Model Based Reinforcement Learning

Presenter: Adrian Hoffmann

Basic Set-Up

Basic Set-Up

Overview

- Definitions and their problems
- Why I want a model
- Paper "The Effect of Planning Shape on Dyna-style Planning in Highdimensional State Spaces"
- Paper "World Models"

Algorithm 1 Model-based reinforcement learning

1: Input: state sample procedure *d* 2: Input: model *m* 3: Input: policy π 4: Input: predictions v 5: Input: environment \mathcal{E} 6: Get initial state $s \leftarrow \mathcal{E}$ 7: **for** iteration $\in \{1, 2, ..., K\}$ **do** for interaction $\in \{1, 2, \dots, M\}$ do 8: 9: 10: Interactions with the real Environment 11: 12: 13: end for 14: for planning step \in {1, 2, ..., *P*} do 15: 16: Take advantage of the model 17: 18: end for 19: 20: end for

Algorithm 1 Model-based reinforcement learning

- 1: Input: state sample procedure *d*
- 2: Input: model *m*
- 3: Input: policy π

end for

20: end for

16:

17: 18:

19:

- 4: Input: predictions v
- 5: Input: environment \mathcal{E}
- 6: Get initial state $s \leftarrow \mathcal{E}$
- 7: **for** iteration $\in \{1, 2, ..., K\}$ **do**
- for interaction $\in \{1, 2, \dots, M\}$ do 8:
- Generate action: $a \leftarrow \pi(s)$ 9:
- Generate reward, next state: $r, s' \leftarrow \mathcal{E}(a)$ 10:
- $m, d \leftarrow \underline{\text{UPDATEMODEL}(s, a, r, s')}$ 11:
- $\pi, v \leftarrow \overline{\text{UPDATEAGENT}(s, a, r, s')}$ 12:
- Update current state: $s \leftarrow s'$ 13:
- end for 14: 15:
 - for planning step \in {1, 2, ..., *P*} do
 - Take advantage of the model

Algorithm 1 Model-based reinforcement learning

- 1: Input: state sample procedure *d*
- 2: Input: model *m*
- 3: Input: policy π
- 4: Input: predictions v
- 5: Input: environment ${\cal E}$
- 6: Get initial state $s \leftarrow \mathcal{E}$
- 7: **for** iteration $\in \{1, 2, ..., K\}$ **do**
- 8: **for** interaction $\in \{1, 2, \dots, M\}$ **do**
- 9: Generate action: $a \leftarrow \pi(s)$
- 10: Generate reward, next state: $r, s' \leftarrow \mathcal{E}(a)$
- 11: $m, d \leftarrow \text{UPDATEMODEL}(s, a, r, s')$
- 12: $\pi, v \leftarrow \text{UPDATEAGENT}(s, a, r, s')$
- 13: Update current state: $s \leftarrow s'$
- 14: end for
- 15: **for** planning step $\in \{1, 2, \dots, P\}$ **do**
- 16: Generate state, action $\tilde{s}, \tilde{a} \leftarrow d$
- 17: Generate reward, next state: $\tilde{r}, \tilde{s}' \leftarrow m(\tilde{s}, \tilde{a})$
- 18: $\pi, v \leftarrow \text{UPDATEAGENT}(\tilde{s}, \tilde{a}, \tilde{r}, \tilde{s}')$
- 19: end for
- 20: end for

Definition (purely) Model-Based

Algorithm 1 Model-based reinforcement learning

- 1: Input: state sample procedure *d*
- 2: Input: model *m*
- 3: Input: policy π
- 4: Input: predictions v
- 5: Input: environment \mathcal{E}
- 6: Get initial state $s \leftarrow \mathcal{E}$
- 7: **for** iteration $\in \{1, 2, ..., K\}$ **do**
- 8: **for** interaction $\in \{1, 2, \dots, M\}$ **do**
- 9: Generate action: $a \leftarrow \pi(s)$
- 10: Generate reward, next state: $r, s' \leftarrow \mathcal{E}(a)$
- 11: $m, d \leftarrow \underline{\text{UPDATEMODEL}(s, a, r, s')}$
- 12: 13: Update current state: $s \leftarrow s'$
- 14: end for
- 15: **for** planning step $\in \{1, 2, \ldots, P\}$ **do**
- 16: Generate state, action $\tilde{s}, \tilde{a} \leftarrow d$
- 17: Generate reward, next state: $\tilde{r}, \tilde{s}' \leftarrow m(\tilde{s}, \tilde{a})$
- 18: $\pi, v \leftarrow \underline{\mathsf{UPDATEAGENT}}(\tilde{s}, \tilde{a}, \tilde{r}, \tilde{s}')$
- 19: end for
- 20: end for

Definition Model-Free

Algorithm 1 Model-based reinforcement learning					
1:					
2:					
3: Input: policy π					
4: Input: predictions v					
5: Input: environment \mathcal{E}					
6: Get initial state $s \leftarrow \mathcal{E}$					
7: for iteration $\in \{1, 2, \dots, K\}$ do					
8: for interaction $\in \{1, 2, \dots, M\}$ do					
9: Generate action: $a \leftarrow \pi(s)$					
10: Generate reward, next state: $r, s' \leftarrow \mathcal{E}(a)$					
11:					
12: $\pi, v \leftarrow \text{UPDATEAGENT}(s, a, r, s')$					
13: Update current state: $s \leftarrow s'$					
14: end for					
15:					
16:					
17:					
18:					
19:					
20: end for					

