E *H* zürich

Meta-Learning

DRL Seminar

Philippe Blatter

Overview

- Introduction to Meta-Learning
- Model-Agnostic Meta-Learning (MAML)
- Optimization-based approaches
- Meta-Learning in RL

Supervised Learning Paradigm

- Large datasets
- Large models
- Long training time

Transformer ([1] Vaswani et al. 2017)

Possible Problems

Large datasets might not be available

Long-tailed data

General-purpose AI

Braque or Cezanne?

[2] Finn et al. 2017

Philippe Blatter | 05.05.2020 | 5

Can we learn to learn?

Problem Setting

 D^{ts}

D

 $D_{
m meta-train}$

Problem Setting

Supervised learning:

$$\argmax_{\phi} p(\phi|D)$$

$$D = \{(x_1, y_1), \dots, (x_k, y_k)\}$$

Meta-learning:

$$\underset{\phi}{\arg\max\log p(\phi|D, D_{\text{meta-train}})}$$

$$D_{\text{meta-train}} = \{D_1, \dots, D_n\}$$
$$D_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

Meta-Learning Terminology

meta-training

 D^{tr}

. . .

use $heta^{\star}$ find ϕ^{\star}

meta-testing

Philippe Blatter | 05.05.2020 | 9

Meta-Learning Problem

$$\theta^{\star} = \arg\max_{\theta} \log p(\theta | D_{\text{meta-train}})$$

meta-learning

$$\phi^{\star} = \arg\max_{\phi} \log p(\phi|D, D_{\text{meta-train}}) = \arg\max_{\phi} \log p(\phi|D, \theta^{\star})$$

adaptation

(Meta) Training-Time

Complete Meta-Learning Problem

Meta-learning:
$$\theta^* = \underset{\theta}{\arg \max \log p(\theta | D_{\text{meta-train}})}$$

Adaptation: $\phi^* = \underset{\phi}{\arg \max \log p(\phi | D, \theta^*)}$

Learn θ such that $\phi_i = f_{\theta}(D_i^{tr})$ is good for D_i^{ts} for all tasks *i*

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | D_i^{ts})$$

where $\phi_i = f_{\theta}(D_i^{tr})$

[2] Finn et al. 2017

Model-Agnostic Meta-Learning (MAML)

Model-Agnostic Meta-Learning

[2] Finn et al. 2017

Model-Agnostic Meta-Learning (MAML)

 "In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task."

Understanding the Effectiveness of MAML

- Rapid Learning: large representational changes occur during adaptation to new task
- Feature Reuse: Meta-initialization already contains highly useful features that can be reused for new tasks

Freezing Layer Representations

Representational Similarity Experiments

 Measure changes in the latent representations learned by the NN during apaptation using Canonical Correlation Analsysis (CCA)

Highly similar representations in the body of the network

-> No functional change

-> No rapid learning EHzürich

ANIL Algorithm: Almost no Inner Loop (Adaptation)

Similar Performance to MAML

$$\begin{array}{ll} \textbf{Meta-learning} & \min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}}), \mathcal{D}_{i}^{\text{ts}}) \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

Learning to learn by gradient descent by gradient descent

"Casting algorithm design as a learning problem"

Learning to learn by gradient descent by gradient descent

hand-designed optimization algorithms

learned optimization algorithms

"Casting algorithm design as a learning problem"

EHzürich

Meta-Learning in RL

Meta-Learning in RL

Reinforcement learning:

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$$
$$= f_{\mathrm{RL}}(\mathcal{M}) \qquad \mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{P}, r\}$$
$$\bigwedge_{\mathrm{MDP}}$$

Meta-reinforcement learning:

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$
 \bigwedge
MDP for task *i*

RL² – Fast RL via Slow RL

"We view the learning process of the agent itself as an objective, which can be optimized using standard RL algorithms."

RL² – Fast RL via Slow RL

Policy is modeled by a RNN

RL² – Fast RL via Slow RL

[5] Duan et al. 2016

RL² – Fast RL via Slow RL

RL² – Fast RL via Slow RL

action

...

RL² – Fast RL via Slow RL

RL² – Fast RL via Slow RL

Second trajectory is almost always shorter

Generalizes to larger mazes

Thought Experiment

We assumed that learning optimization algorithms was better than hand-designing optimization algorithms. But why do we think that hand-designing meta-learning algorithms is optimal and why don't we meta-meta-learn them?

METACEPTION

E *H* zürich

References

- [1] Ashish Vaswani et al. "Attention is all you need". In: Advances in neural information processing systems. 2017, pp. 5998–6008.
- [2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-agnostic metalearning for fast adaptation of deep networks". In: *Proceedings of the 34th International Conference on Machine Learning-Volume 70.* JMLR. org. 2017, pp. 1126–1135.
- [3] Aniruddh Raghu et al. "Rapid learning or feature reuse? towards understanding the effectiveness of maml". In: *arXiv preprint arXiv:1909.09157* (2019).
- [4] Marcin Andrychowicz et al. "Learning to learn by gradient descent by gradient descent". In: Advances in neural information processing systems. 2016, pp. 3981–3989.
- [5] Yan Duan et al. "Rl²: Fast reinforcement learning via slow reinforcement learning". In: *arXiv preprint arXiv:1611.02779* (2016).