ETH zürich

Stochastic Planning in Games: an AlphaGo Case-study

Tommaso Macrì

AlphaGo beats 18-time world champion Lee Sedol 4 games to 1

The New York Times

It isn't looking good for humanity.

The Guardian

In a major breakthrough for artificial intelligence, AlphaGo Zero took just three days to master the ancient Chinese board game of Go ... with no human help

Distributed Computing

The Game of Go

The Game of Go, Rules

Aim of the game is to surround more territory than the opponent

Distributed Computing

Comparison with Chess

- ~250 legal moves per position
- ~150 moves per game

- ~35 legal moves per position
- ~80 moves per game

Artificial Intelligence perspective

Go game has challenged artificial intelligence researchers for many decades

A Go board configuration

Mastering the Game of Go: a Major Breakthrough for Al

ARTICLE

nature 2016

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Planning and RL

Planning vs Learning

In Planning, we use the simulated experience to update the value function and policy

Distributed Computing

In Learning we use Experience Generated by the Environment (not simulated)

EHzürich

Distributed Computing

Planning vs Learning: the Dyna-Q example

Tabular Dyna-Q

Reinforcement Learning, Sutton et al.

Planning vs Learning: pros and cons

Direct vs Undirect Learning

Reinforcement Learning, Sutton et al.

MCTS (Monte Carlo Tree Search)

Distributed Computing

Monte Carlo Tree Search

Distributed Computing

Monte Carlo Tree Search

Distributed Computing

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

The AlphaGo Breakthrough

E *H zürich*

ARTICLE

nature 2016

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

AlphaGo

- Go is a perfect information game.
- Compute optimal value function?
- Tree search = b^d
- b = 250; d = 150
- Exhaustive search is infeasible

AlphaGo: the 4 Neural Networks

Forward Propagation:

Accuracy:

Mastering the game of go with deep neural networks and tree search, David Silver et al.

AlphaGo: multiple outputs for the policy and single for the value

b

Mastering the game of go with deep neural networks and tree search, David Silver et al.

AlphaGo: combining Policy Network and Value Network with MCTS

Distributed Computing

Mastering the game of go with deep neural networks and tree search, David Silver et al.

AlphaGo Zero

ARTICLE

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

AlphaGo Zero: Only one Neural Network for Policy and Value

$(oldsymbol{p},v)=f_{ heta}(s)$

AlphaGo Zero: Using MCTS to select moves throughout self-play

Distributed Computing

Mastering the game of go without human knowledge, David Silver et al.

Alpha Zero

RESEARCH

nature 2018

COMPUTER SCIENCE

A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play

David Silver^{1,2}*[†], Thomas Hubert¹*, Julian Schrittwieser¹*, Ioannis Antonoglou¹, Matthew Lai¹, Arthur Guez¹, Marc Lanctot¹, Laurent Sifre¹, Dharshan Kumaran¹, Thore Graepel¹, Timothy Lillicrap¹, Karen Simonyan¹, Demis Hassabis¹[†]

Distributed Computing

EHzürich

Alpha Zero: Learning and MCTS do not assume symmetry

Alpha Go and Alpha Go Zero assumed symmetry for:

- Training data augmentation
- Bias removal in Monte Carlo evaluations

Alpha Zero considers also the "Drawn" outcome

Shogi AlphaZero vs. Elmo								
	迸						₿	
₩	塢	棗	塢	₩	뷳	棗	₽	棗
歩	歩	歩	歩	歩	歩	歩	歩	歩
	角						飛	
香	桂	銀	金	Ŧ	金	銀	桂	香

Go AlphaZero vs. AGO

Distributed Computing

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, David Silver et al.

Alpha Zero: The Algorithm Architecture

Alpha Go Zero, Alpha Zero:

- one Neural Network (Policy + Value)
- Monte Carlo Tree Search

Alpha Go Zero

- Wait for an iteration to conclude to update NN
- Compare the new policy to the best

Alpha Zero

- Update the NN continuously
- Always generate Self-Play with the latest NN

Results: AlphaGo beats the European Go Champion

Mastering the game of go with deep neural networks and tree search, David Silver et al.

Distributed Computing

AlphaGo Zero: better performances than AlphaGo

Mastering the game of go without human knowledge, David Silver et al.

Tommaso Macrì | 23.03.20

AlphaGo Zero: Learns human expert moves and beyond

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, David Silver et al.

Distributed Computing

Alpha Zero: program applied to Chess and Shogi

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, David Silver et al.

Conclusions

66

I can't disguise my satisfaction that it plays with a very dynamic style, much like my own!"

GARRY KASPAROV FORMER WORLD CHESS CHAMPION

66

The implications go far beyond my beloved chessboard... Not only do these selftaught expert machines perform incredibly well, but we can actually learn from the new knowledge they produce."

> GARRY KASPAROV FORMER WORLD CHESS CHAMPION

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Tommaso Macrì

Stochastic Planning in Games: an AlphaGo Case-study

