

Off-policy Learning and the Deadly Triad

Deep Reinforcement Learning Seminar

Alexander Nedergaard

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters θ_0 , clipping threshold ϵ for k = 0, 1, 2, ... do Collect set of partial trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$ Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm Compute policy update

$$\theta_{k+1} = \arg \max_{\theta_k} \mathcal{L}_{\theta_k}^{CLIP}(\theta)$$

by taking K steps of minibatch SGD (via Adam), where

$$\mathcal{L}_{ heta_k}^{\textit{CLIP}}(heta) = \mathop{\mathrm{E}}_{ au \sim \pi_k} \left[\sum_{t=0}^T \left[\min(r_t(heta) \hat{A}_t^{\pi_k}, \operatorname{clip}\left(r_t(heta), 1-\epsilon, 1+\epsilon
ight) \hat{A}_t^{\pi_k}
ight)
ight]
ight]$$

end for

 $\pi \neq \mu$

Experience Replay (Lin, 1992. Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching)

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} Q(s, a)$$

Update rule: $Q(s, a) \leftarrow r + \gamma Q(s', a')$

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} Q(s, a)$$

Update rule: $Q(s, a) \leftarrow r + \gamma Q(s', a')$
 $\mathcal{D}: \{(s_i, a_i, r_i, s'_i, a'_i)\}_i$

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} Q(s, a)$$

Update rule: $Q(s, a) \leftarrow r + \gamma Q(s', a')$
 $\mathcal{D}: \{(s_i, a_i, r_i, s'_i, a'_i)\}_i$

Bellman equation: $Q^{\pi}(s, a) = r + \gamma \mathbb{E}_{s' \sim \mathcal{E}}[\mathbb{E}_{a' \sim \pi}[Q^{\pi}(s', a')]]$

$$\pi(s) = \underset{a}{\operatorname{arg\,max}} Q(s, a)$$

Update rule: $Q(s, a) \leftarrow r + \gamma Q(s', a')$
 $\mathcal{D} : \{(s_i, a_i, r_i, s'_i, a'_i)\}_i$

Bellman equation: $Q^{\pi}(s, a) = r + \gamma \mathbb{E}_{s' \sim \mathcal{E}}[\mathbb{E}_{a' \sim \pi}[Q^{\pi}(s', a')]]$

SARSA

Update rule: $Q(s, a) \leftarrow r + \gamma Q(s', a')$ $\mathcal{D}: \{(s_i, a_i, r_i, s'_i, a'_i)\}_i$

Q-learning (Watkins and Dayan, 1992) Update rule: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$ $\mathcal{D}: \{(s_i, a_i, r_i, s'_i)\}_i$

Bellman equation: $Q^{\pi}(s, a) = r + \gamma \mathbb{E}_{s' \sim \mathcal{E}}[\mathbb{E}_{a' \sim \pi}[Q^{\pi}(s', a')]]$

SARSA

Update rule: $Q(s, a) \leftarrow r + \gamma Q(s', a')$ $\mathcal{D}: \{(s_i, a_i, r_i, s'_i, a'_i)\}_i$ **Q-learning (Watkins and Dayan, 1992)** Update rule: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$ $\mathcal{D}: \{(s_i, a_i, r_i, s'_i)\}_i$

A3C (Mnih et al., 2016. Asynchronous Methods for Deep Reinforcement Learning)

TD convergence with linear function approximation (Tsitsiklis and Van Roy, 1997. An Analysis of Temporal-Difference Learning with Function Approximation)

Less uniform sampling in Prioritized Experience Replay increases divergence in DQN (Van Hasselt et al., 2018. Deep Reinforcement Learning and the Deadly Triad)

Improved performance with more uniform sampling distributions in Fitted Q Learning (Fu et al., 2019. Diagnosing Bottlenecks in Deep Q-learning Algorithms)

Understanding contribution of off-policy learning to divergence in DQN using Neural Tangent Kernel (Achiam et al., 2019. Towards Characterizing Divergence in Deep Q learning)

 $Q_{\theta} \leftarrow Q_{\theta} + \alpha K_{\theta} D_{p} (\mathcal{T}^{*} Q_{\theta} - Q_{\theta}) + \mathcal{O}(||\alpha g||^{2})$

Understanding contribution of off-policy learning to divergence in DQN using Neural Tangent Kernel (Achiam et al., 2019. Towards Characterizing Divergence in Deep Q learning)

$$Q_{\theta} \leftarrow Q_{\theta} + \alpha K_{\theta} D_{p} (\mathcal{T}^{*} Q_{\theta} - Q_{\theta}) + \mathcal{O}(||\alpha g||^{2})$$

Next, we consider the operator \mathcal{U}_2 given by

$$\mathcal{U}_2 Q = Q + \alpha D_\rho \left(\mathcal{T}^* Q - Q \right), \tag{13}$$

where D_{ρ} is a diagonal matrix with entries $\rho(s, a)$, a probability mass function on state-action pairs.

Lemma 2. If $\rho(s, a) > 0$ for all s, a and $\alpha \in (0, 1/\rho_{max})$ where $\rho_{max} = \max_{s,a} \rho(s, a)$, then \mathcal{U}_2 given by Eq 13 is a contraction in the sup norm and its fixed-point is Q^* . If there are any s, a such that $\rho(s, a) = 0$ and $\alpha \in (0, 1/\rho_{max})$, however, it is a non-expansion in Q and not a contraction.

Increasing queue length of distributed PPO learning detrimental to performance in DOTA 2 (OpenAI, 2019. Dota 2 with Large Scale Deep Reinforcement Learning)

A3C with off-policy correction used for Starcraft II (DeepMind, 2019. Grandmaster level in Starcraft II using multi-agent reinforcement learning)

Summary

