Partial Observability in DRL

Part 2



POMDP Models so far

Short overview
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DPFRL

Discriminative Particle Filter Reinforcement Learning
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DPFRL

Discriminative Particle Filter Reinforcement Learning
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Previous Belief Sample new values Re-weight Resample
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Discriminative
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/Problem: Particle degeneracy

Most of the particles have a near-zero weight Resample
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/Problem: Particle degeneracy

Most of the particles have a near-zero weight Resamole
Solution: Soft-resampling
Provides approximate gradients for the non-differentiable resampling h'
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DPFRL

Discriminative Particle Filter Reinforcement Learning

Previous Belief Sample new values Re-weight Resample
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DPFRL

Discriminative Particle Filter Reinforcement Learning

(Igl et al. 2018)



DPFRL

Discriminative Particle Filter Reinforcement Learning

Actor Network

(Igl et al. 2018)



Recall Reinforcement Learning in DVRL

Actor Network

Properties

e Ordering is irrelevant

« Particle set may be large

(Igl et al. 2018)



Simple but powerful solution (used in PF-RNNs)

Actor Network

Properties

e Ordering is irrelevant

« Particle set may be large

(Igl et al. 2018)



DPFRL

Reinforcement Learning in DPFRL

Actor Network

Properties

e Ordering is irrelevant

« Particle set may be large

(Igl et al. 2018)



Short excursion
Moment-Generating Functions (MGFs)

Oth Total probability
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Short excursion
Moment-Generating Functions (MGFs)

Centralized Moment

Total probability PX]=1
Expectation E | X]
Variance E X -
Skewness E (X E(X))®




Short excursion
Moment-Generating Functions (MGFs)

0

Total probability E(X")

Expectation E(X1)

Variance E(XQ)

Skewness E(X3)
E(X™) Raw Moment



Short excursion
Moment-Generating Functions (MGFs)
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Short excursion
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Short excursion
Moment-Generating Functions (MGFs)
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Moment-Generating Function

Take home message:

A Moment-generating function My (t) is an
alternative specification of the probability
distribution

Mx (t) :==E[e™*]
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Properties
Permutation invariant
Computationally efficient
Easy to optimize
Also works well with a large number of particles

Trainable vector v

Allows model to extract
useful moment features for
decision making

Implementation in DPFRL

K
My, = E[eVTh“] = ZwievThi



DPFRL: Ablation study

Discriminative Particle Filter Reinforcement Learning
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DPFRL: Ablation study

Discriminative Particle Filter Reinforcement Learning

Environments

Pong
ChopperCommand
MsPacman
Centipede

BeamRider
Frostbite
Bowling

IceHockey

DDunk
Asteroids

RNN

DPFRL-GRUmerge

13.1444.01
1,530£29.31
1,930+48.54
4,093+76.4
603.8+40.25
252.11+0.48
29.50+£0.33
-5.85+0.30
-14.39£0.24
1,397+11.44

Mean

DPFRL-mean

-5.53+14.35
1,0914+109.9
1,878+63.86
3,5991+439.8

645.51+227.4
178.4+81.70
26.0£0.81
-6.254+1.96
-14.424£0.18
1,433140.73

MGF

15.65+-1.99
1,566+-67.03
2,106+123.9
4,164+23.0
682.9437.42
260.244.60
29.45-+0.13
-6.0840.18
-15.3640.96
1,406+132.3

Results on the Natural Flickering Atari Games dataset



DPFRL: Ablation study

Discriminative Particle Filter Reinforcement Learning

Generative Discriminative
Environments

DPFRL-generative DPFRL

-20.2140.02 15.65+1.99
1,027+ 12.94 1,566+-67.03
2,130+182.3 2,1064+123.9
3,194+339.4 4,164+-23.0

Pong
ChopperCommand
MsPacman
Centipede

498.1+£8.38 682.9+37.42
25594278 260.2+4.60
24.68+0.13 29.45+0.13
-7.8840.30 -6.08+0.18
-15.5940.06 -15.3610.96
1,4154+5.33 1,406+£132.3

BeamRider
Frostbite
Bowling

IceHockey

DDunk
Asteroids

Results on the Natural Flickering Atari Games dataset



DPFRL: Noise robustness - Mountain Hike

Discriminative Particle Filter Reinforcement Learning

Uniform noise




DPFRL: Noise robustness - Mountain Hike

Discriminative Particle Filter Reinforcement Learning

RNN DVRL DPFRL
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DPFRL: Real world environment

Discriminative Particle Filter Reinforcement Learning

Natural habitat
dataset

Receiving a first-person RGB-D
image in each step.

