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Problem: Particle degeneracy
Most of the particles have a near-zero weight

Solution: Soft-resampling
Provides approximate gradients for the non-differentiable resampling 
step

Soft- ℎ′𝑡𝑡𝑤𝑤′𝑡𝑡
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DPFRL
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Short excursion

Take home message:
A Moment-generating function 𝑀𝑀𝑋𝑋 𝑡𝑡 is an 
alternative specification of the probability 

distribution

Moment-Generating Function



MGF Definition

Implementation in DPFRL

Trainable vector v

Allows model to extract 
useful moment features for 

decision making

Properties
+ Permutation invariant
+ Computationally efficient
+ Easy to optimize
+ Also works well with a large number of particles



DPFRL: Ablation study
Discriminative Particle Filter Reinforcement Learning



DPFRL: Ablation study
Discriminative Particle Filter Reinforcement Learning

Results on the Natural Flickering Atari Games dataset

MGFMeanRNN
Environments



DPFRL: Ablation study
Discriminative Particle Filter Reinforcement Learning

Results on the Natural Flickering Atari Games dataset

Discriminative
Environments

Generative



DPFRL: Noise robustness - Mountain Hike
Discriminative Particle Filter Reinforcement Learning
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DPFRL: Noise robustness - Mountain Hike
Discriminative Particle Filter Reinforcement Learning

DPFRLDVRLRNN



Natural habitat 
dataset

Receiving a first-person RGB-D 
image in each step.

A robot needs to navigate in 
previously unseen environments. 

DPFRL: Real world environment
Discriminative Particle Filter Reinforcement Learning
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Results
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DPFRL: Summary

Advantages Weaknesses

+ No need to infer an observation 
model

+ Better robustness to noise in 
comparison to generative models

+ Simpler than DVRL

- No reconstruction loss on 
observation restricts the learning 
signal
➢ Limits sample efficiency and 

accuracy
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Variational Recurrent Models

Objective
Piggyback on existing Algorithms for fully observable tasks

Idea
1. Conjecture a state (Believe state)
2. Solve the problem as if it was a Fully Observable MDP
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Variational Recurrent Models: Solution
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VRMVRM

First-impression model

• Keeps the representation stable for the RL 
during training

• Pre-trained and not updated during 
exploration

Keep-learning model

• Learn from new observations obtained after 
the policy update by the RL

• Trained during exploration
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Summary

Advantages Weaknesses

+ Simple to implement

+ Gaussian instead of Particle Filter

➢ More sample efficient

➢ Includes prior knowledge on 
belief distribution

+ Can make use of advancements in 
Fully Observable MDP tasks

- The training of a RNN is still data 
intensive

- The use of a Gaussian distribution 
makes the model less suitable for 
general POMDPs

- The model was only tested against 
Model-free algorithms



Variational Recurrent Models (ICLR 2020)
Summary

Advantages Weaknesses

+ Simple to implement

+ Gaussian instead of Particle Filter

➢ More sample efficient

➢ Includes prior knowledge on 
belief distribution

+ Can make use of advancements in 
Fully Observable MDP tasks

- The training of a RNN is still data 
intensive

- The use of a Gaussian distribution 
makes the model less suitable for 
general POMDPs

- The model was only tested against 
Model-free algorithms

Personal note

VRM seems to aim at solving a POMDP where the underlying state is not stochastic in 
nature. The variational part in the VRNN may mostly help to get a continuous latent 

variable like it is the case for a VAE.
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Belief 

DPFRLDVRLVRN

Belief tracked by RNN

Belief updated using a 
Gaussian

Belief tracked by 
Particle and 

summarized by RNN

Belief updated using a 
latent representation of 

the observation

Belief tracked by 
Particle and 

summarized by MGF

Belief updated using 
discriminative function
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POMDP
Further discussion Classic With Particles



Thank you for your attention



Discussion

1) Are POMDPs with a deterministic state transition a field worth more 
research?

VRM is a model based RL algorithm. However the results where not 
always very disincentive to RNNs.

2) How can we be confident that an algorithm truly learned a model?
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