
Partial Observability in DRL
Part 1: POMDPs, (A)DRQN & DVRL



Most of the World is only Partial Observable

Occlusions IntentionsLatent Causes
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Slightly more formal
7-Tuple: (𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾)

𝑠 ∈ 𝑆 is a state from the set of States

𝑎 ∈ 𝐴 is an action set of Actions

T(𝑠
t+1

 |𝑠
t
,𝑎

t
) is the transition probabilities

𝑅: 𝑆×𝐴 → ℝ, reward function

o ∈ Ω, an observation from the set of observations

𝑂(𝑜
t+1

|𝑠
t+1

, 𝑎
t
) is the conditional observation probabilities

𝛾 ∈ [0,1] is the discount factor



From MDP to POMDP: A Problem
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How to act on all past information?



Option 1: Remember (RNN)
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How to act on all past information?
Option 1: Remember (RNN)

● Generalization can be hard.
● No notion of stochasticity.
● Continuous cases are hard.



Option 2: Belief
𝑏𝑡 ≔ 𝑝𝜃 (𝑠𝑡 | 𝑜≤𝑡, 𝑎≤𝑡) Belief state
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Option 2: Belief
𝑏𝑡 ≔ 𝑝𝜃 (𝑠𝑡 | 𝑜≤𝑡, 𝑎≤𝑡) Belief state
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States
(real world markovian states)

Measurements
(actions & observations)

Belief State
(Estimate)



Option 2: Belief
𝑇 =  𝑝𝜃 (𝑠𝑡 |𝑠𝑡−1,𝑎𝑡−1) 

𝑂 =  𝑝𝜃 (𝑜t, |𝑠𝑡,𝑎𝑡−1)

𝑏𝑡 ≔ 𝑝𝜃 (𝑠𝑡 | 𝑜≤𝑡, 𝑎≤𝑡) 

Transition Matrix

Observation Matrix

Belief state



How to act on all past information?
Option 1: Remember (RNN)

● Generalization can be hard.
● No notion of stochasticity.
● Continuous cases are hard.

Option 2: Belief

● Computationally Expensive.
● Requires model.
● Provides stochasticity.
● Tends to generalize.



Not as clear

Model free
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Deep Q-learning approaches for POMDPs

(Zhu et al. 2017)

Model Input Problem Addressed

DQN st model-free POMDP

DBQN bt Model-based POMDP

DRQN <o1,o2,...,ot> Model-free POMDP

DDRQN <a0,a1,...,at-1>
<o1,o2,...,ot>

Model-free POMDP

ADRQN <(a0,o1),(a1,o2),...,(at-1,ot)> Model-free POMDP



Deep Q-learning approaches for POMDPs

(Zhu et al. 2017)

Model Input Problem Addressed

DQN st model-free POMDP

DBQN bt Model-based POMDP

DRQN <o1,o2,...,ot> Model-free POMDP

DDRQN <a0,a1,...,at-1>
<o1,o2,...,ot>

Model-free POMDP

ADRQN <(a0,o1),(a1,o2),...,(at-1,ot)> Model-free POMDP



(Action-specific) Deep Recurrent Q-Learning: (A)DRQN
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(Hausknecht et al. 2015) (Zhu et al. 2017)



Flickering Frostbite and Pong



(A)DQRN: Results

(Zhu et al. 2017)



(A)DQRN: Results

(Zhu et al. 2017)

Train on POMDP, test on MDP

Train on MDP,  test on POMDP



(A)DQRN: Critique

Model-free & Blackbox: 

likely to summarize and not generalize 



Next
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Deep Variational Reinforcement Learning (DVRL)

Particle Filter
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Brief note on notation
at  = action at time t

ot  = observation at time t

k in [1,K] = number of particles

bt  = ( ht , zt , wt ) belief at time t

zt = an additional stochastic latent state 

ht = latent state of a RNN (in a particle)

wt = importance weight of a particle. 

Latent Summary of state

Likelihood of that latent state



Deep Variational Reinforcement Learning (DVRL)
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DVRL: Particle Filter - Approximating bt
Previous Belief Sample new values re-weight resample

(Igl et al. 2018)
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DVRL: Policy - Summarize the particles

RNN

RNN

RNN

RNN

bt Summary Value & Policy
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(Igl et al. 2018)



Deep Variational Reinforcement Learning (DVRL)
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DVRL: Model

(Igl et al. 2018)



DVRL: Model
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DVRL: Model

O q z Op

(Igl et al. 2018)

Encoder Decoder



DVRL: Model

O q z Op

(Igl et al. 2018)
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DVRL: Joint Learning
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DVRL: Results - noisy MountainHike

(Igl et al. 2018)



DVRL: Results - noisy MountainHike
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DVRL: Results - noisy MountainHike

(Igl et al. 2018)



ChopperCommand



Results: Ablation on Atari

(Igl et al. 2018)



DVRL: Critique

The belief state is still a rough approximation. 

Is this really the best way to learn it?



Summary
- Extended MDP to POMDP
- (A)DRQN
- DVRL



Discussion
In a POMDP we still assume full access to the reward.

1) This not a realistic case (our perception of the reward depends as much on 
our observations as the state)

2) If it is realistic, our belief should be updated based on the reward.



Next
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