A robot needs to navigate in
previously unseen environments.




DPFRL: Real world environment

Discriminative Particle Filter Reinforcement Learning

SPL Success Rate Reward

0.79 0.88 12.821+5.82

0.09 0.11 5.2242.24
0.63 0.74 10.14+2.82

Natural habitat
dataset

Receiving a first-person RGB-D
image in each step.

A robot needs to navigate in
previously unseen environments.




DPFRL: Summary

Advantages

+ No need to infer an observation
model

+ Better robustness to noise in
comparison to generative models

+ Simpler than DVRL

Weaknesses

No reconstruction loss on
observation restricts the learning
signal
> Limits sample efficiency and
accuracy



POMDP

Approaches




Variational Recurrent Models

Objective

Piggyback on existing Algorithms for fully observable tasks

Idea
1. Conjecture a state (Believe state)
2. Solve the problem as if it was a Fully Observable MDP



Variational Recurrent Models
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Variational Recurrent Models
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Variational Recurrent Models: Challenges

_ib_

High variance on belief state

Stochasticity of the belief state
can be meaninglessly high at
early stage of training.



Variational Recurrent Models: Challenges

High variance on belief state

Stochasticity of the belief state
can be meaninglessly high at
early stage of training.

Belief state instability

While the VRM is converging it causes an
instability of the representation of underlying
states



Variational Recurrent Models: Challenges

High variance on belief state

Stochasticity of the belief state
can be meaninglessly high at
early stage of training.

N

Belief state instability \/

While the VRM is converging it causes an

Soft Actor
Critic

instability of the representation of underlying
\_ states




Variational Recurrent Models: Solution

N
High variance on belief state *

states



Variational Recurrent Models
Algorithm

Algorithm 1 Variational Recurrent Models with Soft Actor Critic
Initialize the first-impression VRM M ; and the keep-learning VRM M., the RL controller C, and |n|t|allzat|0n
the replay buffer D, global step ¢ < 0.

repeat
Initialize an episode, assign M with zero initial states.
while episode not terminated do
Sample an action a; from 7(a;|d;, ;) and execute as, t < t + 1.
Record (x¢, ay, et) into B.
Compute 1-step forward of both VRMs using inference models.
if t == step_start_RL then
For N epochs, sample a minibatch of samples from B to update M ¢ (Eq. [TT).
end if
if t > step_start_RL and mod(t, train_interval _K LV RM) == 0 then
Sample a minibatch of samples from B to update M, (Eq. 5, 6,[7, [§) .
end if
if t > step_start_RL and mod(t, train_ir 1l_RL) == 0 then
Sample a minibatch of samples from B to update R (Eq.[I1)) .
end if
end while
until training stopped




Variational Recurrent Models
Algorithm

Algorithm 1 Variational Recurrent Models with Soft Actor Critic
Initialize the first-impression VRM M ¢ and the keep-learning VRM M, the RL controller C, and

the replay buffer D, global step t + 0.
repeat
Initialize an episode, assign M with zero initial states.

while episode not terminated do

Sample an action a; from ‘rl__af |d:, ;) and execute ay, t < t + 1. Fill the rep|ay buffer

Record (x¢, ay .rfmn ¢) int

Compute 1-step forward of both VRMs using inference models.
if t == step_start_RL then
For N epochs, sample a minibatch of samples from B to update M ¢ (Eq. [TT).
end if
if t > step_start_RL and mod(t, train_interval KLV RM) == 0 then
Sample a minibatch of samples from B to update M, (Eq. @. 6.7, 8 .
end if

if t > step_start_RL and mod(t, train_ir 1l_RL) == 0 then
Sample a minibatch of samples from B to update R (Eq.[I1)) .
end if
end while
until training stopped




Variational Recurrent Models
Algorithm

Algorithm 1 Variational Recurrent Models with Soft Actor Critic
Initialize the first-impression VRM M ¢ and the keep-learning VRM M, the RL controller C, and
the replay buffer D, global step t + 0.
repeat
Initialize an episode, assign M with zero initial states.
while episode not terminated do
Sample an action a; from 7(a;|d;, ;) and execute as, t < t + 1.
Record (x;, ay, et) into B.

