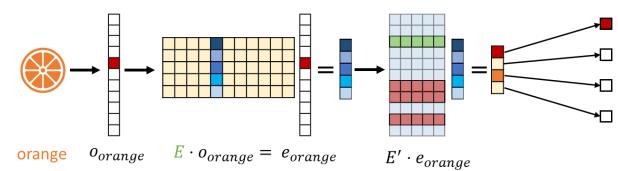
- The more i and j are related (X_{ij} large) the more the two vectors e'_i , e_j should be correlated ($e'_i e_j$ large)
- If X_{ij} is zero we cannot take the logarithm
- We add bias

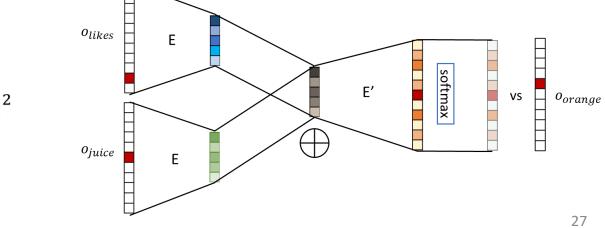
Objective:

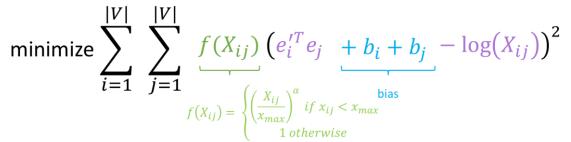
minimize
$$\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} \frac{f(X_{ij})(e_i'^T e_j + b_i + b_j - \log(X_{ij}))^2}{f(X_{ij}) = \begin{cases} \left(\frac{X_{ij}}{x_{max}}\right)^{\alpha} & \text{if } x_{ij} < x_{max} \\ 1 & \text{otherwise} \end{cases}}$$











- Distributed Representations of Words and Phrases and their Composability: <u>https://arxiv.org/pdf/1310.4546.pdf</u>
- Global Vectors for Word Representation: https://nlp.stanford.edu/pubs/glove.pdf
- https://www.youtube.com/watch?v=36XuT5c9qvE
- <u>https://www.youtube.com/watch?v=UqRCEmrv1gQ</u>