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Meta-Learning in RL'®

Reinforcement learning: Meta-reinforcement learning:

0* = arg max B, [R(7)]
= frRLM),
where M = {S, A, P,r} is the MDP. where ¢; = fp(M;) is the MDP for task .

0" = argmax " Br, o [R(7))
=1

8Duyan et al. (2016)
DINFK Steven Battilana  05/05/2020  3/32



ETHziirich

Meta-Gradient RL

Steven Battilana  05/05/2020  4/32



ETHziirich

Meta-Gradient RL

® Online meta-learning of the discount factor ~

Steven Battilana  05/05/2020  4/32



ETHziirich

Meta-Gradient RL

® Online meta-learning of the discount factor ~

e Achieved new state-of-the-art performance (at the time of publication)

Steven Battilana  05/05/2020  4/32



ETHziirich

Meta-Gradient RL

® Online meta-learning of the discount factor ~y
e Achieved new state-of-the-art performance (at the time of publication)

e Take away: Meta-learning the discount factor ~ instead of parameter 6
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Meta-Learning in RL'®

Reinforcement learning:

o Meta-reinforcement learning:

t 9* =arg IIlé%X Z E7r¢,i (r) [R(T)]a
=1

= argmaxE,r (r) V1 (st, mo(at|st))

Mﬂ

t=0
where ~ € [0, 1] is the discount factor, r is where ¢; = fo(M;) is the MDP for task i.

the reward function.

8Duyan et al. (2016)
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Meta-Gradient RL: General Algorithm Overview®

(i) Update neural network parameters 6

7Sutton (1992)
8Xu et al. (2018)
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Meta-Gradient RL: General Algorithm Detail®

(i) e Update function
0' =0+ f(r,0,n),

101¢f. Appendix D
8Xu et al. (2018)

DINFK Steven Battilana  05/05/2020  9/32



Meta-Gradient RL: General Algorithm Detail®

(i) e Update function
0' =0+ f(r,0,n),

where 7, = {s¢, at, 141, ... } consisting of states s, actions a, and rewards r; current
neural network parameters 6; meta-parameters n, = {~, \: }.

101¢f. Appendix D
8Xu et al. (2018)

DINFK Steven Battilana  05/05/2020  9/32



Meta-Gradient RL: General Algorithm Detail®

(i) e Update function
0" =0+ f(r,0,n),
where 7, = {s¢, at, 141, ... } consisting of states s, actions a, and rewards r; current
neural network parameters 6; meta-parameters n, = {~, \: }.

e f(7,6,7n) could be an update function that applies SGD to update the agent’s
parameters 6. E.g. A2C objective semi-gradient or squared error semi-gradient'®?.

101¢f. Appendix D
8Xu et al. (2018)
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Meta-Gradient RL: General Algorithm Detail®

(i) Online cross-validation'’, i.e. compute agent’s performance using the
meta-objective
J/(T/, 91’ 77,)7

7Sutton (1992)
102 77 (1" ¢’ n') examples for prediction and control are in Appendix D
8Xu et al. (2018)
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(i) Online cross-validation'’, i.e. compute agent’s performance using the
meta-objective
J/(T/, 91’ 77,)7
where 7. = {7, a’r, 77, 1, ...} consisting of states s, actions a, and rewards r;

updated neural network parameters ¢’ from (i); meta-parameters
n ={v, N}, v = XN =1 (long-sighted return)'%2.

7Sutton (1992)
102 77 (1" ¢’ n') examples for prediction and control are in Appendix D
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Meta-Gradient RL: General Algorithm Overview®

(iii) Update meta-parameters n

8Xu et al. (2018)
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Meta-Gradient RL: General Algorithm Detail®

(iii) Update meta-parameters n

0
nr=m-— 6@‘]/(7—/7 0/77]/)'2/(07 f(T7 977]))

103y examples for prediction and control are in Appendix D
8Xu et al. (2018)
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Meta-Gradient RL: General Algorithm Detail®

(iii) Update meta-parameters n

0
77T = 7715 - ﬁ@J/(TI, 9/7 77/)75/(0; f(T7 97 7]))

where 7y = {s¢, at, 111, .-}, 7p = {87, @, 70, ... } CONsisting of states s, actions
a, and rewards r; current neural network parameters 8; updated neural network
parameters 6’ from (i); meta-parameters 1, = {~v¢, \¢},

0 ={/, N}y =XN=119

103y examples for prediction and control are in Appendix D
8Xu et al. (2018)
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Meta-Gradient RL Results?®

e Comparing against Rainbow the state-of-the-art agent trained on Atari games’2.

