Principles of Distributed Computing Exercise 8: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

$$
M^{D I S J}=\left(\begin{array}{c|ccccccccc}
\text { DISJ } & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & \leftarrow x \\
\hline 000 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
001 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \\
010 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & \\
011 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \\
100 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \\
101 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \\
110 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \\
111 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\uparrow y & & & & & & & & &
\end{array}\right)
$$

For the Bonus task you can see for instance this short article for a nice visual.
b) When $k=3$ a fooling set of size 4 for $D I S J$ is, e.g.,

$$
S_{1}:=\{(111,000),(110,001),(101,010),(100,011)\} .
$$

Entries in $M^{D I S J}$ corresponding to elements of S_{1} are marked dark gray. Note that a fooling set need not be on a diagonal of the matrix. E.g.

$$
S_{2}:=\{(001,110),(010,001),(011,100),(100,010)\}
$$

marked light gray in $M^{D I S J}$.
c) If $x_{1}=x_{2}$, then we would have $\left(x_{1}, y_{j}\right)=\left(x_{2}, y_{j}\right)$ for $j \in\{1,2\}$ and thus $f\left(x_{1}, y_{2}\right)=$ $f\left(x_{2}, y_{2}\right)=f\left(x_{1}, y_{1}\right)=f\left(x_{1}, y_{2}\right)=z$, contradicting the definition of a fooling set. Similarly for $y_{1}=y_{2}$.
d) $S:=\left\{(x, \bar{x}) \mid x \in\{0,1\}^{k}\right\}$ is a fooling set for DISJ:

- For any $(x, y) \in S, \operatorname{DISJ}(x, y)=1$, by our definition of S.
- Now, consider any two distinct elements of $S:\left(x_{1}, \overline{x_{1}}\right)$ and $\left(x_{2}, \overline{x_{2}}\right)$. Since $x_{1} \neq x_{2}$, either x_{1} has set bit which x_{2} does not, or x_{2} has some set bit which x_{1} does not (or both). Without loss of generality, x_{1} has some set bit which x_{2} does not, but then x_{1} and $\overline{x_{2}}$ are not disjoint, meaning that $\operatorname{DISJ}\left(x_{1}, \bar{x}_{2}\right)=0$.

The size of S is 2^{k}, so k is a lower bound for the $C C(D I S J)$ by the result from the lecture.

2 Distinguishing Diameter 2 from 4

a) Note that $O(D)=O(1)$, since $D \leq 4$ holds for all graphs being considered.

- Choosing $v \in L$ takes time $O(1)$: use any leader election protocol from the lectures. E.g., the node with smallest ID in L can be elected as a leader. This leader node will be node v. Note that, during the leader election protocol, if after 4 rounds no messages are received, then a node can conclude that all nodes are in H, so checking whether $L \neq \emptyset$ does not need to be done separately.
- Computing a BFS tree from a vertex takes time $O(D)=O(1)$. Since $v \in L$, at most $\left|N_{1}(v)\right| \leq s$ executions of BFS are performed. These can be started one after each other and yield a total time complexity of $O(s)$.
- The comment states: computing a dominating set $\mathcal{D} O M$ takes time $O(D)=O(1)$.
- Since $|\mathcal{D} O M| \leq \frac{n \log n}{s}$, the time complexity of computing all BFS trees from each vertex in $\mathcal{D} O M$ (one after each other) is $O\left(\frac{n \log n}{s}\right)$.
- Checking whether all trees have depth at most 2 can be done in $O(D)=O(1)$ as well: each node knows its depth in any of the computed trees. If its depth is 3 or 4 , it floods "diameter is 4" to the graph. If a node gets such a message from several neighbors, it only forwards it to those from which it did not receive it yet. If any node did not receive message "diameter is 4 " after 4 rounds, it decides that the diameter is 2. Otherwise, it decides that the diameter is 4 . This decision will be consistent among all nodes.
- By adding all these runtimes, we conclude that the total time complexity of Algorithm 2 -vs-4 is $O\left(s+\frac{n \log n}{s}\right)$.
b) By differentiating $s+\frac{n \log n}{s}$ as a function of s we can argue that $s+\frac{n \log n}{s}$ is minimal for $s=\sqrt{n \log n}$. Alternatively, one can use the fact that $a+b \geq 2 \sqrt{a b}$, with equality if and only if $a=b$, to get that $s+\frac{n \log n}{s} \geq \sqrt{2 s \frac{n \log n}{s}}=\sqrt{n \log n}$, with equality if and only if $s=\frac{n \log n}{s} \Longleftrightarrow s=\sqrt{n \log n}$. For this value of s, we get a runtime of $O(\sqrt{n \log n})$.
c) Since in this case no BFS tree can have depth larger than 2, the algorithm will always return "diameter is 2 ".
d) If $w=s$, the claim is immediate. Otherwise, using the triangle inequality we have that $d(s, w)+d(w, t) \geq 4 \Longleftrightarrow 1+d(w, t) \geq 4 \Longleftrightarrow d(w, t) \geq 3$, so the BFS tree of w has depth at least 3. Therefore, Algorithm 2-vs-4 decides "diameter is 4 ".
e) If the BFS started in v has depth at least 3 , then we are done. Otherwise, we have $d(s, v) \leq 2$. Using d) we conclude that $d(s, v)=2$. Let w be a node that connects s to v. Since $w \in N_{1}(v)$, Algorithm 2-vs-4 executes a BFS from w. Then, apply d) using that $w \in N_{1}(s)$.
f) Since $\mathcal{D} O M$ is a dominating set, it follows that the algorithm executes a BFS from a node $w \in \mathcal{D} O M \cap N_{1}(s) \neq \emptyset$. Now apply d).
g) A careful look into the construction of family \mathcal{G} reveals that we essentially showed an $\Omega(n / \log n)$ lower bound to distinguish diameter 2 from 3 . Since the graphs considered here cannot have diameter 3, the studied algorithm does not contradict this lower bound. Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using this exact algorithm. Indeed, if the algorithm finds a BFS tree of depth greater than 2, then the diameter is 3 . However, if all BFS trees found are diameter 2 or less, the diameter could still be 3 .
h) Consider a clique with n nodes, where n should be large enough, and remove an arbitrary edge (u, v) from it. Since $d(u, v)=2$, the graph has diameter 2 . We have that $L=\emptyset$ and that for any $w \notin\{u, v\}$ the set $\{w\}$ is a dominating set. If one such $\mathcal{D} O M=\{w\}$ is selected in the algorithm, then Algorithm 2-vs-4 executes exactly one BFS (from w), which has depth 1 , disproving the claim. Note that this proof works for all $s \leq n-2$.

