Principles of Distributed Computing Exercise 9

1 Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider the disjointness function: Alice and Bob are given subsets $X, Y \subseteq\{1, \ldots, k\}$ and need to determine whether they are disjoint. Each subset can be represented by a string. E.g., we define the $i^{t h}$ bit of $x \in\{0,1\}^{k}$ as $x_{i}:=1$ if $i \in X$ and $x_{i}:=0$ if $i \notin X$. Now define disjointness of X and Y as:

$$
\operatorname{DISJ}(x, y):= \begin{cases}0 & : \text { there is an index } i \text { such that } x_{i}=y_{i}=1 \\ 1 & : \text { else }\end{cases}
$$

a) Write down $M^{D I S J}$ for the $D I S J$-function when $k=3$.
b) Use the matrix obtained in a) to provide a fooling set of size 4 for $D I S J$ in case $k=3$.
c) In general, prove that $C C(D I S J)=\Omega(k)$.

2 Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of an edge is limited to $O(\log n)$, the diameter of a graph can be computed in $O(n)$. In this problem, we show that we can do faster in case we know that all networks/graphs on which we execute an algorithm have either diameter 2 or diameter 4. We start by partitioning the nodes into sets: Let $s:=s(n)$ be a threshold and define the set of high degree nodes $H:=\{v \in V \mid d(v) \geq s\}$ and the set of low degree nodes $L:=\{v \in V \mid d(v)<s\}$. Next, we define: An H-dominating set $\mathcal{D} O M$ is a subset $\mathcal{D} O M \subseteq V$ of the nodes such that each node in H is either in the set $\mathcal{D} O M$ or adjacent to a node in the set $\mathcal{D} O M$.
Note: We define $N_{1}(v)$ as the closed neighborhood of vertex v (v and its adjacent nodes).
Assume in the following, that we can compute an H-dominating set $\mathcal{D} O M$ of size $\frac{n \log n}{s}$ in time $O(D)$.
a) What is the distributed runtime of Algorithm 2-vs-4 (stated next page)? In case you believe that the distributed implementation of a step is not known from the lecture, find a distributed implementation for this step! Hint: The runtime depends on s and n.
b) Find a function $s:=s(n)$ such that the runtime is minimized (in terms of n).
c) Prove that if the diameter is 2, then Algorithm 2-vs-4 always returns 2.

Now assume that the diameter of the network is 4 and that we know vertices u and v with distance 4 to each other.

```
Algorithm 1"2-vs-4". Input: \(G\) with diameter 2 or 4 Output: diameter of \(G\)
    if \(L \neq \emptyset\) then
        choose \(v \in L \quad \triangleright\) We know: This takes \(O(D)\).
        compute a BFS tree from each vertex in \(N_{1}(v)\)
    else
        compute an \(H\)-dominating set \(\mathcal{D} O M \quad \triangleright\) Use: Assumption
        compute a BFS tree from each vertex in \(\mathcal{D} O M\)
    end if
    if all BFS trees have depth 2 or 1 then
        return 2
    else
        return 4
    end if
```

d) Prove that if the algorithm performs a BFS from at least one node $w \in N_{1}(u)$ it decides "the diameter is 4 ".
e) In case $L \neq \emptyset$: Prove that the algorithm performs a BFS of depth at least 3 from some node w. Hint: use d)
f) In case $L=\emptyset:$ Prove that the algorithm performs a BFS of depth at least 3 from some node w.
g) Give a high level idea, why you think that this does not violate the lower bound of $\Omega(n / \log n)$ presented in the lecture!
h) Assume $s=\frac{n}{2}$. Prove or disprove: If the diameter is 2, then Algorithm 2-vs-4 will always compute some BFS tree of depth exactly 2.