Human starts No-op starts
Rainbow 153% 223%
Meta-Gradient 293% 288%

Table: Median human-normalised score using 200M frames.

2Hessel (2017)
8Xu et al. (2018)
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Meta-Learning in RL'®

Reinforcement learning: , ,
g Meta-reinforcement learning:

T
9* == E t * -
arg mgux 7o (7) L_ZO’Y T(St,ﬁe(at|5t))] 0* = arg mgXZEW¢i(T) [R(7)],
=1

where 7 € [0, 1] is the discount factor, r is where &; — (M) is the MDP for task i.
the reward function.

8Duyan et al. (2016)
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Meta-Learning in RL'®

Reinforcement learning:

where v € [0, 1] is the discount

0" =arg max B, r[R(7)]

factor, r is the reward function.

DINFK

8Duyan et al. (2016)

Meta-reinforcement learning:

n T
0 =argmax B, [Z wtr<st,m<at\st>>] ,

i=1 t=0

where ¢; = fp(M;) is the MDP for task i.
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Meta-Learning Optimisation Problem (Reminder)'®

(A) Meta-Training:
(i) Meta-Learning:
— meta-learning

0* = arg max log(p(0| Dmeta-train) ) 9 ---- learning/adaptation
(i) Adaption (per training task): VL;
. VL, .
¢" = argmax log(p(¢|D"", 6%)) VLT O\ «¥3
(B) Meta-Testing: g N

Q" =arg mq?x log(p(¢|Dmeta-test, )

5Finn (2019)
DINFK Steven Battilana  05/05/2020  17/32



MAML Criticism: Mutually-Exclusive Task Distributions*

Task training data Task test data
3 4
.
G20 .
N (= |
Meta-training - - - - » (O
o ¥ VR 9 <
" = Shuttie labols

1 2 3 4
e bl 8 =%
Mietartesto - . ﬁ
ey d|

Figure: An example of mutually-exclusive task distributions. In each task of mutually-exclusive
few-shot classification, different classes are randomly assigned to the N-way classification
labels. The same class, such as the dog and butterfly in this illustration, can be assigned
different labels across tasks which makes it impossible for one model to solve all tasks
simultaneously.

4Yin et al. (2019)
DINFK

Figure: Graphical model for meta-learning. Observed variables
are shaded. Without either one of the dashed arrows, ¥ * is
conditionally independent of D given # and X *, which we
refer to as complete memorisation.
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ETHziirich

Meta-Regularised Model-Agnostic Meta-Learning (MR-MAML)

® |ntroducing (meta-)regularisation to MAML
e Extends to non-mutually exclusive tasks

® Take away: enables MAML to learn on non-mutually exclusive tasks
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Meta-Learning in RL'®

Reinforcement learning:

where v € [0, 1] is the discount

0" =arg max B, r[R(7)]

factor, r is the reward function.

DINFK

8Duyan et al. (2016)

Meta-reinforcement learning:

n T
0 =argmax B, [Z wtr<st,m<at\st>>] ,

i=1 t=0

where ¢; = fp(M;) is the MDP for task i.
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Meta-Regularised MAML*

® Meta-RL: 0" = argmaxy > iy Er, () [R(7)]

Figure: Graphical model for meta-learning.
Observed variables are shaded. Without either
one of the dashed arrows, Y*is conditionally
independent of D given 6 and X *, which we
refer to as complete memorisation.

