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Overview

 Introduction to Meta-Learning

 Model-Agnostic Meta-Learning  (MAML)

 Optimization-based approaches 

 Meta-Learning in RL
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Supervised Learning Paradigm

 Large datasets

 Large models

 Long training time   

  Transformer
([1] Vaswani et al. 2017)
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Possible Problems

Large datasets might not be available

General-purpose AI

Long-tailed data
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[2] Finn et al. 2017
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Example

Braque Cezanne

Braque or Cezanne?

2-way

3 shots

[2] Finn et al. 2017
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Can we learn to learn?

[2] Finn et al. 2017
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Problem Setting

...
[2] Finn et al. 2017
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Problem Setting

Supervised learning:

Meta-learning:

[2] Finn et al. 2017
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Meta-Learning Terminology

...

meta-training

meta-testing

use         find[2] Finn et al. 2017
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Meta-Learning Problem

meta-learning

adaptation

[2] Finn et al. 2017
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(Meta) Test-Time
Adaptation:

[2] Finn et al. 2017
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(Meta) Training-Time

Meta-Learning:

[2] Finn et al. 2017
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Complete Meta-Learning Problem

Meta-learning:

Adaptation: 

[2] Finn et al. 2017
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Model-Agnostic Meta-Learning (MAML)

[2] Finn et al. 2017
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Model-Agnostic Meta-Learning (MAML)

 “In our approach, the parameters of the model are explicitly trained such that a 
small number of gradient steps with a small amount of training data from a new 
task will produce good generalization performance on that task.”

 

[2] Finn et al. 2017
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Understanding the Effectiveness of MAML

 Rapid Learning: large representational changes occur during adaptation to new 
task

 Feature Reuse: Meta-initialization already contains highly useful features that 
can be reused for new tasks

[3] Raghu et al. 2019
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Freezing Layer Representations

Performance hardly changes.

-> Feature Reuse

[3] Raghu et al. 2020
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Representational Similarity Experiments

 Measure changes in the latent representations learned by the NN during 
apaptation using Canonical Correlation Analsysis (CCA)

before adaptation after adaptation

CCA(L1,L2)
Highly similar 
representations in 
the body of the 
network 

-> No functional 
change

-> No rapid 
learning

[3] Raghu et al. 2019
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ANIL Algorithm: Almost no Inner Loop (Adaptation)

 Similar Performance to MAML

[3] Raghu et al. 2019
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Learning to learn by gradient descent
   by gradient descent

hand-designed features learned features

hand-designed optimization 
algorithms

learned optimization
algorithms

“Casting algorithm design as a learning problem”

[4] Andrychowicz et al. 2016
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Learning to learn by gradient descent
   by gradient descent

[4] Andrychowicz et al. 2016
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Learning to learn by gradient descent
   by gradient descent

hand-designed optimization 
algorithms

learned optimization
algorithms

[4] Andrychowicz et al. 2016

“Casting algorithm design as a learning problem”
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Learning to learn by gradient descent
   by gradient descent

[4] Andrychowicz et al. 2016
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Learning to learn by gradient descent
   by gradient descent

[4] Andrychowicz et al. 2016
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Learning to learn by gradient descent
   by gradient descent

[4] Andrychowicz et al. 2016
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Meta-Learning in RL

 

Meta-RL

[5] Duan et al. 2016
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Meta-Learning in RL

 

[5] Duan et al. 2016
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RL² – Fast RL via Slow RL

[5] Duan et al. 2016

“We view the learning process of the agent itself as an objective, which can be optimized 
using standard RL algorithms.”
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RL² – Fast RL via Slow RL

[5] Duan et al. 2016

Policy is modeled by a RNN
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RL² – Fast RL via Slow RL

[5] Duan et al. 2016

Environment is modeled by a MDP
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RL² – Fast RL via Slow RL

[5] Duan et al. 2016

next state, action, reward and 
termination flag
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RL² – Fast RL via Slow RL

[5] Duan et al. 2016

action



05.05.2020Philippe Blatter 33| |

RL² – Fast RL via Slow RL

[5] Duan et al. 2016

Hidden state is kept
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RL² – Fast RL via Slow RL

Second trajectory is almost 
always shorter

Generalizes to larger mazes

[5] Duan et al. 2016
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Thought Experiment

We assumed that learning optimization algorithms was 
better than hand-designing optimization algorithms. But why 
do we think that hand-designing meta-learning algorithms is 
optimal and why don’t we meta-meta-learn them?

METACEPTION
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