ETH o

Distributed ;

Eidgendssische Technische Hochschule Ziirich ““ S u
Swiss Federal Institute of Technology Zurich Computmg t?‘\ A ELH
FS 2021 Prof. R. Wattenhofer

Lioba Heimbach

Principles of Distributed Computing
Exercise 9: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

DISJ | 000 001 010 011 100 101 110 111 <z
000 | 1 1 1 1 1 1 1
001 | 1 0 1 0 1 0 0
010 | 1 1 0 0 1 0 0
AfDIST _ 011 | 1 0 0 0 0 0 0
100 | 1 1 1 1 0 0 0 0
101 | 1 0 1 0 0 0 0 0
110 | 1 1 0 0 0 0 0 0
111 | 1 0 0 0 0 0 0 0
ty

b) When k = 3, a fooling set of size 4 for DISJ is, e.g.,
Sy := {(111,000), (110,001), (101,010), (100,011)}.

Entries in M P’/ corresponding to elements of S; are marked dark gray. Note that a fooling
set need not be on a diagonal of the matrix. E.g.

Sy := {(001, 110), (010, 001), (011, 100), (100, 010)},
marked light gray in M P57,

c) In general, S := {(z,7) | € {0,1}*} is a fooling set for DISJ. First, we note that for
any two elements (x1,y1), (x2,y2) of any fooling set x1 # x2. Otherwise we would have
(w1,y;) = (z2,y;) for j € {1,2} and thus f(w2,y1) = f(x1,92) = f(21,91) = f(22,92) = 2,
contradicting the definition of a fooling set. Similarly y; # ys.

e For any (z,y) € S, DISJ(z,y) = 1, by our definition of S.

e Now consider any (x1,y1) # (z2,y2) € S. Since 1 # w9, then either x; has some
element that x5 does not, or x2 has some element that x1 does not (or both). Wlog z
has some element that xo does not. But then x; and ys = Ty are not disjoint so that
D[SJ(l‘l,yg) =0.

So S is indeed a fooling set. And The size of S is 2¥, so k is a lower bound for the CC by
the result from the lecture.

2
a)

b)

c)

d)

e)

f)

g)

h)

Distinguishing Diameter 2 from 4

e Choosing v € L takes O(D): Use any leader election protocol from the lecture. E.g.,
the node with smallest ID in L can be elected as a leader. Then this node will be v.
Note that during the leader election protocol if after D rounds no messages are received,
then the nodes can conclude that all nodes are in H.

¢ Computing a BFS tree from a vertex usually takes O(D). Since in our setting all graphs
are guaranteed to have constant diameter, the time required for this is O(1). As node
visin L, at most |N71(v)| < s executions of BFS are performed. These can be started
one after each other and yield a complexity of O(s).

e The comment states: Computing an H-dominating set DOM takes time O(D) = O(1).

e Since |DOM| < "10%, the time complexity of computing all BFS trees from each
vertex in DOM (one after each other) is O("Eﬂ).

e Checking whether all trees have depth of at most 2 can be done in O(D) = O(1) as
well: Each node knows its depth in any of the computed trees. If its depth is 3 or
4, it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise it decides that the diameter is 4. This decision will be consistent among
all nodes.

e By adding all these runtimes, we conclude that the total time complexity of Algorithm
2-vs-d is O (s 4 2%).

By deriving O (S + %) as a function of s we can argue that O (s + 58" lzg”

for s = y/nlogn. Thus the runtime of the Algorithm is O(y/nlogn).

) is minimal

Since in this case no BFS tree can have depth larger than 2 the algorithm returns “diameter
is 27.

Using the triangle inequality we obtain that d(w,v) > d(u,v) — d(u,w) = 3 thus the BFS
tree of w has at least depth 3. Therefore Algorithm 2-vs-4 decides “diameter is 4”.

Let w be the leader elected in step 2 of Algorithm 2-vs-4. If the BFS started in w has depth
at least 3, we are done. In the other case it is d(u,w) < 2. Using d) we conclude that
d(u,w) = 2. Let w’ be a node that connects u to w. Since w’ € Ny(w), Algorithm 2-vs-4
executes a BFS from w’. Then we apply d) using that w’ € Ny (u).

Since DOM is a dominating set for H = V\ L = V| it follows immediately that the algorithm
executes a BFS from a node w € DOM N Ni(u) # 0. Now apply d).

A careful look into the construction of family G reveals that we essentially showed an
Q(n/logn) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.
Suppose we had to decide between diameter 2 and 3 (instead of 2 and 4) and we try using
this exact algorithm. Indeed if the algorithm finds a BF'S tree of depth greater than 2, then
the diameter is 3. However, if all BF'S trees found are diameter 2 or less, the diameter could
still be 3.

Consider a clique (with n nodes, n large enough) and remove an arbitrary edge (u,v). Since
d(u,v) = 2, the graph has diameter 2. We have L = () and {w} is an H-dominating set for
all u # w # v. If DOM = {w}, then Algorithm 2-vs-4 executes exactly one BFS (from w)
which has depth 1 which disproves the claim. Note that this proof works for all s < n — 2.