4Yin et al. (2019)
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Meta-Regularised MAML*

® Meta-RL: 0% = argmaxg 3_i Er, (r)[R(7)]
® Approximated policy ¢, ¢; = fo(M;)

Figure: Graphical model for meta-learning.
Observed variables are shaded. Without either
one of the dashed arrows, Y*is conditionally
independent of D given 6 and X *, which we
refer to as complete memorisation.
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Meta-Regularised MAML*

e MAML meta-update: 6" =60+ VoL7(fp)
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Meta-Regularised MAML*

e MAML meta-update: 6" =60+ VoL7(fp)
o MR-MAML meta-update:

0 = 0 + V(LT (fo)+DrL(a(0]M)]|r(6))),

Figure: Graphical model for meta-learning.
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Meta-Regularised MAML*

e MAML meta-update: 6" =60+ VoL7(fp)
o MR-MAML meta-update:

0 = 0 + V(LT (fo)+DrL(a(0]M)]|r(6))),

Figure: Graphical model for meta-learing. where ¢(6| M) summarises meta-training data into a distribution on
Observed variables are shaged. Without either

one of the dashed arrows, Y * is conditionally meta-parameters, and r(6) is a variational approximation to the
independent of D given 6 and X *, which we

refer to as complete memorisation. marginal, which is set to N(@, 0,1).

4Yin et al. (2019)
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Non-Mutually-Exclusive (NME) Datasets*

In the non-mutually-exclusive N-way K-shot classification problem, each class is
randomly assigned a fixed classification label from 1 to N.

Task training data Task test data

Figure: An example of

mutually-exclusive task
f distributions. In each task of
n non-mutually-exclusive
( few-shot classification, different
x3 classes are randomly assigned

Meta-training .

- L to the fixed N-way classification
l" B *‘ labels. The same class, such
\“ ShefSeiabe a5 the dog and butterfly in this

illustration, are assigned to the
same labels across tasks which
makes it possible for one model
to solve all tasks
simultaneously.

Meta-tes“ng . . . E
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Experiments*

Meta-test pre-update accuracy:

NME Omniglot 20-way 1-shot  20-way 5-shot
MAML 99.2 (0.2)% 45.1 (38.9)%
TAML 68.9(43.1)% 6.7 (1.8)%

MR-MAML (ours) 5.0 ()% 5.0 (00%

Meta-test accuracy:

NME Omniglot 20-way 1-shot 20-way 5-shot
MAML 7.8 (0.2)% 50.7 (22.9)%
TAML (Jamal & Qi, 2019) 9.6 2.3)% 67.9 (2.3)%
MR-MAML (W) (ours) 83.3(0.8)% 94.1 (0.1)%

4Yin et al. (2019)
DINFK

Figure: Table 5: Meta-test pre-update accuracy on
non-mutually-exclusive (NME) classification. MR-MAML controls the
meta-training pre-update accuracy close to random guess and
achieves low training error after adaptation.

Figure: Table 4: Meta-test accuracy on non-mutually-exclusive (NME)
classification. The fine-tuning and nearest neighbour baseline results
for mini-ImageNet are from [7] Ravi and Larochelle (2016).
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Datasets for Meta-Learning

¢ Dataset MAML (cheetah and ant locomotion tasks), ANIL (Omniglot, Minilmagenet),
MR-MAML (Omniglot, Minilmagenet)
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Datasets for Meta-Learning

¢ Dataset MAML (cheetah and ant locomotion tasks), ANIL (Omniglot, Minilmagenet),
MR-MAML (Omniglot, Minilmagenet)

e Dataset RL2 (ViZDoom environment)
e Meta-Gradient RL used for instance on Atari video games
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ETHziirich

Meta-World

® An open-source simulated benchmark of 50 distinct robotic manipulations tasks
® |ntroducing a benchmark for meta-learning to challenge researchers

e Take away: Benchmark for meta-learning for future approaches
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Meta-World®

Train tasks

Test tasks

Pick and p\ace with Pick and place with
goal g1 goal g

Pick and place with
goal gr

Pick and place with
unseen goal

5Yu et al. (2019)
DINFK

Figure: Visualisation of within task adaptation in ML1.
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Meta-World®

Non-Parametric Task Variation
A
4 A

Parametric Task Variation

Reach Puck Open Window

f Figure: Parametric/non-parametric variation: all "reach puck"” tasks (left) can be

! parametrised by the puck position, while the difference between "reach puck"
. . : and "open window" (right) is non-parametric.