DQN is model-based

due to it's replay buffer

Algorithm 1 Model-based reinforcement learning 1: Input: state sample procedure *d* 2: Input: model *m* 3: Input: policy π 4: Input: predictions v 5: Input: environment \mathcal{E} 6: Get initial state $s \leftarrow \mathcal{E}$ 7: **for** iteration $\in \{1, 2, ..., K\}$ **do** for interaction $\in \{1, 2, \dots, M\}$ do 8: 9: 10: Interactions with the real 11: Environment 12: 13: end for 14: for planning step \in {1, 2, ..., *P*} do 15: 16. Take advantage of the model 17: 18: end for 19:

20: end for

The fourth and final element of some reinforcement learning systems is a *model* of the environment. This is something that mimics the behavior of the environment, or more generally, that allows inferences to be made about how the environment will behave.

The fourth and final element of some reinforcement learning systems is a *model* of the environment. This is <u>something</u> that mimics the behavior of the environment, or more generally, <u>that allows inferences to be made about</u> how the environment will behave.

> Again, DQN's replay buffer fits this description

Distinction to normal Control Problems

Distinction to normal Control Problems

VS

Control Problems

Model Based RL

Why I want a model

Why I want a model – Sample efficiency

Save exploration

Create Samples with Model

Why I want a model – Planning

Learn a model and then use a planning algorithm

Why I want a model – Transfer of Knowledge

Learn how to kick the ball

Concentrate on teamplay

The effect of Planning Shape On Dyna-style planning in Highdimensional State Spaces

(Zacharias Holland et al. 2018, arXiv:1806.01825)

How does Dyna perform at Arcade games in a Deep Learning Setting?

Model

Learner

Roll-out Shapes

Model

Learner

Roll-out Shapes

Model

Learner

Roll-out Shapes

Model

Learner

Roll-out Shapes

Roll-out Shapes

100 x 1

Roll-out Shapes

Roll-out Shapes

Experiments

Number of Samples & Benchmarks

DQN 100k DQN Extra Updates DQN 10M

Dyna-DQN

Rollout-Dyna-DQN

002150 SECTOR 02							
*		-		-			
<u> </u>							
					-		
-	1	_		-	-		
Ą,	4	*					

Relaxing the model

One model is pretrained on expert data

One model learns in an online fashion

Online learned

Pre-trained Perfect

500·

400

300

200

100

300-

200

100

0

0

Seaquest

100×1 33×3 10×10 2×50 1×100

Space Invaders

100×1 33×3 10×10 2×50 1×100

2350 × × × × × ×

Zacharias Holland et al. 2018

 \mathfrak{D}

 \gg

ŧ

10500

4

1

Ð

Ð

World Models

(Ha & Schmidhuber 2018, arXiv:1803.10122)

Figure 1. A World Model, from Scott McCloud's Understanding Comics. (McCloud, 1993; E, 2012)

Ha et al. 2018

Vision (V) Model

Memory (M) Model

Mixture Density Network

Controller (C) Model

Experiments

Ha et al. 2018

Experiment 1 – Training the Controller

$a_t = W_c \left[z_t \ h_t \right] \ + b_c$

Evolution!

Ha et al. 2018

Experiment 1

	Method	AVG. SCORE
Removed memory Model	DQN (PRIEUR, 2017) A3C (CONTINUOUS) (JANG ET AL., 2017) A3C (DISCRETE) (KHAN & ELIBOL, 2016) CEOBILLIONAIRE (GYM LEADERBOARD)	343 ± 18 591 ± 45 652 ± 10 838 ± 11
Removed memory Model, but with hidden layer in Controller	V MODEL V MODEL WITH HIDDEN LAYER FULL WORLD MODEL	632 ± 251 788 ± 141 906 ± 21

Experiment 2 – train in dream world

Experiment 2 – what about rewards?

Maximize survival time

Train MDN-RNN (M) to model $P(z_{t+1}, \underline{d_{t+1}} \mid a_t, z_t, h_t).$

Memory model predicts death

Ha et al. 2018

Experiment 2 – Problems

Too low temperature -> no shooting Too high temperature -> chaos Controller exploits inaccuracies of the model

Experiment 2

Temperature $ au$	VIRTUAL SCORE	ACTUAL SCORE
0.10	2086 ± 140	193 ± 58
0.50	2060 ± 277	196 ± 50
1.00	1145 ± 690	868 ± 511
1.15	918 ± 546	1092 ± 556
1.30	732 ± 269	753 ± 139
RANDOM POLICY	N/A	210 ± 108
Gym Leader	N/A	820 ± 58

World Models – Shortcoming

Screenshot Image

Reconstruction

Latent representation z optimized for reconstruction and not for task solving

Ha et al. 2018

See you on Piazza