Compute 1-step forward of both VRMs using inference models.
ift == stepstari_KL then Train first-impression

For N epochs, sample a minibatch of samples from B to update M ; (Eq. [TT).

end if \VileYe[=)
if t > step_start_RL and mod(t,train_interv {LV RM) == 0 then

Sample a minibatch of samples from B to update M, (Eq. @. 6.7, 8 .
end if
if t > step_start_RL and mod(t, train_ir 1l_RL) == 0 then
Sample a minibatch of samples from B to update R (Eq.[I1)) .
end if
end while
until training stopped




Variational Recurrent Models
Algorithm

Algorithm 1 Variational Recurrent Models with Soft Actor Critic
Initialize the first-impression VRM M ¢ and the keep-learning VRM M, the RL controller C, and
the replay buffer D, global step ¢ « 0.
repeat
Initialize an episode, assign M with zero initial states.
while episode not terminated do
Sample an action a; from 7(a;|d;, ;) and execute as, t < t + 1.
Record (x¢, ay, >
Compute 1-step forward of both VRMs using inference models.

if t == step_start_RL then : .
For N epochs, sample a minibatch of samples from B to update M ¢ (Eq. [T). Traln kee p-lea rni ng
end if
if t > step_start_RL and mod(t, train_interval _K LV RM 0t MOdel
Sample a minibatch of samples from B to update M. (Eq. [ 8)

end if
if t > step_start_RL and mod(t, train_ir 1l_RL) == 0 then
Sample a minibatch of samples from B to update R (Eq.[I1)) .
end if
end while

until training stopped




Variational Recurrent Models
Algorithm

Algorithm 1 Variational Recurrent Models with Soft Actor Critic

Initialize the first-impression VRM M ¢ and the keep-learning VRM M, the RL controller C, and

the replay buffer D, global step t + 0.
repeat
Initialize an episode, assign M with zero initial states.
while episode not terminated do
Sample an action a; from 7(a;|d;, ;) and execute as, t < t + 1.
Record (x¢, at, doney) into B.
Compute 1-step forward of both VRMs using inference models.
if t == step_start_RL then
For N epochs, sample a minibatch of samples from B to update M ¢ (Eq. [TT).
end if
if t > step_start_RL and mod(t, train_interval _K LV RM) == 0 then
Sample a minibatch of samples from B to update M, (Eq. 5, 6,[7, [§) .
end if
if t > step_start_RL and mod(t, train_interval _RL) == 0 then
Sample a minibatch of samples from B to update R (Eq.[I1)) .
end if
end while
until training stopped

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors v, W, 0, .
for each iteration do
for each environment step do
ar ~ ?T(p(af|5f)
St41 ™ P(St+1\5:;a:)
D+ DU{(s.as,r(s¢,a¢).8¢41)}
end for
for each gradient step do
P — Ay Vydy (v )
9-,; — 9; _ /\Qﬁg}JQ(@{) fori e {1,2}
b= ¢ — AV Jr(0)
TP+ (1—T1)P
end for
end for




Variational Recurrent Models

Results

Pendulum Goal: Swing the pendulum up and maintain highest position

C/ Angle Angular velocity




Variational Recurrent Models

Results

VRM SAC-MLP  SACRNN | SLAC

Pendulum Pendulum Pendulum - velocities only Pendulum - no velocities

o

SAC-LSTM
SAC-MLP
SLAC

average return
average return

50 50 50
thousand step thousand step thousand steps




Variational Recurrent Models

Results

VRM SAC-MLP  SACRNN | SLAC

CartPole Goal: Balance pole upright without running away
Position Velocity

Angle Angular velocity




Variational Recurrent Models

Results

VRM SAC-MLP  SACRNN | SLAC
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Variational Recurrent Models

Results

VRM SAC-MLP SAC-RNN
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Variational Recurrent Models

Results

VRM SAC-MLP SAC-RNN

RoboschoolHopper - velocities only
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Variational Recurrent Models

Results

- 1 1

RoboschoolHopper - no velocities

0 500 1000
thousand steps
RoboschoolAnt - no velocities

500 1000
thousand steps




Variational Recurrent Models

Results

VRM SAC-MLP  SACRNN | SLAC

Goal
An agent needs to reach 3 different
targets in a certain sequence

Sequential target reaching task

Requires long-term memorization of
past events




Variational Recurrent Models
Results

VRM SAC-MLP  SACRNN | SLAC

Sequential target reaching task

Sequential target reaching task
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Advantages

Simple to implement

Gaussian instead of Particle Filter
> More sample efficient

> Includes prior knowledge on
belief distribution

Can make use of advancements in
Fully Observable MDP tasks

Variational Recurrent Models (ICLR 2020)

Summary

Weaknesses

The training of a RNN is still data
intensive

The use of a Gaussian distribution
makes the model less suitable for
general POMDPs

The model was only tested against
Model-free algorithms



Variational Recurrent Models (ICLR 2020)

Summary

Advantages Weaknesses

a4 \'a

Personal note

VRM seems to aim at solving a POMDP where the underlying state is not stochastic in on
nature. The variational part in the VRNN may mostly help to get a continuous latent or
variable like it is the case for a VAE.