1

5Yu et al. (2019)
DINFK
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Meta-World®

Train tasks

Test tasks

Pick and place Reaching Button press  Window opening Pushing

ML10

Basketball

Sweep into

Drawerclosing ~ Dial tuming  Peg insertion side

Drawer opening  Door closing Shelf placing Sweep Lever pulling

Figure: Visualisation of adapting to new tasks in ML10.

5Yu et al. (2019)
DINFK
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Meta-World®

Train tasks Test tasks
Lumonfacet  2.sweep 3.sack dunstack  Sumoffacet  Gpusback 7. pullever Buumdal 9. push with sck -‘A ——

o
|

14, sweep into 16. place onto 18. press handle

hole

shell

22.press button.
wall

10goteofoe PPy pagersall 13, pullwithstick 15, dessonblon 17. push mug 4. close box

T hammer 20, siceplte 21, sideplatside Zposhde  2wpuhando s 2T g e gy

BPEBAN g e Sl 3 ki wall 93 isenpegside 3 pusn 35 push ik wall
- i

.pressbuton pick&place  M.pulmug  ADunpligpeg  Alclosewindow 42 cpenwindow  43.opendoor  Ad.closedoor 45, open crawer pry——

8. lock coor

36 pick & place w/
wall

28 close draver 49, unlock deor

Figure: Visualisation of adapting to new tasks in ML45.
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Meta-World®

e Task distributions are very narrow.

5Yu et al. (2019)
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Meta-World®

Task distributions are very narrow.

Propose open-source benchmark for meta-RL.

Large number of simulated robotic manipulation tasks.

Introducing three different difficulty modes for evaluation (ML1, ML10, ML45).

5Yu et al. (2019)
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Meta-World®

ML10 Success Rate " ML45 Success Rate

RL™2

= PEARL
— MAML — MAML
RL~2

PEARL

Success Rate
Success Rate

0 20000

10600 1200 0600 G000
Number of 1K samples

500 100000

o 2000

NL]D;F\ber ofme sam?;lnes
Figure: Learning curves of all methods on ML10, and ML45 benchmarks. Y-axis represents success rate averaged over tasks in percentage (%). The dashed

lines represent asymptotic performances.

MLI10 ML45

Figure: Average success rates over all tasks for ML10, and ML45. The best

Methods meta-train meta-test meta-train meta-test
performance in each benchmark is bolden. For ML10 and ML45, we show the

MAML 25% 36% 21.14% 23.93% h
RLZ 50% 10% 43.18% 20% meta-train and meta-test success rates.
PEARL 42.78% 0% 11.36% 30%
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ETHziirich

Conclusion

e Meta-Learning Flavours (part 1 and 2)
(i) Meta-learn ideal initialisation parameters 6 for policy 7y (a|s) (MAML, ANIL,
MR-MAML)
(ii) Meta-learn ideal optimiser (Learning to learn by gradient descent by gradient descent)
(iii) Meta-learn policy 7y (a|s) using a RNN (RL?)
(iv) Meta-learn (online) ideal discount factor v (Meta-Gradient RL)

® Meta-World benchmark challenging Meta RL researchers
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B. Meta-Regularised MAML: The Memorisation Problem in
Meta-Learning? |

Definition (Mutual Information, source: PAI)

[(X3, X5) i= ) Plai,wy)log (%) '

X, g

Definition (Complete Meta-Learning Memorisation)

Complete memorisation in meta-learning is when the learned model ignores the task
training data such that 7(§*; D|z*,0) = 0 (i.e., ¢(§*|2*,0) = Ep/|p-[q(§*]x*, 0, D']).
Note: ¢*, z* is a test sample from the meta-training set.

