Off-Policy Correction and Batch Learning

Deep Reinforcement Seminar FS 2020, 03.03.2020 Xiang Li

On-policy algorithm := algorithm requiring $\mu = \pi$.

Why do we want an off-policy algorithm?

- Can choose a better μ
- Sample efficient

Actor-Critic Algorithm

- Goal: find policy $\pi: S \times A \to [0,1]$ such that V^{π} is large
- Algorithm:
 - Repeat for t = 1, ...
 - Sample trajectories $\{(s_i, a_i, r_i, s_i'): i \in I\} \subset S \times A \times \mathbb{R} \times S$, where $\forall i \in I: a_i \sim \mu(s_i)$
 - Improve the policy π
 - Estimate the value V^{π}

Actor-Critic Algorithm: Details

"Policy Improvement" Improve the policy π_w

Find w such that $V^{\pi_W}(s)$ is large

Using gradient ascent:

•
$$w \leftarrow w + \eta \nabla_w V_{\theta}^{\pi_w}(s)$$

"Policy Evaluation" Estimate V^{π_W}

Find θ such that $V^{\pi} \approx V^{\pi}_{\theta}$

- i.e. $\min_{\theta} [V_{\theta}^{\pi}(s) V^{\pi}(s)]^2$
- Using gradient descent:

•
$$\theta \leftarrow \theta + \eta' \left[V_{\theta}^{\pi}(s) - y \right] \nabla_{\theta} V_{\theta}^{\pi}(s)$$

• y is an estimate of $V^{\pi}(s)$,

e.g.
$$y = r + \gamma V_{\theta}(s_{next})$$

Policy Evaluation: How to estimate $V^{\pi}(s_0)$?

- Given: $s_0, a_0, r_0, s_1, \dots, a_{n-1}, r_{n-1}, s_n; a_i \sim \mu(s_i)$
- Approach 1: $y \coloneqq r_0 + \gamma V(s_1)$ (Abbreviate $V \coloneqq V_{\theta}^{\pi}$)
- Approach 2: $y \coloneqq r_0 + \gamma r_1 + \dots + \gamma^{n-1} r_{n-1} + \gamma^n V(s_{n+1})$ = $V(s_0) + \sum_{k=0}^{n-1} \gamma^k (r_k + \gamma V(s_{k+1}) - V(s_k))$
- Approach 3: $y = V(s_0) + \sum_{k=0}^{n-1} \gamma^k \left(r_k + \gamma V(s_{k+1}) V(s_k) \right) \prod_{j=0}^k \min \left(1, \frac{\pi(s_j, a_j)}{\mu(s_j, a_j)} \right)$

Weights

Policy Improvement: How to estimate $\nabla_w V^{\pi_w}(s_0)$?

•
$$\nabla_w V^{\pi_w}(s_0) = E_{\pi_w} [Q^{\pi_w}(s, a) \nabla_w \ln(\pi_w(s, a))]$$

$$= E_{\mu} \left[Q^{\pi_W}(s, a) \nabla_w \ln \left(\pi_w(s, a) \right) \frac{\pi_w(s, a)}{\mu(s, a)} \right]$$

Effect of Off-Policy Correction

Performance on 5 DeepMind Lab tasks

	Task 1	Task 2	Task 3	Task 4	Task 5
Without Replay					
V-trace	46.8	32.9	31.3	229.2	43.8
No-correction	40.3	29.1	5.0	94.9	16.1
With Replay					
V-trace	47.1	35.8	34.5	250.8	46.9
No-correction	35.0	21.1	2.8	85.0	11.2

Performance of Impala

Figure 4. **Top Row:** Single task training on 5 DeepMind Lab tasks. Each curve is the mean of the best 3 runs based on final return. IMPALA achieves better performance than A3C. **Bottom Row:** Stability across hyperparameter combinations sorted by the final performance across different hyperparameter combinations. IMPALA is consistently more stable than A3C.

On/Off-policy & Offline/Online learning

- Task: find a target policy π using data D generated by behavioural policy μ
 - D \equiv { $(s_i, a_i, r_i, s_i'): i \in I$ } $\subset S \times A \times \mathbb{R} \times S$, where $\forall i \in I: a_i \sim \mu(s_i)$
- On-policy Algorithm \coloneqq an algorithm working well only for $\mu=\pi$
- Off-policy Algorithm := an algorithm working well for all μ
- Online learning := able to choose a behavioural policy and interact with the environment
- Offline/batch learning \coloneqq no interaction possible. μ generally not known.

The End

