Principles of Distributed Computing Exercise 8

1 Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider the disjointness function: Alice and Bob are given subsets $X, Y \subseteq\{1, \ldots, k\}$ and need to determine whether they are disjoint. Each subset $Z \subseteq\{1, \ldots, k\}$ can be represented by a string of bits $z \in\{0,1\}^{k}$, where the $i^{\text {th }}$ bit of z is 1 if and only if $i \in Z$. Now, we can define the disjointness of x and y as:

$$
\operatorname{DISJ}(x, y):= \begin{cases}0, & \text { if there is an index } i \text { such that } x_{i}=y_{i}=1 \\ 1, & \text { otherwise. }\end{cases}
$$

a) Write down $M^{D I S J}$ for function $D I S J$ when $k=3$. Bonus, for fun: How does $M^{D I S J}$ look in general? Can you spot any patterns?
b) Use the matrix obtained in a) to provide a fooling set of size 4 for $D I S J$ when $k=3$.
c) Prove that if S is a fooling set and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are two different elements of S , then $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$.
d) Prove that $C C(D I S J)=\Omega(k)$.

2 Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of each edge is limited to $O(\log n)$, the diameter of a graph can be computed in $O(n)$. In this problem, we show that we can do much faster in case we know that all networks/graphs on which we execute our algorithm have either diameter 2 or diameter 4 . We start by partitioning the nodes of our graph $G=(V, E)$ into two sets: let $s:=s(n)$ be a threshold to be determined later and define the set of high degree nodes $H:=$ $\{v \in V \mid d(v) \geq s\}$ and the set of low degree nodes $L:=\{v \in V \mid d(v)<s\}$. Next, we define a dominating set $\mathcal{D} O M \subseteq V$ to be a subset of nodes such that each node in the graph is either in $\mathcal{D} O M$ or is adjacent to a node in the $\mathcal{D} O M$. For this problem we assume that if all nodes in G have degree at least s, then one can compute a dominating set $\mathcal{D} O M$ of size at most $\frac{n \log n}{s}$ in time $O(D)$.
Note: We define $N_{1}(v)$ as the closed neighborhood of node v (v and its adjacent nodes).
a) What is the distributed runtime of Algorithm 2-vs-4 (stated next page)? In case you believe that the distributed implementation of a step is not known from the lecture, find a distributed implementation for this step! Hint: The runtime depends on s and n.

```
Algorithm 1"2-vs-4"
Input: Graph \(G\) with diameter 2 or 4 .
Output: Diameter of \(G\).
    if \(L \neq \emptyset\) then
        Choose \(v \in L . \quad \triangleright\) We know: this takes time \(O(D)\).
        Compute a BFS tree from each node in \(N_{1}(v)\).
    else
        Compute a dominating set \(\mathcal{D} O M\) of size at most \(\frac{n \log n}{s}\). \(\triangleright\) Use: Assumption
        Compute a BFS tree starting from each node in \(\mathcal{D} O^{s} M\).
    end if
    if all BFS trees have depth 1 or 2 then
        return 2
    else
        return 4
    end if
```

b) Find a function $s:=s(n)$ such that the runtime is minimized (in terms of n).
c) Prove that if the diameter is 2 , then Algorithm 2-vs-4 always returns 2 .

Now, assume that the diameter of the network is 4 and that s and t are vertices with distance 4 to each other.
d) Prove that if the algorithm performs a BFS from at least one node $w \in N_{1}(s)$, then it decides that the diameter is 4 .
e) Assuming $L \neq \emptyset$, prove that the algorithm performs a BFS of depth at least 3 from some node w. Hint: use d).
f) Assuming $L=\emptyset$, prove that the algorithm performs a BFS of depth at least 3 from some node w.

We have now proven that Algorithm 2-vs-4 is always correct in distinguishing graphs of diameter 2 from graphs of diameter 4.
g) Give a high level idea why you think that this does not violate the lower bound of $\Omega(n / \log n)$ presented in the lecture!
h) Assuming $s=n / 2$, prove or disprove: if the diameter is 2 , then Algorithm 2-vs-4 will always compute some BFS tree of depth exactly 2 .