4Yin et al. (2019)
DINFK Steven Battilana  05/05/2020  7/23



ETHziirich
B. Meta-Regularised MAML: The Memorisation Problem in
Meta-Learning? Il

Definition (KL-Divergence)

B a(6)| M)
Daa(6lM)(6)) = [ a6 10g £ )ao.
Lemma (Upper bound)
Iy Duiflaiy) = B [mg (;(gf'f‘jj))] < BDr(a(01M)]r(0)].

4Yin et al. (2019)
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B. Meta-Regularised MAML: Algorithm?€ |

Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: o, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)
4:  for all 7; do
5: Evaluate VL7, (fg) with respect to K examples
6 Compute adapted parameters with gradient de-
scent: 0, = 0 — aVoLr(fo)
end for
Update < 0 — Vo 3" ) L7 (for)
end while

0 %3

Algorithm 2: Meta-Regularized MAML

input : Task distribution p(7"); Weights distribution ¢(6; 7) = N(; 7) with Gaussian
parameters 7 = (6,,,,); Prior distribution r(¢) and Lagrangian multiplier 3; Stepsize
a,.al.

output: Network parameter 7, 0.

Initialize 7, [ randomly;
while not converged do
Sample a mini-batch of {7;} from p(7);
Sample 6 ~ ¢(6; 7) with reparameterization ;
for all T; € {T:} do
Sample D; = (x;,y,), D} = (x],y;) from T; ;
Encode observation z; = gg(x;), 2} = go(}) 5
Compute task specific parameter ¢; = 0 + o'V log q(y,|zi.0) ;
Update 0 < 0 +aV; 37 logq(y;|z], di) 3
Update 7+ 7+ V- [3- - log q(y; |2}, i) — BDx(q(6; 7)||7(0))]

4Yin et al. (2019)
8Finn et al. (2017)
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B. Meta-Regularised MAML: Algorithm* ||

Algorithm 3: Meta-Regularized Methods in Meta-testing
input : Meta-testing task 7 with training data D = («, y) and testing input &*, optimized
parameters T, 6.
output: Prediction §*
for k from 1 to K do
Sample 0, ~ ¢(0;7);
Encode observation zj, = gy, (), 2} = gs, (*) ;
Compute task specific parameter ¢ = a(hg(2k,y)) for MR-CNP and
¢r =6+ o'Vjlog q(y| 2z, 0) for MR-MAML;
Predict ;. ~ (i |=f, &, 0)

Return prediction §* = & Y25 | 47

4Yin et al. (2019)
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C. Meta-World: Parametric and Non-Parametric Variability

DINFK

Without parametric variation, the model could for example memorise that any object
at a particular location is a door, while any object at another location is a drawer.

Position randomisation forces the model to generalise more broadly.

For example, closing a drawer and pushing a block can appear as nearly the same
task for some initial and goal positions of each object.

Shared underlying structure: The 50 environments require the same robotic arm to
interact with different objects, with different shapes, joints, and connectivity.

The tasks themselves require the robot to execute a combination of reaching,
pushing, and grasping, depending on the task.

Steven Battilana  05/05/2020
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C. Meta-World: Multi-Task RL vs Meta-Learning RL®

learn tasks perform tasks

£\

Figure: Multi-task reinforcement learning
learn to learn tasks

new task

Figure: Multi-task reinforcement learning

ﬁﬁm“%ﬂ

® |n multi-task RL, we assume that we want to learn a fixed
set of skills with minimal data.

* In meta-learning RL, we want to use experience from a
set of skills such that we can learn to solve new skills
quickly.

5Yu et al. (2019)
DINFK
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C. Meta-World: Parametric and Non-Parametric Variability®

Train tasks Test tasks
ML1 ’
Pick and place with goal g1 Pick and place with goal g2 Pick and place with goal gy, Pick and place with unseen goal
ML10 Pick and place Reaching Button press  Window opening Pushing
Drawer opening  Door closing Shelfplacing  Sweep an object  Lever pulling
Sweep into goal  Drawer closing Dial tuning ' Peg insertion side

Figure: Visualisation of two meta-learning evaluation protocols, ranging from within task adaption in ML1, to adapting to new tasks in ML10.