I >

belief distribution

Can make use of advancements in The model was only tested against
Fully Observable MDP tasks Model-free algorithms




POMDP

Approaches




Belief

Belief tracked by RNN Belief tracked by Belief tracked by
Particle and Particle and
summarized by RNN summarized by MGF

Belief updated using a Belief updated usinga  Belief updated using
Gaussian latent representation of discriminative function
the observation



POMDP

Further discussion [
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Particle Filter Recurrent Neural Networks

Xiao Ma*, Peter Karkus®, David Hsu, Wee Sun Lee
National University of Singapore
{xiao-ma, karkus, dyhsu, leews} @comp.nus.edu.sg

Abstract thus increasing the number of network parami

amount of data required for training.
Recuren ncura networks (RNNS) bave been extraoinar- g &

ily with data. To tackle We introduce Particle Filter Recurrent Neu|
highly vdnab]a .md multi-modal real-world data, we intro- (PF-RNNs), a new family of RNNs that secl

duce Particle Filter Recurrent Neural Networks (PF-RNNs), belief approximation without lengthening the
anew RNN family that explicitly models uncertainty in its in- h., thus reducing the data required for learning}

hile an RNN relies on a long, deterministic tering (Del Moral T996) is a model-based belid
Tatent state vector, a PF-RNN mainta gorithm. Tt approximates the belief as a set of 54
fion, ='I'lf";""';"'l"l"‘1;_ o ol e that typically have well-understood meaning. P|
we provide a fully differentiable parti icle filteri e ide.

updates the PE-RNN latent state distribution aceording to the t"‘"{" '["’m p""'dr“ "]!“:“’fj the !d‘”"‘ of ::lpp
Bayes rule. Experiments demonstrate that the proposed PE- clicf as a set of weighted particles, an <o
RNNs autperform the corresponding standard gated RNNs the powerful approximation capacity of
on a synthetic robot localization dataset and 10 real-world se- approximates the variable and multi-modal b
quence prediction datasets for text classification, stock price of weighted latent vectors {h',h?,. am|
prediction, etc. same distribution. Like standard RNNs PF-R!
model-free approach: PF-RNNs’ latent vector

v2 [cs.LG] 1 Dec 2019

Al o . 3

o) Introduction distributed rcprcseulmmps, which are not ne

0 pretable. As an alternative to the Gaussian

‘el Prediction with sequential data is a long-standing challenge e.g., Kalman filters, particle filtering is a nd

— in machine learning. It has many applications, e.g., object approximator that offers a more flexible belief representa-

.f\: tracking (Blake and Tsard 1997), speech recognition (Xiong| tion (Del Moral 1996). it is also proven to give a tighter

o et al. Z018)), and decision making under uncertainty (So- evidence lower bound (ELBO) in the data generation do-

A mani et al. 2013). For effective prediction, predictors require main (Burda, Grosse, and Salakhutdinov 20185)). In our case,

— “memory”, which summarizes and tracks information in the the approximate representation is trained from data to opti-
i input sequence. The memory state is generally not observ- mize the prediction performance. For effective training with

Z able, hence the need for a belicf, i. a p(sslerlor state dis- gradient methods, we employ a fully differentiable particle

>(‘ tribution that captures the sufficient statistic of the input for filter algorithm that maintains the latent belief. See Fig. [T]for
— making predictions. Modeling the belief manually is often a comparison of RNN and PF-RNN.

c

difficult. Consider the task of classifying news text—treated We apply the underlying idea of PF-RNN o gated RNNs,
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National University of Singapore
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“memory”, which summarizes and tracks information in the the approximate representation is trained from data to opti-
O input sequence. The memory state is generally not observ- mize the prediction performance. For effective training with
. 2 able, hence the need for a belief, i.e., a posterior state dis- gradient methods, we employ a fully differentiable particle
>< tribution that captures the sufficient statistic of the input for filter algorithm that maintains the latent belief. See Fig. [T]for
— making predictions. Modeling the belief manually is often a comparison of RNN and PF-RNN.
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difficult. Consider the task of classifying news text—treated We apply the underlying idea of PF-RNN o gated RNNs,
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Thank you for your attention



Discussion

1) Are POMDPs with a deterministic state transition a field worth more
research?

VRM is a model based RL algorithm. However the results where not
always very disincentive to RNNs.

2) How can we be confident that an algorithm truly learned a model?
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