

Imperfect Information Games

Multi-Agent Reinforcement Learning

Presenter: Jérémy Scheurer

Going Beyond Alpha Zero

Imperfect Information

Going Beyond Alpha Zero

2

Imperfect Information

Multiple Agents & Rewards

Fundamental Questions

How can we solve imperfect information games?

How does Multi-Agent Reinforcement Learning relate to imperfect information games?

Perfect vs Imperfect environments

Perfect Information Game

Imperfect Information Game

Can we use Alpha Zero for Imperfect Information Games?

MCTS Assumes Perfect Information

What is the goal in any game?

If each player has chosen a strategy, and no player can benefit by changing strategies while the other players keep theirs unchanged.

	Betray	Remain Silent	
Betray	2/2	0/3	
Remain Silent	3/0	1/1	

Best Response

Round	Player 1's action	Player 2's action	Player 1's beliefs	Player 2's beliefs
0			(R=3, P=1, S=1)	(1, 1, 1)
1				
2				
•••				
n		I	l	

Round	Player 1's action	Player 2's action	Player 1's beliefs	Player 2's beliefs
0			(R=3, P=1, S=1)	(1, 1, 1)
1	Paper	Paper	(3, 2, 1)	(1, 2, 1)
2				
•••				
n		1		

Round	Player 1's action	Player 2's action	Player 1's beliefs	Player 2's beliefs
0			(R=3, P=1, S=1)	(1, 1, 1)
1	Paper	Paper	(3, 2, 1)	(1, 2, 1)
2	Paper	Scissor	(3, 2, 2)	(1, 3, 1)
•••				
n		I	l	

Round	Player 1's action	Player 2's action	Player 1's beliefs	Player 2's beliefs
0			(R=3, P=1, S=1)	(1, 1, 1)
1	Paper	Paper	(3, 2, 1)	(1, 2, 1)
2	Paper	Scissor	(3, 2, 2)	(1, 3, 1)
•••				
n			(0.33, 0.33, 0.33)	(0.33, 0.33, 0.33)

Fictitous Play Converges to Nash Equilibrium

Theorem 1: Fictitious play converges to a Nash Equilibrium in two-player zero sum game.

n		(0.33, 0.33, 0.33)	(0.33, 0.33, 0.33)

Play Mixed Strategy

Normal Form vs Extensive Form Games

Extensive Form Fictitious Play Convergences

Extensive Form fictitious play inherits properties of fictitious play i.e. Average strategy converges to Nash-Equilibrium (in certain games).

Extensive Form Fictitious Play (XFP) [2]

2 Policies to Play

VS.

Average Policy (converges to Nash Equilibrium)

Problem of XFP

Computationally Intractable

Approximate XFP

Dilemma: What policy to play?

Fictitious Self Play [2]

Neural Fictitious Self Play [3]

Results: XFP vs FSP

Results: NFSP

Drawbacks of NFSP

• It requires off-policy Reinforcement Learning Algorithms (DQN)

Still has trouble to learn in environments with very large strategegic spaces

A unified Game Theoretic Approach to Multi-Agent RL

- PSRO Algorithm [4]

[4] A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning, Lanctot et. al

Policy Space Response Oracles (PSRO)

Results: PSRO

(a) 2 players

Alphastar for Starcraft [5]

[5] Grandmaster level in StarCraft II using multi-agent reinforcement learning, Vinyals et. al.

Starcraft

- What is Starcraft and how does it differ from Go?
 - Imperfect Information
 - Many more actions
 - Longer episodes (long-term planning)
 - Real-time

Alpha Star [6]

- Complicated Model
- Imitation Learning
- RL-Algorithm is similar to advantage Actor Critic

Does this work?

When do cycles arise?

Strategic cycles often arise when agents play simultaneous move or imperfect information games such as rock-paper-scissors, poker, or StarCraft.[6]

AlphaStar League

AlphaStar League

AlphaStar League

Grandmaster level in StarCraft II using multi-agent reinforcement learning, Vinyals et. al.

Does this work?

Avoid Forgetting

Does this work?

Avoid Forgetting

Explore Difficult Strategies

Unit distribution for types of agents

Grandmaster level in StarCraft II using multi-agent reinforcement learning, Vinyals et. al.

Payoff Matrix

Grandmaster level in StarCraft II using multi-agent reinforcement learning, Vinyals et. al.

Why no Multi-Agent RL for AlphaZero?

Neural Nets and Self Play are very prone to cycles, how can we avoid them?

We do keep older versions to train against

MCTS to the rescue (probably)

Finding an algorithm for stable learning in GO is a HUGE achievement!

Lessons Learned

- Limitations of Alpha Zero
- How to solve Imperfect Information Games
- How to leverage Multiple Agents/Leagues

Thank You

References - Images/Videos

- Planet Image: Deepmind, Alphastar
 <u>https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforceme</u>
 <u>nt-learning</u>, accessed 22.3.2020
- Poker image: <u>https://www.scinexx.de/news/technik/ki-gewinnt-gegen-pokerprofis/</u>, accessed 12.3.2020
- Multi Agent Seek and Hide, Openai, <u>https://www.youtube.com/watch?v=kopoLzvh5jY&t=69s</u>, accessed 21.3.2020
- Chess Image: https://www.chess.com/article/view/game-of-the-century-chess, accessed 12.3.2020
- Alpha Zero MCTS: Mastering the Game of Go without human knowledge, Silver et. al.
- Rock Paper Scissors: Deepmind, Alphastar, <u>https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforceme</u> <u>nt-learning</u>, accessed 22.3.2020
- Extensive Form Games: <u>https://towardsdatascience.com/fictitious-self-play-30b76e30ec6a</u>, accessed 13.3.2020
- Neural Network: <u>https://databricks.com/glossary/neural-network</u>, accessed 22.3.2020
- Starcraft Video: <u>https://www.youtube.com/watch?v=6EQAsrfUIyo&feature=youtu.be</u>, accessed 22.3.2020
- Self-Play & Exploiters Development: <u>https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning</u>, accessed 22.3.2020