SYu et al. (2019)
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D. Meta-Gradient RL8

Definition (n-step return)

9n(1) = Ri1 + YRivo + Y Rigs + . + 9" Rign + 7" v6(St4n),
where n = {v,n}.
Definition (A-return)
The A-return is a geometric mixture of n-step returns,

gn(Tt) =Ry + 7(1 - )\)'UB(SH—I) + ’Y/\gn(7t+1)7

where n = {7, n}.

8Xu et al. (2018)
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D. Squared Error (prediction update function)®

Definition of the square error semi-gradient derived w.r.t. 6:

8’09(3)'

£(7,0,1) = alon(r) — vo(s)) g

8Xu et al. (2018)
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15/23



ETHziirich

D. A2C Obijective (control update function)®

Definition of the A2C objective semi-gradient derived w.r.t. 0:

f(1,0,n) = alcontrol objective + prediction objective + regulariser]

=« (g77<7') — vg(s))alog(gg((ﬂs)) + b(gn('r) . UG(S))avgéS) + C@H(g@g(|3)) ’

where the third term regularises the policy according to its entropy H (7).

8Xu et al. (2018)
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D. Meta-Objective®

(i) Definition of the mean square error (prediction) meta-objective:
T 00) = (g (') = var(5))*.
(i) Definition of the policy (control) meta-objective:

J'(7,0' ') = (gy (') = vo (s)) log(mg ('|5")).

8Xu et al. (2018)
DINFK Steven Battilana  05/05/2020
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D. Update Meta-Parameters (prediction)®

(i) Definition of the MSE meta-objective semi-gradient:

DT ) = 2 () — () 2,

(i) Update Meta-Parameters n (prediction):
N g , 2 0 )
T RN ﬁwJ(T 0, )( 874_8 f(r,0,n)
vy (s')

~ -+ 2800y () — (N B (G + 57 00m)).

8Xu et al. (2018)
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D. Update Meta-Parameters (control)®

(i) Definition of the policy gradient objective:

d dlog(mer(a'|s"))
DT 8rf) = (g () — v () ZETACD),

(i) Update Meta-Parameters n (control):

~ _ 45?7 ! / / / ( ézg, :?7 )
nT /N Bae,J(Tﬁm) " + E%;f(T’e’n)

Olog(mg (d'|s")) ( 00
oo’

~ 1 — Bgy (7') — vo (5))

8Xu et al. (2018)
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E. Glossar |

Policy optimisation categories ([19] Schulman et al. (2017))

(i) Policy iteration methods, which alternate between estimating the
value function under the current policy and improving the policy.

(ii) Policy gradient methods, which use an estimator of the gradient of
the expected return (total reward) obtained from sample trajectories.

(iiiy Derivative-free optimisation methods, such as the cross-entropy
method (CEM) and covariance matrix adaptation (CMA), which treat
the return as a black box function to be optimised in terms of the
policy parameters.

DINFK Steven Battilana  05/05/2020  20/23
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E. Glossar Il

Actor-Critic

The actor takes as input the state and outputs the best action. It
essentially controls how the agent behaves by learning the optimal
policy (policy-based). The critic, on the other hand, evaluates the
action by computing the value function (value based). Those two
models participate in a game where they both get better in their own role
as the time passes. The result is that the overall architecture will learn to
play the game more efficiently than the two methods separately.

Bootstrapping Update value estimates based on other value estimates.

DINFK
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E. Glossar lll

Transfer Learning vs Meta-Learning

DINFK

Meta-learning is more about speeding up and optimising
hyperparameters for networks that are not trained at all, whereas transfer
learning uses a net that has already been trained for some task and
reusing part or all of that network to train on a new task which is relatively
similar.

So, although they can both be used from task to task to a certain degree,
they are completely different from one another in practice and application,
one tries to optimise configurations for a model and the other simply
reuses an already optimised model, or part of it at least.
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E. Glossar IV

Human starts
The first protocol is "human starts" which initialises episodes to a state that
is randomly sampled from human play.

No-op starts
"No-ops starts" initialise each episode with a random sequence of no-op
actions; this protocol is also used during training in the meta-gradient RL

paper.
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